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CHAPTER 1

Introduction

The ECO32 is a general-purpose 32-bit RISC soft-core microprocessor, to be
implemented on an FPGA. It was originally designed to understand the RISC
architecture as described by Hennessy and Patterson in their books. The current
version is a simple, albeit slow implementation of the instruction set architecture
described in this manual. Future versions will include various optimizations to
make the ECO32 feasible for real-world projects.

1. Features

The ECO32 supports the following features:

• Soft-core processor to be implemented on an FPGA
• 32 general-purpose registers, each 32 bits wide
• 32-bit ALU, shifter, multiplication and division units
• load/store architecture
• 32-bit unified instruction and data address space
• 16 external interrupt lines
• two privilege modes to execute both trusted and untrusted code
• paged virtual memory with a page size of 4K
• assembler, instruction-set simulator, and C compiler support

2. Requirements

So far, the ECO32 has only been implemented on a Xilinx Spartan-3 FPGA.
Implementing it on other FPGAs may cause problems if the ECO32 uses device
primitives that are not supported on the target platform.
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CHAPTER 2

ECO32 Architecture

The ECO32 is a general-purpose 32-bit RISC processor. Its instruction set
is tailored to handle only the most basic computation steps at once, and to allow
arbitrary combination of these basic steps for full flexibility. Instructions are exe-
cuted sequentially. The ECO32 also includes the basic mechanisms to implement
modern operating systems, such as interrupts, privileged instructions, and virtual
memory. Operations on floating-point data types are not supported.

The ECO32 is a soft-core that must be used in a larger system-on-chip (SoC)
design inside a field programmable gate array (FPGA). The ECO32 is connected
to other on-chip resources using a uniform SoC bus architecture. These resources
include a RAM controller, a ROM controller, and peripheral devices such as copro-
cessors, communication controllers, and controllers for external devices.

1. Data Types

The following basic data types are processed by the ECO32 :

• Byte: A unit of 8 bits
• Half-Word: A unit of 16 bits
• Word: A unit of 32 bits

The bits of each unit are written down starting from the most-significant bit to the
least significant bit.

The size of the basic units allows the arrangement of bytes as half-words, or of
bytes or half-words as words. Two common kinds of arrangements are defined for
sequences of bytes or half-words. Let a = (a7, ..., a0), b = (b7, ..., b0), c = (c7, ..., c0),
and d = (d7, ..., d0) be byte values, and p = (p15, ..., p0) and q = (q15, ..., q0) be half-
word values.

• Big Endian arrangement maps
– the byte sequence (a, b) to the half-word (a7, ..., a0, b7, ..., b0),
– the byte sequence (a, b, c, d) to the word

(a7, ..., a0, b7, ..., b0, c7, ..., c0, d7, ..., d0), and
– the half-word sequence (p, q) to the word (p15, ..., p0, q15, ..., q0).

• Little Endian arrangement maps
– the byte sequence (a, b) to the half-word (b7, ..., b0, a7, ..., a0),
– the byte sequence (a, b, c, d) to the word

(d7, ..., d0, c7, ..., c0, b7, ..., b0, a7, ..., a0), and
– the half-word sequence (p, q) to the word (q15, ..., q0, p15, ..., p0).

When units of several bits are interpreted as numbers, two different schemes
are used. An unsigned interpretation maps the bits (aN , ..., a0) to the number∑N

i=0 ai2
i. A signed (or two’s complement) interpretation maps the same bit se-

quence to the number −aN2N +
∑N−1

i=0 ai2
i.
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The functions signed and unsigned shall denote signed and unsigned interpre-
tation of a bit sequence as a number, respectively.

A bit sequence (aN , ..., a0) is truncated to M ≤ N bits by taking the bit sequence
(aM , ..., a0). The same bit sequence is zero-extended to P ≥ N bits by taking
(0, ..., 0, aN , ..., a0), or sign-extended to P bits by taking (aN , ..., aN , aN−1, ..., a0).
Zero-extension and sign-extension preserve the unsigned or signed interpretation,
respectively, if the value can be represented in the target number of bits at all.

The function truncateN shall denote truncation to N bits, zeroextN shall de-
note zero-extension to N bits, and signextN shall denote sign-extension to N bits.

2. Addresses

An address is a 32-bit unsigned value that indicates a location in RAM, ROM,
or in a peripheral device. An address is half-word-aligned if it is divisible by 2, that
is, its least significant bit is 0. An address is word-aligned if it is divisible by 4,
that is, its two least significant bits are 0. The design of the ECO32 ensures that
all accesses to the RAM, ROM, or to peripheral devices are aligned with respect to
the transferred data size.

The ECO32 distinguishes virtual and physical addresses. Virtual addresses are
generated by a program to address RAM or device locations. Virtual addresses are
converted to physical addresses by the memory management unit. Finally, physical
addresses select locations in RAM, ROM, or peripheral devices. See Chapter 2,
Section ?? for details.

The mapping is always defined in such a way that a virtual address is half-word
(word) aligned if and only if the corresponding physical address is. Any attempt to
access a half-word (word) sized location at an address that is not half-word (word)
aligned is called a misaligned access and triggers a fault.

Each physical address in the range 0x00000000 through 0x2FFFFFFF selects a
byte-sized location in RAM or ROM. Each half-word (word) aligned address in that
range selects a half-word (word) in RAM or ROM comprising the corresponding
byte locations in a big-endian fashion.

Each word-aligned physical address in the range 0x30000000 through 0x3FFFFFFF
selects a word-sized location in a peripheral device. Byte or half-word sized access
to peripheral devices is not allowed and the effect of such accesses on the device
and on values read is undefined.

Physical addresses in the range 0x40000000 through 0xFFFFFFFF are not
used.

3. Program Counter (PC)

The PC is a 32-bit virtual address register that contains the address of the next
instruction to execute. Each instruction is 32 bits, or 4 bytes wide. An instruction
is fetched by loading a word value from the virtual address given by the PC, then
incrementing it by 4 (thus moving to the next instruction). If the execution of the
instruction later modifies the PC, it is this new value that is modified.

4. General-Purpose Registers

Most data processing occurs in a set of 32 general-purpose registers, each 32
bits wide. Instructions exist to perform arithmetic operations, logic operations,
multiplication and division, and data type conversion. Such operations load the



6. SPECIAL-PURPOSE REGISTERS 7

operands from general-purpose registers, perform the computation, and store the
result back in a general-purpose register. General-purpose registers also hold the
addresses and data for transfers to and from RAM, ROM, and peripheral devices.
The interpretation of a value in a general-purpose register as data or address de-
pends solely on the instructions that operate on that value – the value itself is an
untyped 32-bit unit.

Some general-purpose registers have a special function in addition to their
regular behaviour:

• Register #0 is not actually backed by a physical register. Reading from
this register always yields the value 0. Writing to this register has no
effect. Register #0 can be exploited in various cases where a value of zero
is needed in a register, without first loading that value into a register.

• Registers #1 through #29 do not serve any special purpose.
• Register #30 is used to store the return address when an exception occurs.

That value is later used by the exception service routine to return to the
place where the exception had occurred. At any time when interrupts
are enabled, this register may not be used, because its value could be
overwritten by an unexpected interrupt.

• Register #31 is used to store the return address in a subroutine call.

5. Load/Store Architecture

Specific instructions exist to transfer data to or from RAM, ROM, or peripheral
devices. No such data transfer occurs except for these instructions, as well as
instruction fetching itself. That is, all other instructions operate entirely inside the
ECO32 .

A load instruction transfers data from an external source into a general-purpose
register. A store instruction transfers data from a general-purpose register to an
external target. The virtual address of the external source or target is determined
by taking the value of a general-purpose register and adding a constant value that
is encoded into the instruction.

Load and store instructions come in variants of word, half-word, and byte
transfers with respect to the size of the transferred data. The address computation
is not affected by the transfer size, but the resulting address must be aligned to
the transfer size. A word transfer affects a full 32-bit general purpose register. A
half-word or byte store instruction transfers only the lower 16 or 8 bits, respectively.
An unsigned half-word load instruction loads 16 bits from an external source, zero-
extends it to 32 bits, and stores the result in a general-purpose register. Similarly,
a signed half-word load instruction sign-extends the value to 32 bits. Byte-sized
load instructions work analogously.

6. Special-Purpose Registers

The ECO32 contains a set of special-purpose registers that are not used for
computation, address generation, or data transfer. Instead, these registers control
operation of the processor itself. Special purpose registers are accessed with the
MVFS and MVTS instructions.

The following special-purpose registers are present in the ECO32:
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Index Name
0 PSW
1 TLB Index
2 TLB Entry High
3 TLB Entry Low
4 TLB Bad Address

The first special register is the processor status word (PSW). This register
contains the main control parameters for the processor. See Chapter 2, Section ??
for details. The PSW can only be accessed from Kernel Mode.

The remaining special-purpose registers are used to communicate with the
memory management unit. See Chapter 2, Section ?? for details. The MMU
registers can only be accessed from Kernel Mode.

7. Processor Status Word (PSW)

The PSW controls execution in various way. It is actually a collection of fields,
each of which has its own purpose and effect:

Bit Index Name Meaning
31..28 — (ignored)

27 V Exception Service Routine Vector.
26 UC Current privilege mode.
25 UP Previous privilege mode.
24 UO Old privilege mode.
23 IC Current global interrupt enable.
22 IP Previous global interrupt enable.
21 IO Old global interrupt enable.

20..16 EID Exception identifier.
15..0 IEN Channel-specific interrupt enable.

7.1. Exception Service Routine Vector. The V bit of the PSW specifies
the address of the exception service routines. If the V bit is 0, then service routines
are located at a high physical address that lies at the beginning of the ROM. If the
V bit is 1, then service routines are located at a low physical address that lies at
the beginning of the RAM. See Chapter 2, Section ?? for details.

7.2. Privilege Modes. The UC , UP , and UO bits of the PSW form a three-
level stack, with UC at the top. A bit value X is pushed on that stack by the
following sequence:

UO ← UP

UP ← UC

UC ← X

A value is popped off the stack by the following sequence:

UC ← UP

UP ← UO

Only UC affects execution directly. If UC is 0, then the ECO32 runs in Kernel
Mode and can access privileged instructions and privileged addresses. If UC is
1, then the ECO32 runs in User Mode, and any attempt to access a privileged
instruction or privileged address will result in a Privileged Instruction Fault or
Privileged Address Fault, respectively. When any exception is accepted, a value of
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0 is pushed onto the three-level stack to enter Kernel Mode, and UO is discarded.
The RFX instruction pops the topmost value off the stack to restore the execution
state before the exception.

A privileged address is any virtual address in the range 0x80000000 through
0xFFFFFFFF. This range is reserved for the operating system, and includes both a
page-mapped range from 0x80000000 through 0xBFFFFFFF, and a direct-mapped
range from 0xC0000000 through 0xFFFFFFFF. See Chapter 2, Section ?? for de-
tails.

7.3. Interrupt Enable. The IC , IP , and IO bits of the PSW form a three-
level stack, with IC at the top. A bit value X is pushed on that stack by the
following sequence:

IO ← IP
IP ← IC
IC ← X

A value is popped off the stack by the following sequence:

IC ← IP
IP ← IO

Only IC affects execution directly. If IC is 0, then interrupts are globally
disabled. If any device signals an interrupt while IC is 0, then admission of that
interrupt is postponed. If IC is 1, then interrupts are globally enabled (note that
interrupts may still be disabled on a per-channel basis, see below). When any
exception is accepted, a value of 0 is pushed onto the three-level stack to disable
all interrupts, and IO is discarded. The RFX instruction pops the topmost value
off the stack to restore the execution state before the exception.

The IEN field controls admission of interrupts on a per-channel basis. An
interrupt is only accepted if both the global IC and the corresponding bit of the
IEN are set. Otherwise, admission of the interrupt is postponed until this condition
arises. An interrupt may be overlooked if the device negates the interrupt signal
again before IC and the corresponding IEN bit are both set.

7.4. Exception Identifier. When an exception is accepted, the EID field of
the PSW is loaded with a number that identifies the cause of the exception. The
meaning of these numbers is defined in the following table:

Value Meaning
0..15 Device Interrupt 0..15
16 Bus Timeout
17 Illegal Instruction
18 Privileged Instruction
19 Division by Zero
20 Trap Instruction
21 TLB Miss
22 TLB Write
23 TLB Invalid
24 Illegal Address
25 Privileged Address
26..31 (unused - never loaded by the hardware)
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8. Exceptions: Interrupts and Faults

An Exception is a control transfer from user code to operating system code.
There are two kinds of exceptions: An Interrupt occurs when a peripheral device
needs the attention of the ECO32. A Fault occurs when the execution of an
instruction fails.

Interrupts are only accepted between the execution of two instructions, and only
if the IC and IEN fields of the PSW allow so (see Chapter 2, Section ??). Oper-
ating system code can control these fields to disable interrupts during time-critical
code sequences or to achieve mutual exclusion. Typically, the interrupt service rou-
tine communicates with the device that caused the interrupt, then returns to the
interrupted code and continues its execution as if nothing had happened (except
that register #30 had been overwritten, see below). Register #30 should not be
used for computations, since it would lose its value during an unexpected interrupt.

Faults occur during the execution of an instruction. Typically, a fault service
routine would either correct the problem and restart the failed instruction, or ter-
minate the corresponding program. In certain cases, a fault indicates a voluntary
control transfer to the operating system to perform some action on behalf of the
user program. In that case, the fault service routine would not restart the faulting
instruction, but return to the instruction immediately following it.

8.1. Accepting an Exception. When an exception is accepted, the following
steps are taken automatically by the ECO32 :

(1) Store the return address in the general-purpose register #30. For inter-
rupts (which occur between two instructions), this is the address of the
instruction directly following the occurence of the interrupt. For faults,
this is the address of the faulting instruction. Note that although fetch-
ing the faulting instruction had already increased the PC by 4, a fault
subtracts 4 again to obtain the original address of that instruction.

(2) Push 0 on the (IC , IP , IO) stack in the PSW to disable interrupts, and to
remember the previous interrupt enable state.

(3) Push 0 on the (UC , UP , UO) stack in the PSW to enter Kernel Mode, and
to remember the previous privilege mode.

(4) Set the EID field of the PSW to the corresponding exception identifier
(see Chapter 2, Section ??)

(5) Load the address of the service routine into the PC register (see Chapter
2, Section ??)

8.2. Exception Service Routine Addresses. The address of the exception
service routine, that is, the value loaded into the PC, is determined as follows. First,
a base address is computed depending on the value of the V field of the PSW. If the
V bit is 0, then the base address is E0000000. If the V bit is 1, then the base address
is C0000000. Since these addresses are loaded into the PC, they are virtual. With
V set to 0, the address is a direct-mapped address that denotes the physical address
0x20000000, i.e. the first address associated with the ROM. With V set to 1, the
address is a direct-mapped address that denotes the physical address 0x00000000,
i.e. the first address associated with the RAM. The V bit can therefore be used
to handle exceptions in a service routine located in ROM directly after startup, as
well as handle them in a service routine located in RAM once an operating system
is loaded.



9. MEMORY MANAGEMENT UNIT (MMU) 11

Next, the cause of the exception is inspected. One specific kind of fault, the
User Space TLB Miss, is given special treatment. For this fault, the actual address
of the service routine is (base address + 8). For all other faults, as well as for all
interrupts, the address of the service routine is (base address + 4). This leaves
only enough space for a single instruction at (base address + 4), which is therefore
typically a jump instruction. The special treatment for User Space TLB misses
allows very fast handling of such faults.

8.3. Returning Control. The exception service routine of the operating sys-
tem can then handle the exception. When the service routine is finished, it typically
returns control:

• An interrupt service routine would return to the saved address in register
#30 to continue the interrupted code.

• A fault service routine that has corrected a problem with the faulting
instruction would reutrn to the saved address in register #30 to restart
that instruction.

• A fault service routine that could not correct the problem would not return
control. What happens in that case depends on the operating system
architecture.

• A fault service routine that performs an action on behalf of a user code
request would not return to the faulting instruction, but to the instruction
immediately following it. This can be achieved by adding 4 to register #30
before returning.

A single instruction called RFX (return from exception) handles all these cases.
This instruction performs the following sequence:

(1) Load the value in register #30 into the PC.
(2) Restore the remembered state of the interrupt enable flag and privilege

mode by popping the top value off the (IC , IP , IO) and (UC , UP , UO)
stacks.

9. Memory Management Unit (MMU)

All addresses generated by the ECO32, including both the PC as well as
those from load and store instructions, are virtual addresses. These addresses are
transformed to physical addresses by the memory management unit (MMU). The
physical addresses are finally sent over the SoC bus to the memory controller or to
peripheral hardware.

The memory management unit (MMU) distinguishes two parts of the virtual
address space and uses different mapping algorithms for them. The page-mapped
space ranges from virtual address 0x00000000 through 0xBFFFFFFF. The direct-
mapped space ranges from virtual address 0xC0000000 through 0xFFFFFFFF.
Note that this leaves the direct-mapped space entirely in the range of privileged ad-
dresses, such that only operating system code can access direct-mapped addresses.

9.1. Direct-Mapped Space. Virtual addresses in the direct-mapped space
are transformed to physical addresses by subtracting the start address of that space,
0xC0000000. Thus, the direct-mapped space can be used to directly access any
RAM, ROM, or device location in the physical address space.
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9.2. Page-Mapped Space. Virtual addresses in the page-mapped space are
subdivided into blocks of 4096 bytes called pages. Each page is a continuous range
of 4096 virtual addresses, and is mapped to a continuous range of 4096 physical
addresses called a page frame. Both pages and page frames are aligned to their size.
Thus, in the page-mapped space, the upper 20 bits of the physical address (the page
frame number) are computed through a mapping function from the upper 20 bits of
the virtual address (the page number), and the 12 lower bits of the physical address
are directly taken from the 12 lower bits of the virtual address.

The mapping function from pages to page frames can be defined and imple-
mented freely by the operating system. No overall representation of the mapping is
implemented by the ECO32 itself. Specifically, the ECO32 does not have a notion
of a page table as found in other architectures. Instead, the mapping of pages to
page frames is defined by a software function implemented by the operating sys-
tem, and the results of that function are cached in a special memory called the
translation look-aside buffer (TLB).

9.3. Translation Lookaside Buffer (TLB). The TLB is a table of 32 en-
tries, each mapping a 20-bit page number to a 20-bit page frame number. Both
numbers are stored in an entry. When accessing a page-mapped virtual address,
the TLB is searched for the page number. If an entry is found, then its page frame
number is concatenated with the 12-bit page local address to yield the physical
address. It is an error to have two entries with the same virtual page number, and
the result of the mapping is undefined in that case. Having two entries with the
same physical page number is fine however, and can be used to mirror a physical
page frame at multiple virtual pages.

A full page mapping function is defined by (220 − 218) mappings of pages to
page frames. The 32 TLB entries contain a subset of these mappings, preferably
those that are most needed in the near future. By writing to the TLB, a different
subset can be loaded. It is also possible to change the mapping function itself by
removing (overwriting) the old TLB entries and filling in the mappings of the new
function. The ECO32 is not concerned with the notion of the overall mapping
function, but simply searches the TLB for a matching page number.

Each TLB entry always contains a mapping from a virtual page to a physical
page frame. However, entries can be effectively blanked by entering a never-occuring
page number. For example, virtual addresses in the range 0xC0000000 through
0xFFFFFFFF are direct-mapped, and thus never occur as virtual addresses in a
TLB lookup.

In no entry is found in a lookup, a TLB Miss Fault occurs. This is either a
User Space TLB Miss if the virtual address is in the range 0x00000000 through
0x7FFFFFFF (that is, it is an unprivileged address), or a Kernel Space TLB Miss
if the virtual address is in the range 0x80000000 through 0xBFFFFFFF (that is, it
is a privileged address). The control transfer to the service routine works slightly
different for privileged and unprivileged addresses (see Chapter 2, Section ??). The
service routine for TLB Miss Faults typically loads an appropriate mapping into
the TLB, then executes the RFX instruction to restart the failed instruction. In
terms of an overall mapping function, the TLB miss service routine moves the TLB
to a different subset of the mapping function, such that the new subset contains
the faulting address.
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9.4. TLB Entry Flags. TLB entries may be flagged valid (the valid flag is
set) or invalid (the valid flag is not set), and they may be flagged writeable (the
write flag is set) or write-protected (the write flag is not set). These flags only come
to effect in a TLB entry whose page number is found during a lookup. If the valid
flag is not set for such an entry, then a TLB Invalid Fault is triggered. If the write
flag is not set for such an entry and the access is a write access, then a TLB Write
Fault is triggered. Otherwise, the access succeeds.

Note that the name of the valid flag is slightly misleading. The name might
suggest that unsetting this flag marks a TLB entry as invalid and causes the lookup
algorithm to overlook that entry. However, unsetting the valid flag actually marks
the corresponding page as invalid and does not interfere with the lookup algorithm;
instead, when the entry is found during lookup, it triggers a TLB Invalid Fault. To
mark a TLB entry invalid and thus cause the lookup algorithm to overlook that en-
try, place an unused virtual page number into the entry, such as a page number from
the direct-mapped virtual address range (0xC0000000 through 0xFFFFFFFF).

9.5. Random Replacement and Fixed TLB Entries. The TLB miss ser-
vice routine typically replaces a TLB entry with a mapping for the faulting address,
then restarts the faulting instruction. The question remains which entry to replace.
The optimal strategy would be to modify the TLB in such a way that, out of the
total (220 − 218) mappings, it contains the 32 entries most needed in the near fu-
ture. It has been shown that replacing random entries moves towards that set quite
quickly. Therefore, the ECO32 is designed to replace a random TLB entry easily,
using a simple hardware random-number generator.

However, for certain purposes it is useful to exclude some TLB entries from
being indexed by such random numbers. Therefore, the ECO32 has 4 fixed TLB
entries at index 0..3, and 28 non-fixed TLB entries at index 4..31. Random re-
placement always chooses one of the non-fixed entries. The mapping stored in the
fixed entries can only be changed by accessing them directly, i.e. not by random
indexing.

9.6. TLB Access Registers. A set of special purpose registers is used to
communicate with the TLB. The primary use for these registers is loading an entry
into the TLB within a TLB Miss service routine. Another use would be to blank
all TLB entries to move to a different overall mapping function. The TLB access
registers are special-purpose registers that must be accessed with the MVFS and
MVTS instructions. The special TBS, TBWR, TBRI, and TBWI instructions
causes the actual operations between these registers and the TLB.

The purpose of these registers is as follows:

• the TLB Index Register contains the Index of an entry that is read with
the next TLB read-by-index instruction (TBRI), written with the next
TLB write-by-index instruction (TBWI), or found by the TLB search
instruction (TBS). The index is a number in the range 0..31.

• the TLB Entry High Register contains the high part of an entry that was
read or shall be written. The high part of an entry contains the virtual
page number of that entry in the upper 20 bits. The lower 12 bits are
ignored. After a TLB Miss Fault, TLB Invalid Fault, or TLB Write Fault,
the TLB Entry High register contains the faulting page number.



14 2. ECO32 ARCHITECTURE

• the TLB Entry Low Register contains the low part of an entry that was
read or shall be written. The low part of an entry contains the physical
page frame number of that entry in the upper 20 bits. It also contains
the valid flag of that entry in bit 0, and the write-protection flag in bit 1.
The remaining bits are ignored.

• the TLB Bad Address Register contains the faulting address after an
Invalid Address Fault, Privileged Address Fault, TLB Miss Fault, TLB
Invalid Fault, or TLB Write Fault.

10. Overall Memory Map

Taking all rules into account, the ECO32 distinguishes the following virtual
address ranges:

• 0x00000000 through 0x7FFFFFFF: Page-mapped User Space
• 0x80000000 through 0xBFFFFFFF: Page-mapped Kernel Space
• 0xC0000000 through 0xDFFFFFFF: Direct-mapped Kernel Space, maps

to RAM
• 0xE0000000 through 0xEFFFFFFF: Direct-mapped Kernel Space, maps

to ROM
• 0xF0000000 through 0xFFFFFFFF: Direct-mapped Kernel Space, maps

to peripheral devices

11. Reset State

After a hardware reset, the ECO32 is in the following state:

• the general-purpose registers contain undefined values (except for register
#0, which is not backed by a physical register, and always has the value
0).

• all bits of the PSW are set to 0, indicating in particular
– that the exception service routines are located at virtual addresses

0xE0000004 and 0xE0000008 (at the beginning of the ROM)
– that interrupts are globally disabled and that all interrupt channels

are individually disabled
– that the ECO32 executes in Kernel Mode

• the PC is set to 0xE0000000, i.e. the first address in ROM. This loca-
tion typically contains a jump instruction to escape the general exception
service routine at 0xE0000004.



CHAPTER 3

Instruction Set

The instructions of the ECO32 operate directly on the functional components
described in the previous chapter. They can be subdivided into groups of instruc-
tions that work in a similar way:

• Computation: These instructions compute a function of values stored in
general-purpose registers or encoded directly into the instruction and store
the result in a general-purpose register.

• Control Flow: These instructions affect the PC in various ways.
• Load/Store: These instructions transfer data from or to RAM locations

or peripheral device registers.
• System: Special instructions for PSW, MMU, or exception operation.

1. Definitions

Some definitions are useful when explaining the effect of an instruction: An
immediate value is a value encoded directly into the instruction. A register value
is a 32-bit value taken from a general-purpose register. The interpretation of such
values is up to the instruction.

A register value is referred to by an instruction by an immediate value that
denotes the register number. If x is a 5-bit immediate value, then Rx shall denote
the corresponding register value, and Rx ← ... shall denote an assignment to this
register. Similarly, Si denotes special purpose register #i. Ri,j and Si,j denote
specific bits of a register. As a special rule, an assignment to R0 has no effect since
that register is not writeable.

2. General Execution Loop

The ECO32 executes the following loop to perform its task:

• Remember the current value of the PC register. If any exception occurs
before the instruction is finished, this value is placed in register #30 such
that the current instruction can be restarted.

• Load the current instruction from the virtual address stored in the PC.
If that address is not word-aligned, then an Invalid Address Exception oc-
curs. Otherwise, if it is a privileged address and the CPU is in user mode,
then a Privileged Address Exception occurs. Otherwise, it is mapped to a
physical address by the MMU, which may trigger a TLB Miss Exception
or a TLB Invalid Exception. All these exceptions cause the faulting PC
value to be stored in the TLB Bad Address Register. Note that a TLB
Write Exception cannot occur since the instruction fetch is a read access.

• Increase the PC by 4.

15
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• If the opcode in the instruction word does not denote a valid instruction,
then an Illegal Instruction Fault is triggered.

• Decode and execute the instruction. Any fault triggered during this step
immediately stops execution of the current instruction and transfers con-
trol to the fault service routine.

• Remember the new value of the PC register. If any interrupt occurs in
the next step, this value is placed in register #30 such that control can
return to the next instruction.

• Test for interrupts. If an interrupt is signalled and admitted (Chapter 2,
Section ??), then control is transferred to the service routine (Chapter 2,
Section ??).

3. Computation Instructions

The computation instructions compute a function of register values and/or
immediate values, and store their result in a general-purpose register.

3.1. ADD. The ADD instruction computes the sum of two 32-bit register
operands, truncated to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 000000 x y r (ignored)
Effect:

Rr ← truncate32(Rx + Ry)

3.2. ADDI. The ADDI instruction computes the sum of a 32-bit register
operand and a sign-extended 16-bit immediate operand, truncated to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..0

Value 000001 x r y
Effect:

Rr ← truncate32(Rx + signext32(y))

3.3. SUB. The SUB instruction computes the difference of two 32-bit register
operands, truncated to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 000010 x y r (ignored)
Effect:

Rr ← truncate32(Rx −Ry)

3.4. SUBI. The SUBI instruction computes the difference of a 32-bit register
operand and a sign-extended 16-bit immediate operand, truncated to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..0

Value 000011 x r y
Effect:

Rr ← truncate32(Rx − signext32(y))



3. COMPUTATION INSTRUCTIONS 17

3.5. MUL. The MUL instruction computes the signed product of two 32-bit
register operands, truncated to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 000100 x y r (ignored)
Effect:

Rr ← truncate32(Rx ∗signed Ry)

3.6. MULI. The MULI instruction computes the signed product of a 32-bit
register operand and a sign-extended 16-bit immediate operand, truncated to 32
bits.

Format:
Bits 31..26 25..21 20..16 15..0

Value 000101 x r y
Effect:

Rr ← truncate32(Rx ∗signed signext32(y))

3.7. MULU. The MULU instruction computes the unsigned product of two
32-bit register operands, truncated to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 000110 x y r (ignored)
Effect:

Rr ← truncate32(Rx ∗unsigned Ry)

3.8. MULUI. The MULUI instruction computes the unsigned product of a
32-bit register operand and a zero-extended 16-bit immediate operand, truncated
to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..0

Value 000111 x r y
Effect:

Rr ← truncate32(Rx ∗unsigned zeroext32(y))

3.9. DIV. The DIV instruction computes the signed quotient of two 32-bit
register operands, truncated to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 001000 x y r (ignored)
Effect:

if Ry = 0 then trigger a Division by Zero Fault
Rr ← truncate32(Rx/signedRy)

3.10. DIVI. The DIVI instruction computes the signed quotient of a 32-bit
register operand and a sign-extended 16-bit immediate operand, truncated to 32
bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 001001 x y r (ignored)
Effect:

if y = 0 then trigger a Division by Zero Fault
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Rr ← truncate32(Rx/signedsignext32(y))

3.11. DIVU. The DIVU instruction computes the unsigned quotient of two
unsigned 32-bit register operands, truncated to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 001010 x y r (ignored)
Effect:

if Ry = 0 then trigger a Division by Zero Fault
Rr ← truncate32(Rx/unsignedRy)

3.12. DIVUI. The DIVUI instruction computes the unsigned quotient of a
32-bit register operand and a zero-extended 16-bit immediate operand, truncated
to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 001011 x y r (ignored)
Effect:

if y = 0 then trigger a Division by Zero Fault
Rr ← truncate32(Rx/unsignedzeroext32(y))

3.13. REM. The REM instruction computes the signed remainder of two 32-
bit register operands, truncated to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 001100 x y r (ignored)
Effect:

if Ry = 0 then trigger a Division by Zero Fault
Rr ← truncate32(RxMODsignedRy)

3.14. REMI. The REMI instruction computes the signed remainder of a 32-
bit register operand and a sign-extended 16-bit immediate operand, truncated to
32 bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 001101 x y r (ignored)
Effect:

if y = 0 then trigger a Division by Zero Fault
Rr ← truncate32(RxMODsignedsignext32(y))

3.15. REMU. The REMU instruction computes the unsigned remainder of
two unsigned 32-bit register operands, truncated to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 001110 x y r (ignored)
Effect:

if Ry = 0 then trigger a Division by Zero Fault
Rr ← truncate32(RxMODunsignedRy)
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3.16. REMUI. The REMUI instruction computes the unsigned remainder of
a 32-bit register operand and a zero-extended 16-bit immediate operand, truncated
to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 001111 x y r (ignored)
Effect:

if y = 0 then trigger a Division by Zero Fault
Rr ← truncate32(RxMODunsignedzeroext32(y))

3.17. AND. The AND instruction computes the bitwise AND of two 32-bit
register operands.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 010000 x y r (ignored)
Effect:

Rr,i ← Rx,i ∧Ry,i

3.18. ANDI. The ANDI instruction computes the bitwise AND of a 32-bit
register operand and a zero-extended 16-bit immediate operand.

Format:
Bits 31..26 25..21 20..16 15..0

Value 010001 x r y
Effect:

Rr,i ← Rx,i ∧ zeroext32(y)i

3.19. OR. The OR instruction computes the bitwise OR of two 32-bit register
operands.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 010010 x y r (ignored)
Effect:

Rr,i ← Rx,i ∨Ry,i

3.20. ORI. The ORI instruction computes the bitwise OR of a 32-bit register
operand and a zero-extended 16-bit immediate operand.

Format:
Bits 31..26 25..21 20..16 15..0

Value 010011 x r y
Effect:

Rr,i ← Rx,i ∨ zeroext32(y)i

3.21. XOR. The XOR instruction computes the bitwise XOR of two 32-bit
register operands.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 010100 x y r (ignored)
Effect:

Rr,i ← Rx,i ⊕Ry,i
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3.22. XORI. The XORI instruction computes the bitwise XOR of a 32-bit
register operand and a zero-extended 16-bit immediate operand.

Format:
Bits 31..26 25..21 20..16 15..0

Value 010101 x r y
Effect:

Rr,i ← Rx,i ⊕ zeroext32(y)i

3.23. XNOR. The XNOR instruction computes the bitwise XNOR of two
32-bit register operands.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 010110 x y r (ignored)
Effect:

Rr,i ← Rx,i ⊕Ry,i

3.24. XNORI. The XNORI instruction computes the bitwise XNOR of a 32-
bit register operand and a zero-extended 16-bit immediate operand.

Format:
Bits 31..26 25..21 20..16 15..0

Value 010111 x r y
Effect:

Rr,i ← Rx,i ⊕ zeroext32(y)i

3.25. SLL. The SLL instruction computes the result of shifting the first 32-bit
register operand to the left by a number of bits specified by the 5 least significant
bits of the second 32-bit register operand, and filling up with 0 bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 011000 x y r (ignored)
Effect:

shift← unsigned(Ry,4..0)
tempi ← Rx,i−shift if i ≥ shift
tempi ← 0 if i < shift
Rr ← temp

3.26. SLLI. The SLLI instruction computes the result of shifting the 32-bit
register operand to the left by a number of bits specified by the 5 least significant
bits of the immediate operand, and filling up with 0 bits.

Format:
Bits 31..26 25..21 20..16 15..0

Value 011001 x r y
Effect:

shift← unsigned(y4..0)
tempi ← Rx,i−shift if i ≥ shift
tempi ← 0 if i < shift
Rr ← temp
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3.27. SLR. The SLR instruction computes the result of shifting the first 32-
bit register operand to the right by a number of bits specified by the 5 least signif-
icant bits of the second 32-bit register operand, and filling up with 0 bits.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 011010 x y r (ignored)
Effect:

shift← unsigned(Ry,4..0)
tempi ← Rx,i+shift if i + shift < 32
tempi ← 0 if i + shift ≥ 32
Rr ← temp

3.28. SLRI. The SLRI instruction computes the result of shifting the 32-bit
register operand to the right by a number of bits specified by the 5 least significant
bits of the immediate operand, and filling up with 0 bits.

Format:
Bits 31..26 25..21 20..16 15..0

Value 011011 x r y
Effect:

shift← unsigned(y4..0)
tempi ← Rx,i+shift if i + shift < 32
tempi ← 0 if i + shift ≥ 32
Rr ← temp

3.29. SAR. The SAR instruction computes the result of shifting the first
32-bit register operand to the right by a number of bits specified by the 5 least
significant bits of the second 32-bit register operand, and replicating the topmost
(sign) bit.

Format:
Bits 31..26 25..21 20..16 15..11 10..0

Value 011100 x y r (ignored)
Effect:

shift← unsigned(Ry,4..0)
tempi ← Rx,i+shift if i + shift < 32
tempi ← Rx,31 if i + shift ≥ 32
Rr ← temp

3.30. SARI. The SARI instruction computes the result of shifting the 32-bit
register operand to the right by a number of bits specified by the 5 least significant
bits of the immediate operand, and replicating the topmost (sign) bit.

Format:
Bits 31..26 25..21 20..16 15..0

Value 011101 x r y
Effect:

shift← unsigned(y4..0)
tempi ← Rx,i+shift if i + shift < 32
tempi ← Rx,31 if i + shift ≥ 32
Rr ← temp
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3.31. LDHI. The LDHI instruction is used to generate large constants. The
upper 16 bits of the result are taken from the 16-bit immediate operand. The lower
16 bits of the result are 0.

Format:
Bits 31..26 25..21 20..16 15..0

Value 011111 x r y
Effect:

Rr,31..16 ← y15..0
Rr,15..0 ← 0

4. Control Flow Instructions

Control flow instruction load immediate values or register values into the PC
and/or load the value of the PC into a general-purpose register. The ECO32 sup-
ports unconditional jumps, conditional branches, indirect jumps, subroutine calls,
subroutine returns, and indirect subroutine calls out of the box. More complex
control flow schemes can be implemented by combining these instructions.

A control transfer is conditional if it only occurs on a certain condition that is
computed from general-purpose registers. A control transfer is unconditional if it
always occurs.

A control transfer is direct if the target address is supplied as an immediate
value. It is indirect if the target address is supplied as a register value.

A control transfer is absolute if the value of the PC is overwritten with a totally
new value. It is relative if the value of the PC is modified by adding or subtracting
an offset.

Both relative control transfers and instructions that read the current PC value
operate on the value of the PC after increasing it by 4 during instruction fetching.

4.1. BEQ. The BEQ instruction performs a conditional direct jump to a rel-
ative immediate sign-extended 16-bit offset counted as words. The condition is
evaluated by comparing two 32-bit register operands and is asserted if the first
operand is equal to the second operand.

Format:
Bits 31..26 25..21 20..16 15..0

Value 100000 x y offset
Effect:

if Rx = Ry then PC ← PC + 4 ∗ signext32(offset)

4.2. BNE. The BNE instruction performs a conditional direct jump to a rel-
ative immediate sign-extended 16-bit offset counted as words. The condition is
evaluated by comparing two 32-bit register operands and is asserted if the first
operand is not equal to the second operand.

Format:
Bits 31..26 25..21 20..16 15..0

Value 100001 x y offset
Effect:

if Rx 6= Ry then PC ← PC + 4 ∗ signext32(offset)

4.3. BLE. The BLE instruction performs a conditional direct jump to a rel-
ative immediate sign-extended 16-bit offset counted as words. The condition is
evaluated by comparing two 32-bit register operands and is asserted if the first
operand is less or equal to (by signed comparison) the second operand.
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Format:
Bits 31..26 25..21 20..16 15..0

Value 100010 x y offset
Effect:

if Rx ≤signed Ry then PC ← PC + 4 ∗ signext32(offset)

4.4. BLEU. The BLEU instruction performs a conditional direct jump to a
relative immediate sign-extended 16-bit offset counted as words. The condition is
evaluated by comparing two 32-bit register operands and is asserted if the first
operand is less or equal to (by unsigned comparison) the second operand.

Format:
Bits 31..26 25..21 20..16 15..0

Value 100011 x y offset
Effect:

if Rx ≤unsigned Ry then PC ← PC + 4 ∗ signext32(offset)

4.5. BLT. The BLT instruction performs a conditional direct jump to a rel-
ative immediate sign-extended 16-bit offset counted as words. The condition is
evaluated by comparing two 32-bit register operands and is asserted if the first
operand is less than (by signed comparison) the second operand.

Format:
Bits 31..26 25..21 20..16 15..0

Value 100100 x y offset
Effect:

if Rx <signed Ry then PC ← PC + 4 ∗ signext32(offset)

4.6. BLTU. The BLTU instruction performs a conditional direct jump to a
relative immediate sign-extended 16-bit offset counted as words. The condition is
evaluated by comparing two 32-bit register operands and is asserted if the first
operand is less than (by unsigned comparison) the second operand.

Format:
Bits 31..26 25..21 20..16 15..0

Value 100101 x y offset
Effect:

if Rx <unsigned Ry then PC ← PC + 4 ∗ signext32(offset)

4.7. BGE. The BGE instruction performs a conditional direct jump to a rel-
ative immediate sign-extended 16-bit offset counted as words. The condition is
evaluated by comparing two 32-bit register operands and is asserted if the first
operand is greater or equal to (by signed comparison) the second operand.

Format:
Bits 31..26 25..21 20..16 15..0

Value 100110 x y offset
Effect:

if Rx ≥signed Ry then PC ← PC + 4 ∗ signext32(offset)

4.8. BGEU. The BGEU instruction performs a conditional direct jump to
a relative immediate sign-extended 16-bit offset counted as words. The condition
is evaluated by comparing two 32-bit register operands and is asserted if the first
operand is greater or equal to (by unsigned comparison) the second operand.

Format:
Bits 31..26 25..21 20..16 15..0

Value 100111 x y offset
Effect:

if Rx ≥unsigned Ry then PC ← PC + 4 ∗ signext32(offset)



24 3. INSTRUCTION SET

4.9. BGT. The BGT instruction performs a conditional direct jump to a rel-
ative immediate sign-extended 16-bit offset counted as words. The condition is
evaluated by comparing two 32-bit register operands and is asserted if the first
operand is greater than (by signed comparison) the second operand.

Format:
Bits 31..26 25..21 20..16 15..0

Value 101000 x y offset
Effect:

if Rx >signed Ry then PC ← PC + 4 ∗ signext32(offset)

4.10. BGTU. The BGTU instruction performs a conditional direct jump to
a relative immediate sign-extended 16-bit offset counted as words. The condition
is evaluated by comparing two 32-bit register operands and is asserted if the first
operand is greater than (by unsigned comparison) the second operand.

Format:
Bits 31..26 25..21 20..16 15..0

Value 101001 x y offset
Effect:

if Rx >unsigned Ry then PC ← PC + 4 ∗ signext32(offset)

4.11. J. The J instruction performs an unconditional direct jump to a relative
immediate sign-extended 26-bit offset counted as words.

Format:
Bits 31..26 25..0

Value 101010 offset
Effect:

PC ← PC + 4 ∗ signext32(offset)

4.12. JR. The JR instruction performs an unconditional indirect jump to an
absolute offset stored in a general-purpose register. It can be used for simple indirect
jumps as well as to return from a subroutine.

Format:
Bits 31..26 25..21 20..0

Value 101011 dest (ignored)
Effect:

PC ← Rdest

4.13. JAL. The JAL instruction stores the current PC value in register #31,
then performs an unconditional direct jump to a relative immediate sign-extended
26-bit offset counted as words. It is primarily used for subroutine calls.

Format:
Bits 31..26 25..0

Value 101100 offset
Effect:

R31 ← PC
PC ← PC + 4 ∗ signext32(offset)

4.14. JALR. The JALR instruction remembers the current PC value, then
performs an unconditional indirect jump to an absolute offset stored in a general-
purpose register. The previous PC value is then stored in register #31. It is
primarily used for indirect subroutine calls, such as virtual method invocations in
object-oriented programming.

Format:
Bits 31..26 25..21 20..0

Value 101101 dest (ignored)
Effect:
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returnAddress← PC
PC ← Rdest

R31 ← returnAddress

5. Load and Store Instructions

Load and store instructions transfer data from and to RAM and peripheral
devices. All load/store instructions first compute a virtual address by adding a
sign-extended 16-bit immediate value to a register value. That address is then
transformed to a physical address by the MMU. The load/store operation is sent
to the SoC bus using the physical address and responded to by a slave device
attached to the bus. Both the slave device itself and the target location inside that
device are determined from the physical address. A write operation stores a value in
a RAM location or device register, but may also trigger side-effects in some devices.
Similarly, a read operation reads a value from a RAM location or device register,
but may also trigger side-effects in some devices. Write operations take the data
to write from a general-purpose register. Read operations store the received data
in a general-purpose register.

All load/store operations must be aligned to the transferred data size. If a half-
word (word) sized load/store operation is not half-word (word) aligned, it triggers
an Illegal Address Fault.

All virtual addresses in the range 80000000h through FFFFFFFFh are privi-
leged addresses and may only be accessed while in Kernel Mode. If such an address
is accessed in User Mode, a Privileged Address Fault occurs.

The transformation of a virtual address to a physical address is done by the
MMU and may trigger a TLB Miss Fault, TLB Invalid Fault or TLB Write Fault.
The service routine for these kinds of faults typically restarts the load/store oper-
ation after fixing the problem.

Any of these exceptions – Illegal Address Fault, Privileged Address Fault, TLB
Miss Fault, TLB Invalid Fault and TLB Write Fault – causes the faulting address
to be loaded into the TLB Bad Address Register (S4).

Certain physical addresses may not actually correspond to any device attached
to the SoC bus. This includes holes in the physical address map as well as the
range of unused physical addresses (40000000h through FFFFFFFFh). Access to
such addresses results in a Bus Timeout Fault.

Load/store operations come in variants with different transfer size. Only the
RAM and ROM support half-word and byte sized operations. Peripheral devices
only support word-sized operations. Accessing peripheral devices with half-word
or byte sized operations has an undefined effect. Access to RAM or ROM with
different transfer sizes provides word-sized, half-word sized, and byte-sized views
on the same memory locations. These views are arranged in a big-endian fashion.

When a half-word or byte sized location in RAM or ROM is read, the resulting
value is extended to 32 bits to fit into a general-purpose register. Half-word and
byte sized load operations come in variants that either sign-extend or zero-extend
these values.
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5.1. LDW. The LDW instruction reads a word-sized value from RAM, ROM,
or a peripheral device.

Format:
Bits 31..26 25..21 20..16 15..0

Value 110000 x r y
Effect:

Av ← Rx + signext32(y)
if Av is not word aligned then

S4 ← Av

trigger a Illegal Address Fault
end if
if Av,31 = 1 and UC = 1 then

S4 ← Av

trigger a Privileged Address Fault
end if
pageNumber ← Av,31..12

if no TLB entry exists for pageNumber then
S4 ← Av

trigger a TLB Miss Fault
end if
if the TLB entry for pageNumber does not have the valid bit set then

S4 ← Av

trigger a TLB Invalid Fault
end if
Ap ← page frame number in the TLB entry for pageAddress
send a load word request using the address Ap to the SoC bus
if no response is received then trigger a Bus Timeout Fault
Rr ← response value
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5.2. LDH. The LDH instruction reads a half-word-sized value from RAM,
ROM, or a peripheral device. The result is sign-extended to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..0

Value 110001 x r y
Effect:

Av ← Rx + signext32(y)
if Av is not half-word aligned then

S4 ← Av

trigger a Illegal Address Fault
end if
if Av,31 = 1 and UC = 1 then

S4 ← Av

trigger a Privileged Address Fault
end if
pageNumber ← Av,31..12

if no TLB entry exists for pageNumber then
S4 ← Av

trigger a TLB Miss Fault
end if
if the TLB entry for pageNumber does not have the valid bit set then

S4 ← Av

trigger a TLB Invalid Fault
end if
Ap ← page frame number in the TLB entry for pageAddress
send a load half-word request using the address Ap to the SoC bus
if no response is received then trigger a Bus Timeout Fault
Rr ← signext32(response value)
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5.3. LDHU. The LDHU instruction reads a half-word-sized value from RAM,
ROM, or a peripheral device. The result is zero-extended to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..0

Value 110010 x r y
Effect:

Av ← Rx + signext32(y)
if Av is not half-word aligned then

S4 ← Av

trigger a Illegal Address Fault
end if
if Av,31 = 1 and UC = 1 then

S4 ← Av

trigger a Privileged Address Fault
end if
pageNumber ← Av,31..12

if no TLB entry exists for pageNumber then
S4 ← Av

trigger a TLB Miss Fault
end if
if the TLB entry for pageNumber does not have the valid bit set then

S4 ← Av

trigger a TLB Invalid Fault
end if
Ap ← page frame number in the TLB entry for pageAddress
send a load half-word request using the address Ap to the SoC bus
if no response is received then trigger a Bus Timeout Fault
Rr ← zeroext32(response value)
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5.4. LDB. The LDB instruction reads a byte-sized value from RAM, ROM,
or a peripheral device. The result is sign-extended to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..0

Value 110011 x r y
Effect:

Av ← Rx + signext32(y)
if Av,31 = 1 and UC = 1 then

S4 ← Av

trigger a Privileged Address Fault
end if
pageNumber ← Av,31..12

if no TLB entry exists for pageNumber then
S4 ← Av

trigger a TLB Miss Fault
end if
if the TLB entry for pageNumber does not have the valid bit set then

S4 ← Av

trigger a TLB Invalid Fault
end if
Ap ← page frame number in the TLB entry for pageAddress
send a load byte request using the address Ap to the SoC bus
if no response is received then trigger a Bus Timeout Fault
Rr ← signext32(response value)
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5.5. LDBU. The LDBU instruction reads a byte-sized value from RAM, ROM,
or a peripheral device. The result is zero-extended to 32 bits.

Format:
Bits 31..26 25..21 20..16 15..0

Value 110100 x r y
Effect:

Av ← Rx + signext32(y)
if Av,31 = 1 and UC = 1 then

S4 ← Av

trigger a Privileged Address Fault
end if
pageNumber ← Av,31..12

if no TLB entry exists for pageNumber then
S4 ← Av

trigger a TLB Miss Fault
end if
if the TLB entry for pageNumber does not have the valid bit set then

S4 ← Av

trigger a TLB Invalid Fault
end if
Ap ← page frame number in the TLB entry for pageAddress
send a load byte request using the address Ap to the SoC bus
if no response is received then trigger a Bus Timeout Fault
Rr ← zeroext32(response value)
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5.6. STW. The STW instruction writes a word-sized value to RAM, ROM,
or a peripheral device.

Format:
Bits 31..26 25..21 20..16 15..0

Value 110101 x r y
Effect:

Av ← Rx + signext32(y)
if Av is not word aligned then

S4 ← Av

trigger a Illegal Address Fault
end if
if Av,31 = 1 and UC = 1 then

S4 ← Av

trigger a Privileged Address Fault
end if
pageNumber ← Av,31..12

if no TLB entry exists for pageNumber then
S4 ← Av

trigger a TLB Miss Fault
end if
if the TLB entry for pageNumber does not have the valid bit set then

S4 ← Av

trigger a TLB Invalid Fault
end if
if the TLB entry for pageNumber does not have the write bit set then

S4 ← Av

trigger a TLB Write Fault
end if
Ap ← page frame number in the TLB entry for pageAddress
send a store word request using the address Ap and data Rr to the SoC
bus
if no response is received then trigger a Bus Timeout Fault
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5.7. STH. The STH instruction writes a half-word-sized value to RAM, ROM,
or a peripheral device.

Format:
Bits 31..26 25..21 20..16 15..0

Value 110110 x r y
Effect:

Av ← Rx + signext32(y)
if Av is not half-word aligned then

S4 ← Av

trigger a Illegal Address Fault
end if
if Av,31 = 1 and UC = 1 then

S4 ← Av

trigger a Privileged Address Fault
end if
pageNumber ← Av,31..12

if no TLB entry exists for pageNumber then
S4 ← Av

trigger a TLB Miss Fault
end if
if the TLB entry for pageNumber does not have the valid bit set then

S4 ← Av

trigger a TLB Invalid Fault
end if
if the TLB entry for pageNumber does not have the write bit set then

S4 ← Av

trigger a TLB Write Fault
end if
Ap ← page frame number in the TLB entry for pageAddress
send a store half-word request using the address Ap and data Rr,15..0 to
the SoC bus
if no response is received then trigger a Bus Timeout Fault
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5.8. STB. The STB instruction writes a byte-sized value to RAM, ROM, or
a peripheral device.

Format:
Bits 31..26 25..21 20..16 15..0

Value 110111 x r y
Effect:

Av ← Rx + signext32(y)
if Av,31 = 1 and UC = 1 then

S4 ← Av

trigger a Privileged Address Fault
end if
pageNumber ← Av,31..12

if no TLB entry exists for pageNumber then
S4 ← Av

trigger a TLB Miss Fault
end if
if the TLB entry for pageNumber does not have the valid bit set then

S4 ← Av

trigger a TLB Invalid Fault
end if
if the TLB entry for pageNumber does not have the write bit set then

S4 ← Av

trigger a TLB Write Fault
end if
Ap ← page frame number in the TLB entry for pageAddress
send a store byte request using the address Ap and data Rr,7..0 to the SoC
bus
if no response is received then trigger a Bus Timeout Fault

6. System Instructions

6.1. TRAP. The TRAP instruction triggers a Trap Fault. It is typically used
by user programs to request action from the operating system.

System implementer’s note: The fault mechanism causes general purpose regis-
ter #30 to be loaded with the address of the faulting instruction, that is, the TRAP
instruction itself. However, the fault service routine typically wants to return to
the instruction immediately following the TRAP instruction, such that the TRAP
is not executed again. This can be achieved by adding 4 to the return address in
R30 in the service routine. See Chapter 2, Section ?? for details.

Format:
Bits 31..26 25..0

Value 101110 (ignored)
Effect:

trigger a Trap Fault
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6.2. RFX. The RFX instruction returns control from an exception service
routine to the interrupted program. The return address is taken from general
purpose register #30. The RFX instruction also restores the privilege mode and
interrupt enable to the interrupted state by popping the topmost values of the
corresponding state stacks in the PSW. See Chapter 2, Section ?? and Chapter 2,
Section ?? for details.

Format:
Bits 31..26 25..0

Value 101111 (ignored)
Effect:

if UC = 1 then trigger a Privileged Instruction Fault
PC ← R30

IC ← IP
IP ← IO
UC ← UP

UP ← UO

6.3. MVFS. The MVFS transfers the value of a special-purpose register into
a general-purpose register. See Chapter 2, Section ?? for details on the special-
purpose registers.

Format:
Bits 31..26 25..21 20..16 15..0

Value 111000 (ignored) r z
Effect:

if UC = 1 then trigger a Privileged Instruction Fault
If z does not denote a valid special-purpose register, then trigger an Illegal
Instruction Fault
Rr ← Sz

6.4. MVTS. The MVFS transfers the value of a general-purpose register into
a special-purpose register. See Chapter 2, Section ?? for details on the special-
purpose registers.

Format:
Bits 31..26 25..21 20..16 15..0

Value 111001 (ignored) r z
Effect:

if UC = 1 then trigger a Privileged Instruction Fault
If z does not denote a valid special-purpose register, then trigger an Illegal
Instruction Fault
Sz ← Rr

6.5. TBS. The TBS instruction searches the TLB for a mapping for a virtual
address specified in the TLB Entry High register (S2) and stores the resulting entry
index in the TLB Index register (S1).

Format:
Bits 31..26 25..0

Value 111010 (ignored)
Effect:

if UC = 1 then trigger a Privileged Instruction Fault
PageNumber ← S2,31..12

if the TLB contains an entry for PageNumber then
S1 ← (the corresponding TLB entry index)

else



6. SYSTEM INSTRUCTIONS 35

S1 ← 80000000h

Special cases: The TBS instruction will “find” a TLB entry that uses a page
number in the direct-mapped virtual address space (C0000000h through FFFFFFFFh)
if the TLB Entry High register contains the corresponding page number. Normal
address translation would not find such an entry since it always chooses direct
mapping for such addresses.

6.6. TBWR. The TBWR instruction replaces a random TLB entry. First,
the index of the entry to replace is determined as a random number in the range
of non-fixed TLB entries (see Chapter 2, Section ??). Then, data from the TLB
Entry High and Low registers (S2 and S3) is written into that TLB entry.

Format:
Bits 31..26 25..0

Value 111011 (ignored)
Effect:

if UC = 1 then trigger a Privileged Instruction Fault
X := (random MOD 28) + 4
TLB Entry #X ← (S3, S2)

6.7. TBRI. The TBRI instruction reads data from a TLB entry indicated by
the TLB Index register (S1) into the TLB Entry High and Low registers (S2 and
S3).

Format:
Bits 31..26 25..0

Value 111100 (ignored)
Effect:

if UC = 1 then trigger a Privileged Instruction Fault
X := S1 MOD 32
(S3, S2)← TLB Entry #X

6.8. TBWI. The TBWI instruction writes data from the TLB Entry High and
Low registers (S2 and S3) into a TLB entry indicated by the TLB Index register
(S1).

Format:
Bits 31..26 25..0

Value 111101 (ignored)
Effect:

if UC = 1 then trigger a Privileged Instruction Fault
X := S1 MOD 32
TLB Entry #X ← (S3, S2)





CHAPTER 4

Signal Interface

The signal interface to the ECO32 consists of three sets of signals:

• system operation signals: clock and reset
• SoC bus signals
• interrupt signals

Figure 1. ECO32 Signal Interface

1. System Operation Signals

Two system operation signals control the ECO32:

• The clk signal is a positive edge triggered clock signal that controls the
timing of the ECO32. Since the ECO32 is a soft-core processor, mini-
mum and maximum clock frequencies depend on the implementation in
an FPGA and cannot be specified in general. The design of the ECO32
does not impose any particular constraints on the clock frequencies.

All other signals are synchronous to the clk signal.
• The reset signal is a positive level triggered clock-synchronous reset signal.

If the reset is asserted, the ECO32 is placed into a partly defined reset
state, as described in Chapter 2, Section ?? and execution is suspended
until the reset is de-asserted. The ECO32 acts as an inactive master
device with respect to the bus interface as long as the reset is asserted.
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2. Bus Architecture

The ECO32 can be connected to on-chip devices such as a RAM controller
and other devices using a simple SoC bus architecture. The bus uses a synchronous
handshake protocol with 32 address bits, 32 data bits, and byte-sized, half-word
sized, or word-sized transfers.

Bus operation is divided into bus cycles. Each cycle guides a single transfer of
a byte, half-word, or word value to or from the ECO32. All transfers are initiated
by the ECO32 and responded to by other devices on the bus. For each transfer,
the ECO32 emits an address that selects both a target device and a location inside
that device. It also emits a signal that indicates whether it attempts to read data
from that location, or write data to that location. It further emits a signal that
indicates the transfer size. Finally, for write operations, the ECO32 also emits the
data to write.

A bus request is responded to by a device with a signal that indicates success of
the transfer. If the operation is a read operation, this signal also marks availability
of the transferred data. If a certain amount of time passes without any device
responding to the request, the transfer is considered failed, and a Bus Timeout
Fault occurs.

2.1. Bus Timing. The operation of the SoC bus is synchronous with respect
to the system clock. The bus architecture allows to complete a bus cycle with every
clock cycle. Peripheral devices may slow down bus operation if they cannot respond
fast enough.

A bus cycle begins by the ECO32 asserting the bus en signal to indicate the
start of a transfer. At the same time, it emits the desired values on the bus wr,
bus size, bus addr, and bus data out lines. The bus wr indicates a read cycle (if
de-asserted) or a write cycle (if asserted). The bus size indicates the transfer size,
with 10 or 11 indicating a word transfer, 01 indicating a half-word transfer, and
00 indicating a byte transfer. The bus addr is a 32-bit address signal group that
selects both a peripheral device and a location in that device. Finally, bus data out
indicates the transferred data in a write cycle. It is ignored in read cycles. All
these signals must keep their value until the clock edge that marks the end of the
bus cycle (see below).

The addressed device responds immediately, that is, in the same clock cycle
in which the ECO32 asserted the bus request signals (with no intermediate clock
edge), by placing a value on the bus wt line. Each positive clock edge that occurs
while bus wt is asserted indicates a wait clock cycle and does not indicate the end
of the bus cycle. This allows slower devices to perform internal operations. The
device de-asserts bus wt as soon as its internal operations are finished. As soon as
a positive clock edge occurs while bus wt is de-asserted, the bus cycle is finished.
For read operations, the target device must assert the data to transfer prior to that
clock edge, and keep it stable until after that clock edge. The clock cycle following
that clock edge is no longer part of the bus cycle, and may witness the start of
another bus cycle. Therefore, if the addressed device never asserts its bus wt signal,
one bus cycle can be completed in each clock cycle.

If a physical address is emitted on the bus addr lines that is not associated
with any device, then the bus itself keeps the bus wt line asserted permanently.
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This eventually causes the ECO32 to trigger a Bus Timeout Fault and stop the
bus cycle. A bus timeout is the only event that stops a bus cycle abnormally.

2.2. Bus Address Map. The bus architecture places certain restriction on
the mapping of physical addresses on the bus addr lines and addresses devices:

• Addresses in the range 0x00000000 through 0x1FFFFFFF are always as-
sociated with a RAM controller. However, only a subrange of these ad-
dresses are responded to if the RAM is smaller than 512 MB. RAM may
be accessed with (aligned) word, half-word, or byte transfers.

• Addresses in the range 0x20000000 through 0x2FFFFFFF are always as-
sociated with a ROM controller. However, only a subrange of these ad-
dresses are responded to if the ROM is smaller than 256 MB. ROM may
be accessed with (aligned) word, half-word, or byte transfers.

• Addresses in the range 0x30000000 through 0x3FFFFFFF are associated
with peripheral devices. Their meaning is not further specified. Peripheral
device addresses may only be accessed with aligned word transfers.

• Addresses in the range 0x40000000 through 0xFFFFFFFF are not used.
Accesses to these locations will not be responded by any device and cause
a Bus Timeout Fault.

2.3. Bus Sizing. The bus size signal indicates whether a bus cycle guides a
word, half-word, or byte transfer. Access to devices other than RAM or ROM is
restricted to word transfers. Half-word and byte transfers on such devices have an
unspecified effect.

All word transfers must be aligned to word locations, that is, the lowest two bits
of bus addr must be 0. Similarly, half-word transfers must be aligned to half-word
locations, that is, the lowest bit of bus addr must be 0. The effect of unaligned
transfers is unspecified from the perspective of the SoC bus. The ECO32 itself
prevents such transfers internally and triggers an Illegal Address Fault instead.

For RAM or ROM locations, a word transfer to or from address 4n affects the
byte locations 4n through 4n + 3 in a big-endian fashion. Similarly, a half-word
transfer to or from address 2n affects the byte locations 2n and 2n + 1 in a big-
endian fashion. Write operations change only the affected RAM locations; all other
locations are left alone.

During a word transfer, all 32 data lines carry data. During a half-word transfer,
only the lower 16 data lines carry transferred data; the others carry unspecified
values. During a byte transfer, only the lowest 8 data lines carry data; the others
carry unspecified values. Read operations fill the unspecified bits by zero-extending
or sign-extending the transferred value. Write operations are either word-sized (in
which case there are no unspecified bits), or affect RAM (in which case only 2 or 1
RAM bytes are affected, and the unspecified data lines are ignored).

2.4. Address Decoding. During the clock cycle in which the ECO32 emits
a transfer request, the bus decodes addresses by comparing the address sent by the
ECO32 with an individual bit pattern for each device. These patterns are chosen
in such a way that at most one comparison succeeds. The corresponding device is
selected by that address. If no device is selected, the bus asserts the bus wt signal
until the ECO32 detects a timeout.

If a device has been selected, the enable signal for that device is asserted. Thus,
the selected device knows it takes part in a transfer by its enable signal. All other
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devices do not see their enable signal asserted, and thus do not react. A device
whose enable signal is de-asserted cannot tell whether a bus transfer involving
another device is currently happening.

Since devices whose enable signal is de-asserted do not react to a bus cycle,
the bus can safely send the bus wr, bus addr, and bus data out to all devices. De-
vices which have not been selected ignore these values. The same holds true for
bus size, but this signal is delivered only to RAM and ROM. All other devices can-
not take part in a half-word or byte sized transfer, and implicitly assume word-sized
transfers.

Incoming signals from devices are multiplexed by the decoded address. That
is, the bus wt and bus data in signals arriving at the ECO32 are those of the
selected device. If no device has been selected, bus wt is permanently asserted, and
bus data in contains a dummy value.

The address lines arriving at each device are a subset of the bus addr. These
address lines deliver the device-local address. Since each device reacts only if se-
lected, and devices are selected if the address matches a certain bit pattern, only
those bits must be delivered that are not yet known by the pattern. Furthermore,
delivering those known address bits makes the device unnecessarily sensitive to the
positon of its address range in the physical memory map, and thus prevents moving
the device to another address range.

The bus may omit further address lines if the corresponding device would ignore
them. Most devices need only a tiny subset of their allocated address space, and
thus only a subset of the device-local address lines. For example, if the bus uses 12
decoded bits to recognize a device as selected, then that device gets 18 device-local
address lines (the lowest two lines are not routed because only aligned word-sized
access is allowed). However, a typical device using 8 = 23 registers would need
only 3 device-local address lines. It could then decode the remaining lines and
expect them to be 0 (leaving a huge hole in the address map), or ignore them and
effectively mirror the 8 registers numerous times to fill the address map. The latter
approach requires less hardware resources. However, ignored signal lines usually
cause hardware synthesis tools to print warning messages, even if they are bogus
as in this case. To prevent these warning messages, the bus may be built such that
it does not route the ignored address signals to the device.

By the same reasoning, ignored data signals or other signals can be omitted.

3. Interrupt Signals

The ECO32 supports 16 interrupt signals that (if accepted) cause a control
transfer to the general exception service routine (see Chapter 2, Section ??) and
disable interrupt admission temporarily. The interrupt signals need not be asso-
ciated with other devices on the SoC bus, although this is often the case. The
interrupt signals are synchronous, positive level-triggered signals.

Admission of an interrupt is not signalled to the interrupt source automatically.
The interrupt service routine must take appropriate action on the SoC bus to cause
the corresponding device to de-assert the interrupt signal. Otherwise, as soon as
interrupts are enabled again in the PSW, the still-active interrupt line is recognized
again and another interrupt is accepted.

If an asserted interrupt is not immediately accepted by the ECO32 (e.g. be-
cause interrupts are disabled in the PSW), then the corresponding device can either
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keep the interrupt signal asserted and be served as soon as the ECO32 is ready, or
de-assert the interrupt signal before the ECO32 accepts the interrupt and remain
unnoticed.





CHAPTER 5

Demonstration SoC Project

This chapter describes a demonstration project that uses the ECO32 in a SoC
design. The project is implemented on an XSA-3S1000 prototyping board form
XESS Corp. More information about the prototyping board itself can be found on
the XESS homepage, http://www.xess.com.

The demonstration project instantiates the ECO32 inside the Spartan-3 FPGA
on the prototyping board and augments it with on-chip controllers for the external
hardware on the prototyping board. These controllers are connected to the ECO32
through the SoC bus. They allow to access the on-board 32 MB SDRAM as the
program and data RAM of the ECO32. The flash ROM is connected to the begin-
ning of the peripheral device address space, such that the V bit of the psw selects
a base address either in RAM or ROM (see Chapter 2, Section ??). Further con-
trollers connected to the SoC bus allow access to a character-based VGA display,
PS/2 keyboard, RS232 serial port, and IDE hard disk.

1. Address Map

This section describes the mapping of physical addresses to devices in the
demonstration project. To access a device directly from a program, direct-mapped
virtual addresses can be used that are obtained by adding 0xC0000000 to the phys-
ical addresses listed here.

Physical Address Virtual Address Device
00000000h - 01FFFFFFh C0000000h - C1FFFFFFh RAM
02000000h - 1FFFFFFFh C2000000h - DFFFFFFFh (unused)
20000000h - 2003FFFFh E0000000h - E003FFFFh ROM
20040000h - 2FFFFFFFh E0040000h - EFFFFFFFh (unused)
30000000h - 300FFFFFh F0000000h - F00FFFFFh Timer
30100000h - 301FFFFFh F0100000h - F01FFFFFh Display
30200000h - 302FFFFFh F0200000h - F02FFFFFh Keyboard
30300000h - 303FFFFFh F0300000h - F03FFFFFh Terminal
30400000h - 304FFFFFh F0400000h - F04FFFFFh Disk
30500000h - 3FFFFFFFh F0500000h - FFFFFFFFh (unused)
40000000h - FFFFFFFFh (not direct-mapped) (unused)∗

∗these addresses are defined to be permanently unused by the SoC bus archi-
tecture.

2. Interrupt Map

This section describes the mapping of interrupt numbers (0..15) to devices
in the demonstration project. The interupt number specifies both the index of
the interrupt signal in the interrupt signal group when connecting the soft-core to
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other devices, and the number that is placed in the IEN field of the PSW when
accepting an interrupt.

Interrupt Number Device
0 Terminal Sender #1
1 Terminal Receiver #1
2 Terminal Sender #2
3 Terminal Receiver #2
4 Keyboard
5 (unused)
6 (unused)
7 (unused)
8 Disk
9 (unused)
10 (unused)
11 (unused)
12 (unused)
13 (unused)
14 Timer
15 (unused)

3. RAM and ROM

The RAM controller connects the ECO32 to the 32 MB SDRAM chip on the
development board. Above 32 MB, the memory map has a hole to allow similar
designs with a larger RAM use a compatible memory map. Next comes the ROM
controller which connects the ECO32 to the on-board flash ROM. Only 256 kB
of that ROM can be accessed. Note that the ROM also contains the configuration
bitstream for the FPGA. The ROM locations for the bit stream are not accessible
by the ECO32.

The RAM and ROM are the only devices in the physical address space that
may be accessed by half-word and byte transfers. They may contain both program
and data. Obviously, the ROM can only contain constant data.

4. Timer

The timer is a simple binary counter inside the FPGA that counts clock cycles
backwards. Whenever it reaches zero, it is reset to a value specified by a divisor
register and sets a wrap-around flag. Optionally, this flag generates an interrupt
when set. The divisor register thus controls how often the flag is set.

The control register of the timer is used to read or write the wrap-around flag
as well as an interrupt enable flag. An interrupt is generated when both the wrap-
around flag and the interrupt enable flag are set. The interrupt service routine
typically resets the wrap-around flag to de-assert the interrupt signal. Note that
the interrupt enable flag is distinct from both the global and the channel-specific
interrupt enable flags in the PSW.

Bits 31..2 1 0
Meaning (ignored) Interrupt Enable Wrap-Around

The control register can be accessed at physical address 30000000h (virtual
address F0000000h). The divisor register can be accessed at physical address
30000004h (virtual address F0000004h).
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5. Display

The display controller generates a 640x480x60 VGA signal from a 80x30 char-
acter matrix, with 8x16 pixels per character. The signal is sent to the VGA port
of the prototyping board and can be viewed on a VGA monitor connected to that
port. Characters are generated by taking ASCII-encoded characters from the char-
acter matrix, converting them to pixels through a character ROM, and applying
attributes stored together with the character matrix.

Although the visible character matrix has a size of 80x30, it uses a 128x32 mem-
ory internally. These memory locations can be accessed by 128x32 consecutive word
locations, stored line by line, at physical addresses 30100000h through 30100FFCh

(virtual addresses F0100000h through F0100FFCh). Each word location contains
a character code and attributes:

Bits 31..16 15..8 7..0
Meaning (ignored) Attributes Character Code

The attributes can be subdivided again:
Bits ... 15 14 13 12 11 10 9 8 ...

Meaning ... BL RB GB BB I RF GF BF ...
The RF , GF , and BF bits control the base foreground color of the character

by enabling the red, green, and blue channels, respectively. If the I bit is set, then
all enabled channels are intensified to make the foreground color brighter. The RB ,
GB , and BB bits control the color of the background by enabling the red, green,
and blue channels, respectively. The BL bit causes the character to blink, that is,
to become visible and invisible in regular intervals.

The character ROM which contains the pixel patterns for the individual char-
acters cannot be accessed directly.

6. Keyboard

The keyboard controller connects the ECO32 with a keyboard attached to
the PS/2 port of the prototyping board. It delivers a stream of scan codes from
the keyboard which correspond to key press and key release events. The decoding
of these scan codes is not done by the keyboard controller, but must be done in
software instead.

The keyboard controller is accessed by two device registers called the control
register and the data register. When the keyboard controller receives a scancode
byte from the keyboard, it stores that byte internally and sets a ready flag in the
control register. Optionally, the ready flag generates an interrupt: The interrupt
signal is asserted if both the ready flag and the interrupt enable flag are set. The
corresponding interrupt service routine typically resets the ready flag to de-assert
the interrupt signal. The received scancode byte can be read from the data register.
Reading from the data register has the side-effect of resetting the ready flag, so the
interrupt service routine need not do this manually if it reads from the data register.

The control register can be accessed at physical address 30200000h (virtual
address F0200000h) and has the following layout:

Bits 31..2 1 0
Meaning (ignored) Interrupt Enable Ready

The data register can be accessed at physical address 30200004h (virtual address
F0200004h) and has the following layout:
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Bits 31..8 7..0
Meaning (ignored) Scancode Byte

7. Terminal

The demonstration project supports a serial terminal connected to the RS232
port of the prototyping board. It also supports a second serial terminal if a modified
cable is used: The data transfer lines of the second terminal use the flow control
lines of the RS232 port. Using a single terminal with hardware flow control instead
of a second terminal is not supported. Also, terminals must currently use a transfer
speed of 38400 bauds, a transfer size of 8 bits, 1 start bit, 1 stop bit, and no parity
bit.

Each terminal is accessed by four registers: The receiver control register, the
receiver data register, the sender control register, and the sender data register.
These registers can be accessed at the following addresses:

Register Physical Address Virtual Address
Receiver Control 1 30300000h F0300000h

Receiver Data 1 30300004h F0300004h
Sender Control 1 30300008h F0300008h

Sender Data 1 3030000Ch F030000Ch

Receiver Control 2 30300010h F0300010h
Receiver Data 2 30300014h F0300014h
Sender Control 2 30300018h F0300018h

Sender Data 2 3030001Ch F030001Ch

7.1. Receiver. The control register of each receiver contains a ready flag that
indicates whether a character has been received, and an interrupt enable flag to
indicate whether the ready flag shall cause an interrupt. The interrupt signal is
asserted if both flags are set. Typically, the corresponding interrupt service routine
resets the ready flag to de-assert the interrupt signal. The receiver control register
has the following layout:

Bits 31..2 1 0
Meaning (ignored) Interrupt Enable Ready

When a character has been received, it can be read from the receiver data
register. Reading a character from the receiver data register has the side-effect of
resetting the ready flag. The receiver data register has the following layout:

Bits 31..8 7..0
Meaning (ignored) Received Character

7.2. Sender. The control register of each sender contains a ready flag that
indicates whether the sender can accept a character to send, and an interrupt
enable flag to indicate whether the ready flag shall cause an interrupt. The interrupt
signal is asserted if both flags are set. Typically, the corresponding interrupt service
routine resets the ready flag to de-assert the interrupt signal. The sender control
register has the following layout:

Bits 31..2 1 0
Meaning (ignored) Interrupt Enable Ready

To send a character, the corresponding data byte must be written to the sender
data register. Writing to this register has the side-effect of resetting the ready flag.
The sender data register has the following layout:
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Bits 31..8 7..0
Meaning (ignored) Character to Send

8. Disk

The disk controller connects the ECO32 to an IDE hard disk through the IDE
port of the prototyping board. The disk controller simplifies the communication
with the disk by hiding the details of the IDE protocol, but in turn allows only
simple commands and low transfer speeds.

The disk controller is accessed through the following addresses:
Location Physical Address Virtual Address

Control Register 30400000h F0400000h
Sector Count Register 30400004h F0400004h

Sector Address Register 30400008h F0400008h
Capacity Register 3040000Ch F040000Ch

(unused) 30400010h F0400010h
..3047FFFCh ..F047FFFCh

Data Buffer 30480000h F0480000h
..30480FFFh ..F0480FFFh

(mirrored data buffer) 30481000h F0481000h
..304FFFFCh ..F04FFFFCh

8.1. Control Register. The control register is used to read the status of the
disk controller, change general control parameters, and initiate actions. It has the
following layout:

Bits 31 30..6 5 4 3 2 1 0
Meaning DMARQ (ignored) INIT FIN ERR WR IEN START

The DMARQ is a read-only bit that indicates whether the attached disk cur-
rently sends a DMA request. This flag can be safely ignored. The INIT flag is
a read-only bit that is set to 0 after reset, but turns to 1 as soon as the disk
controller has finished initialization. Until the disk is initialized, only the control
register should be accessed, and it should only be read to check the status of the
INIT flag.

The FIN flag is set to 1 each time the disk controller finishes an operation.
The IEN flag can be used to specify whether the FIN flag shall cause an interrupt.
The interrupt signal is asserted if both flags are set. Both flags can be changed
by writing to the control register. Typically, the corresponding interrupt service
routine resets FIN to de-assert the interrupt signal.

The ERR flag is a read-only bit that is either set or reset whenever the disk
controller has finished an operation. If set, it indicates an error during the opera-
tion.

The WR flag can only be changed while no operation is in progress. It is used
to specify whether the disk controller shall perform a read or write operation on
the disk.

The START bit is not actually a register. When reading from the control
register, it always contains the value 0. Writing a value of 0 to this bit has no
effect. Writing a value of 1 initiates the action selected by the WR bit, using the
arguments from the sector address and sector count registers.
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8.2. Disk Controller Operations. An action is initiated by writing a value
of 1 to the START bit of the control register. While an action is in progress, the
WR bit of the control register, as well as the sector address register and the sector
count register cannot be modified. An action transfers sectors from the data buffer
to the disk (if WR is set), or from the disk to the data buffer (if WR is reset). The
number of transferred sectors is specified by the sector count register. The range
of transferred sectors starts at the beginning of the data buffer, and on disk at the
sector indicated by the sector address register.

When the transfer is complete, the disk controller resets or sets the ERR flag
in the control register, depending on whether the transfer was successful or an
error occurred. The disk controller also sets the FIN flag of the control register to
indicate completion of the transfer, which causes the interrupt signal to be asserted
if the IEN flag is also set.

8.3. Sector Address, Sector Count, and Capacity. The sector address
register must be set to the number of the first sector on disk to take part in a
transfer prior to starting the transfer. Likewise, the sector count register must be
set to the number of sectors to transfer prior to starting the transfer. The capacity
register is a read-only register that contains the total number of sectors on disk.

8.4. Data Buffer. The data buffer has a size of 4096 bytes and thus contains
up to 8 sectors. Being located in the device address space, it may only be accessed
by word-sized transfers. Since the disk buffer conceptually contains bytes, not
words, the word units transferred through the SoC bus comprise the corresponding
bytes in a big-endian fashion.

The data buffer should not be accessed while a transfer is in progress.



CHAPTER 6

Using the ECO32 in an FPGA Design

While the ECO32 is a main component of the demonstration project, it is also
a re-usable softcore processor that can be used in arbitrary projects. This chapter
explains the necessary steps to use the ECO32 your next project.

The ECO32 must also be connected to a RAM to perform any meaningful
function. Although it is possible to use the ECO32 without an attached RAM,
such designs would allow only the general-purpose registers to be used for data
storage. Typically, the ECO32 is overkill for such projects, and a smaller processor
should be used instead. The RAM can again be implemented as a controller for an
off-chip RAM (like in the demonstration project), a block RAM, distributed RAM,
or any other kind of memory that satisfies the expectations of a RAM.

The ECO32 is typically also connected to other on-chip devices to perform its
task, such as co-processors, communication controllers, or controllers for off-chip
devices. They are connected to the ECO32 by the SoC bus as well as dedicated
interrupt lines. Using the ECO32 in a custom design implies the design and im-
plementation of such controllers.

Finally, software must be written that is executed by the ECO32. This software
is then stored in ROM, pre-loaded into RAM, or stored on an external device and
loaded into RAM at run-time. The ECO32 comes with a tool chain to write such
software, comprising an assembler, C compiler, and hardware simulator.

1. Instantiating the ECO32

The ECO32 itself is defined as a synthesizable Verilog module that can be
loaded into a project and instantiated as part of a larger design. This larger design
must also contain the SoC bus, RAM, ROM, and peripheral devices.

1.1. Verilog. The following code instantiates the ECO32 as part of a sur-
rounding Verilog module:

cpu mycpu(

.clk(clk),

.reset(reset),

.bus_en(cpu_en),

.bus_wr(cpu_wr),

.bus_size(cpu_size[1:0]),

.bus_addr(cpu_addr[31:0]),

.bus_data_in(cpu_data_in[31:0]),

.bus_data_out(cpu_data_out[31:0]),

.bus_wt(cpu_wt),

.irq(cpu_irq[15:0])

);
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Note how all signals of the enclosing module are prefixed with cpu to distin-
guish them from the corresponding signals of other entities on the bus.

1.2. VHDL. The following code declares the ECO32 component in a sur-
rounding VHDL architecture:

component cpu is

port (

clk : in std_logic;

reset : in std_logic;

bus_en : out std_logic;

bus_wr : out std_logic;

bus_size : out std_logic_vector (1 downto 0);

bus_addr : out std_logic_vector (31 downto 0);

bus_data_in : in std_logic_vector (31 downto 0);

bus_data_out : ou std_logic_vector (31 downto 0);

bus_wt : in std_logic;

irq : in std_logic_vector (15 downto 0)

);

end component;

The following code instantiates that component:

mycpu : cpu port map (

clk => clk,

reset => reset,

bus_en => cpu_en,

bus_wr => cpu_wr,

bus_size => cpu_size,

bus_addr => cpu_addr,

bus_data_in => cpu_data_in,

bus_data_out => cpu_data_out,

bus_wt => cpu_wt,

irq => cpu_irq

);

Note how all signals of the enclosing module are prefixed with cpu to distin-
guish them from the corresponding signals of other entities on the bus.

2. SoC Bus

Using the ECO32 in a larger design implies connecting it to devices using the
SoC bus architecture. This bus must interpret the bus signals from the ECO32
and transform them to bus signals for the devices. The general bus architecture is
explained in Chapter 4, Section ??.

2.1. Instantiation. Building the bus is easier than it sounds. First, the cpu
must be instantiated as explained above. All devices must also be instantiated.
Note that a single hardware module may be instantiated multiple times to cre-
ate multiple similar devices on the bus. For example, the demonstration project
instantiates two RS232 serial port controllers from the same Verilog description.
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2.2. Non-Bus Signals. The clk and reset signals must be routed to all in-
stances that need them, including the cpu. All externally available signals must
be routed between the ports of the enclosing module and the device instances. For
example, in the demonstration project, the r, g, b, hsync, and vsync signals must be
routed between the ports of the enclosing module and the instance of the character
display controller. Finally, the local cpu irq must be assigned individual interrupt
signals from the devices.

2.3. Direct-Routed Bus Signals. The cpu wr signal is directly routed from
the cpu to all peripheral devices. Devices whose enable signal stays de-asserted
would ignore the cpu wr signal.

Similarly, cpu size is directly routed to both RAM and ROM. Again, if not
selected, these controllers ignore the cpu size signal. Other devices than RAM and
ROM implicitly assume word-sized transfers and do not need the cpu size signal.

The write-data lines, cpu data out, are directly routed to all devices. However,
some devices may need only a subset of these lines if, for example, all acessible device
registers are only 8 bits wide. The remaining lines of cpu data out are ignored for
such devices.

2.4. Address Decoder. The cpu addr signal is compared with bit patterns
to determine which device is selected (Chapter 4, Section ??). This decoder creates
one signal per device that is asserted if the device is selected. An example address
decoder is shown here that uses 20 device-local address bits (of which the lowest 2
are not routed) for all peripheral devices other than RAM and ROM, a RAM size
of 32 MB, and a ROM size of 2 MB.

The address decoder written in Verilog looks like this:

wire ram_selected;

wire rom_selected;

wire io_selected;

wire device1_selected;

wire device2_selected;

...

assign ram_selected =

(cpu_en == 1 && cpu_addr[31:25] == 7’b0000000) ? 1 : 0;

assign rom_selected =

(cpu_en == 1 && cpu_addr[31:21] == 7’b00100000000) ? 1 : 0;

assign io_selected =

(cpu_en == 1 && cpu_addr[31:28] == 7’b0011) ? 1 : 0;

assign device1_selected =

(io_selected == 1 && cpu_addr[27:20] == 7’b00000000) ? 1 : 0;

assign device2_selected =

(io_selected == 1 && cpu_addr[27:20] == 7’b00000001) ? 1 : 0;

...

The address decoder written in VHDL looks like this:
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signal ram_selected : std_logic;

signal rom_selected : std_logic;

signal io_selected : std_logic;

signal device1_selected : std_logic;

signal device2_selected : std_logic;

...

ram_selected <=

cpu_en when cpu_addr(31 downto 25) = "0000000" else ’0’;

rom_selected <=

cpu_en when cpu_addr(31 downto 21) = "00100000000" else ’0’;

io_selected <=

cpu_en when cpu_addr(31 downto 28) = "0011" else ’0’;

device1_selected <=

io_selected when cpu_addr(27 downto 20) = "00000000" else ’0’;

device2_selected <=

io_selected when cpu_addr(27 downto 20) = "00000001" else ’0’;

...

The selected lines for the individual devices are directly routed to the enable
ports of the corresponding devices. The local address ports of each device are
connected with the remaining address bits. For example, the local address ports of
device1 are connected with cpu addr19..0. A subset of those address lines may be
used if the device ignores the remaining lines.

2.5. Response Signal Multiplexer. The response signals from the devices,
device∗ wt and device∗ data out, are multiplexed by the cpu addr before delivered
to the ECO32 as cpu wt and cpu data in. This way, the ECO32 always sees the
response signal of the selected device.

The response signal multiplexer written in Verilog looks like this:

assign cpu_wt =

(ram_selected == 1) ? ram_wt :

(rom_selected == 1) ? rom_wt :

(device1_selected == 1) ? device1_wt :

(device2_selected == 1) ? device2_wt :

1;

assign cpu_data_in =

(ram_selected == 1) ? ram_data_out :

(rom_selected == 1) ? rom_data_out :

(device1_selected == 1) ? device1_data_out :

(device2_selected == 1) ? device2_data_out :

32’h00000000;

The response signal multiplexer written in VHDL looks like this:

cpu_wt <=

ram_wt when ram_selected = ’1’ else
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rom_wt when rom_selected = ’1’ else

device1_wt when device1_selected = ’1’ else

device2_wt when device2_selected = ’1’ else

’1’;

cpu_data_in <=

ram_data_in when ram_selected = ’1’ else

rom_data_in when rom_selected = ’1’ else

device1_data_in when device1_selected = ’1’ else

device2_data_in when device2_selected = ’1’ else

"00000000000000000000000000000000";

3. RAM and ROM Controllers

After reset, the PC is set to virtual address E0000000h (physical address
20000000h) and therefore points to the first location in ROM. There are several
ways to connect a ROM to this address, for example:

• implement a controller for an off-chip ROM. For example, the demon-
stration project connects an address range starting at physical address
20000000h to a controller for the flash ROM on the development board.

• connect a range of addresses starting at physical address 20000000h to
one or more block RAMs configured as ROMs

• connect a range of addresses starting at physical address 20000000h to
distributed ROM

• implement logic that emits a jump instruction to virtual address C0000000h
which is direct-mapped to RAM. This solution requires that RAM is pre-
initialized with a program to jump to.

The physical address range 00000000h through 1FFFFFFFh is associated with
RAM. There are several ways to connect a RAM:

• implement a controller for an off-chip RAM. For example, the demon-
stration project connects an address range starting at physical address
00000000h to a controller for the SDRAM on the development board.

• connect a range of addresses starting at physical address 00000000h to
one or more block RAMs.

• connect a range of addresses starting at physical address 00000000h to
distributed RAM

4. Peripheral Controllers

The ECO32 can be connected to arbitrary FPGA designs to control the op-
eration of these designs or perform computations on behalf of a larger design. For
example, it can be connected to an RS232 transceiver to communicate with other
physical devices. The range of possible FPGA designs that can cooperate with the
ECO32 shall not be discussed here. Instead, this section explains how to make the
connection.

The primary means of communication between the ECO32 and other devices is
the SoC bus. The bus provides means for basic read and write operations, but does
not define the meaning of these operations. This section gives some suggestions
how to use these operations as part of a larger design.



54 6. USING THE ECO32 IN AN FPGA DESIGN

4.1. Device Address Map. Peripheral controllers must be connected to
physical addresses in the range 30000000h through 3FFFFFFFh (virtual addresses
in the range F0000000h through FFFFFFFFh). The subdivision of this range across
different devices is not specified and can be chosen freely. This allows the use of
both many devices with a small address range and few devices with a large address
range in the same design.

4.2. Device-Local Addresses. The device-local address contains those ad-
dress bits of the 32 bus address lines that have not been decoded to select a specific
device. The meaning of the device-local address was clear in the context of a RAM
or ROM. For peripheral controllers, there is more freedom. A device-local address
in such a controller can select a device register, or a location in a device-specific
RAM, or even a location that does not actually store values.

In general, the device-local address is a piece of information that is always
transferred to the target device, whether in read operations or write operations. For
read operations, it specifies what kind of data is requested. For write operations,
it tells the device what to do with the data.

A typical way to interpret a device-local address is by building an address de-
coder. Much like the coarse address decoder found in the bus itself, it compares
the device-local address with bit patterns to generate enable signals for individual
components in a device, and to multiplex response data from individual compo-
nents.

4.3. Device Registers. The most common construct to connect to the bus
is a register. Such registers keep control values and data for the operation of a
device. Registers can have any size from 1 to 32 bits. Larger registers cannot be
fully accessed in a single bus operation and must be wired to the bus as multiple
separate registers, typically at different device-local addresses.

Write data coming from the ECO32 is wired to the data-in port of the register.
Read data is generated directly from the data-out port of the register. The device-
local address decoder then multiplexes between read data from different registers.
Finally, the device-local address decoder asserts the clock enable signal for the
register if both the device-specific bus enable signal is asserted and the device-local
address selects this specific register. The wait signal of the bus can be tied low for
registers, since they do not introduce any delays.

The current value of the register is not only delivered as read data to the
ECO32, but is also used by the device itself. In some cases, the value of the register
is modified by the device such that the new value can be read by the ECO32. There
are various ways in which a register value can influence the operation of a device,
which cannot all be described here. For example, the value can consist of control
fields that determine the operation mode of the device. Registers can also contain
data to be sent to external targets by the device, or data that was received from
external sources.

4.4. Device RAM. Some devices may use the device-local address to access
a RAM, just like the main RAM does. Device RAM is different from regular RAM
in the sense that it must be accessed only by word-sized transfers. Typically, device
RAM is accessed by the ECO32 only in block transfers to and from regular RAM.

Device RAM is typically used for large data blocks to be sent or received by a
device. For example, the disk controller of the demonstration project uses a 4kB
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RAM for data that is transferred to and from disk. The bus architecture demands
that this RAM be accessed as 1k words, and never as 2k half-words or 4k bytes.
Another use for device RAM would be the storage of program and data of a co-
processor.

Device RAM can be easily implemented by connecting the data-in, data-out,
and device-local address to a block RAM of the FPGA. The wiring of the wait
and enable signals is slightly more complex due to the block RAM being only
synchronously readable. A read operation requires two clock cycles, so the bus wait
signal must be asserted in the first of those cycles, and de-asserted in the second
one. Write operations take only a single clock cycle, and the wait signal must stay
de-asserted.

This behaviour can be implemented easily. First, the bus enable signal is
connected directly to the clock enable port of the block RAM. This causes the block
RAM to finish writing in one clock cycle, and to read data at the edge between the
first and second clock cycle of a read operation. Since the bus enable signal stays
asserted until the bus cycle is complete, it also causes the block RAM to read again
at the end of the second clock cycle, but from the same address, and the resulting
value is ignored anyway. Only the value read after the first clock cycle is used.

The behaviour of the wait signal is also simple. For write operations, it must
stay de-asserted. For read cycles, it must be asserted for one clock cycle, then
de-asserted for one clock cycle. A simple state machine with two states takes care
of this.

4.5. FIFO Queues. A device-local address can select a FIFO queue that
delivers or consumes data. Typically, a single device-local address selects either a
read queue or a write queue, although it is possible to connect one queue of either
type to the same address (and distinguish between them by the bus write signal).

FIFO queues have the special property that successive values are read from or
written to the same device-local address. When writing data to a FIFO queue, the
order in which values are written determines the order in which they are handled.
When reading data from a FIFO queue, the order in which values arrive is the order
in which the ECO32 should handle them. FIFO queues are typically associated
with a communication stream.

4.6. Address Registers. It is possible to associate a single device-local ad-
dress with multiple target registers. In such designs, a separate source for address
bits is needed besides those coming from the bus. These additional address bits are
decoded to generate enable signals for the target registers and to multiplex data
read from them.

A separate register at another device-local address, called an address register,
is used to store these additional address bits. First, the program running on the
ECO32 writes the address of the intended target register into the address register.
Then, it writes to or reads from the multiplexed device-local address to access the
target register itself.

4.7. Trigger Signals. A device sometimes needs a signal telling it to start
some action. For example, the disk controller in the demonstration project is first
configured by writing appropriate values into its control registers, then triggering
the start of the configured operation. Such a trigger need not store any values, and
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thus need not be backed by a physical register. Instead, the trigger signal causes a
transition in the state machine of the device that begins the operation.

A simple design would take the enable signal of that device local address as the
trigger signal. This enable signal is in turn asserted if both the bus enable signal
is asserted and the correct device-local address is supplied. The ECO32 starts the
operation by reading from or writing to that address. More sophisticated designs
could take the value of the write signal into account, such that only writing starts
the operation, or even look for writing a 1 bit to a specific bit position. This is
important if the trigger signal is grouped together with other values at the same
device-local address.

4.8. Bus-Mapped Logic. It is possible to implement an often-used boolean
function in hardware and connect it directly to the bus, with no intermediate regis-
ters. This function can have as many input bits as it has device-local address bits,
and up to 32 output bits which it connects to its data-out port. The ECO32 can
access the boolean function block by encoding both the base address of the function
block device and the input bits for the function in a 32-bit physical address, then
reading from that address. The resulting value is the result of the function.

5. Interrupts

Some devices need to signal to the ECO32 that some event has occurred with-
out the ECO32 specifically asking for it. For example, the RS232 controller of
the demonstration project must signal to the eco when a character has been re-
ceived, without the ECO32 constantly asking the RS232 controller if characters
are available. Interrupts are used for this.

The ECO32 supports up to 16 level-triggered interrupt signals. A device as-
serts its interrupt signal when it needs attention from the ECO32. The ECO32
then performs whatever action is needed for the device. Specifically, it performs
some action that causes the device to de-assert its interrupt signal. Interrupt han-
dling from the perspective of the ECO32 has been described before. This section
explains interrupts from the perspective of the peripheral devices.

A straightforward way to implement interrupts in a device is to use a 1-bit
register that can be set or reset both by the device and the ECO32 (via the bus).
The value of this register is taken as the interrupt signal. When the device detects
an event that is worth an interrupt, it sets the register to 1. This causes the ECO32
to enter its interrupt service routine, where it deals with the event. The service
routine also writes a 0 to the register via the bus to de-assert the interrupt signal,
such that it can leave the service routine without generating another interrupt.

A more sophisticated design is used in the demonstration project. This uses
another 1-bit register that acts as an interrupt enable and is written to solely
by the ECO32. The demonstration project groups both 1-bit registers into a 2-
bit register at a single device-local address. The interrupt signal is generated by
ANDing both registers. This allows to disable interrupt generation in the device
itself. Normally, the ECO32 does not need such a design because it can disable
each interrupt channel individually through the IEN field of the PSW. However,
more complex designs may involve more than 16 interrupt-capable devices and
require that multiple devices share a single interrupt signal. In that case, disabling
interrupts per-device, and not per-channel, is a useful feature.
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Tool Chain

The ECO32 comes with tool programs that allow the development of soft-
ware for it. The software package currently includes an assembler, C compiler,
instruction-level simulator, and various support tools.

1. Assembler (asld)

The asld tool assembles and links a set of files written in a custom assembler
format to produce an executable binary. The binary uses either a custom segmented
binary format, or a raw dump of the code and data segments. It is currently
impossible to separate the assembler and linker stages.

1.1. Command Line Interface. Synopsis:
asld [options] file [files ...]

The asld tool reads all files and interprets them according to a custom assem-
bler format described below. The files are then assembled in the order specified in
the command line to produce an executable. Various options control this process:

• -h: Generates a headerless binary that contains only a raw dump of the
code and data sections in direct sequence, without any header.

• -o objfile: Specifies the name of the generated binary.
• -m mapfile: Specifies the name of a map file that is created in addition

to the output binary. This map file contains a listing of the final global
symbol table.

• -rc Address: Specifies the (virtual) start address of the code section. This
affects the target location of symbols in that section. It does not affect
the position of the code section within the generated binary file. If this
option is not specified, the start address of the code section defaults to 0.

• -rd Address: Specifies the (virtual) start address of the data section. This
affects the target location of symbols in that section. It does not affect
the position of the data section within the generated binary file. If this
option is not specified, the start address of the data section defaults to
the end of the code section, rounded up to 4k page boundaries.

• -rb Address: Specifies the (virtual) start address of the BSS section. This
affects the target location of symbols in that section. It does not affect
the position of the BSS section within the generated binary file. If this
option is not specified, the start address of the BSS section defaults to the
end of the data section, without any rounding.

1.2. Assembling Model. The assembler maintains the following state vari-
ables:

57
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• Three sections, called code, data, and BSS. Each section consists of a byte
array starting at index 0. The number of bytes in this array is the size
of the section. The only way to modify a section is to append bytes at
the end. Note that while the BSS is treated like the other sections, its
contents are not written to the output file.

• A symbol table. Each entry of this table maps an identifier to a (section,
index) pair and thus points to a specific location in a specific section. As
a special rule, the section of a symbol can be the special absolute section,
meaning that the symbol is not relative to any defined section and is thus
not relocated. The symbol table is split into a local and a global part for
file-local and cross-file symbols (see below).

• A current section, which is one of the three sections defined above. The
special absolute section cannot be the current section.

• Various control parameters.

At the beginning of the assembly process, all three sections are empty, the
global symbol table is empty, the current section is the code section, and the control
parameters are set to their default values. The assembler then begins to consume
the input files one by one. For each file, the following steps are performed:

• Clear the local symbol table.
• Set the current section to the code section (¡– not sure about this, but

would make sense)
• Reset some of the control parameters to their default values.
• Process the file as described in the next section.

After all files have been consumed, symbols are relocated and back-patched:
First, the start location of each section is determined either automatically or by
the -r∗ command-line switches. The relocated position of a symbol is obtained by
adding the start address of the symbol’s section to the location of the symbol within
its section. Symbols in the special absolute section use their section-local position
as the relocated position, which is equivalent to saying that the start address of the
absolute section is 0. The assembler then scans through all references to symbols
in the assembled code and inserts the relocated address.

Finally, the output binary is generated by writing the header (containing the
section sizes; only if -h has not been specified) and the contents of the code and
data sections.

1.3. Input Format. An assembler input file is a sequence of labels, instruc-
tions, and processing directives. Each of them modifies the assembler state defined
in the previous section:

• A label creates an entry in the local symbol table. It is specified as an
identifier, followed by a colon character. This identifier names the entry
that is created in the local symbol table. The target location of the symbol
is the current section and the current location in that section.

• An instruction is a simple identifier that is one of the instruction mnemon-
ics of the ECO32, followed by the operands of that instruction. For con-
venience, the non-immediate mnemonic may be used with an immediate
operand to specify the immediate instruction, such as ADD for ADDI.
Register operands are specified by a dollar sign, followed by the num-
ber of the register. Immediate operands are specified as a simple number.
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Jump targets are specified by a label identifier. Operands must be comma-
separated. The specified instruction is assembled at the current location
in the current section (usually, but not necessarily, the code section).

The control parameters may be set up to allow synthesized instruc-
tions. These look like single instructions in the input file, but are actually
assembled as short instruction sequences. Synthesized instructions exist
purely for convenience when writing assembler code manually.

• A processing directive starts with a dot, followed by the name of the
directive. The following directives exist:

– .syn: Enables synthesized instructions.
– .nosyn: Disables synthesized instructions.
– .code: Makes the code section the current section.
– .data: Makes the data section the current section.
– .bss: Makes the BSS section the current section.
– .export: Creates a global symbol table entry from a local one. This

directive expects a list of symbol names, all of which are exported.
– .import: Creates a local symbol table entry by importing a global

symbol. The corresponding global symbol must be defined in past
or future assembler input within the same assembler run, otherwise
an error occurs. This directive expects a list of symbol names, all of
which are imported.

– .align: Inserts padding bytes for half-word or word alignment. For-
mally, this directive expects a number argument which must be a
power of 2, and inserts zeroed bytes into the current section until the
current position in the current section is a multiple of that number.
The result is undefined if the specified number is not a power of 2.
This directive is typically used directly before half-word or word
sized variables are emitted, because access to these variables must be
aligned to the access size. As an example, “align 2” inserts a zeroed
byte if the current position is an odd position, and thus aligns the
current position to generate a half-word variable. Similarly, “align
4” aligns the current position for word-sized variables.

– .space: This directive expects a number argument and emits that
number of zeroed bytes to the current section.

– .locate: This directive expects a number argument and emits zeroed
bytes to the current section until the current position in the current
section is equal to that number. The specified number must not be
less than the current position in the current section, otherwise the
asld will crash.

– .byte: Emits a single byte to the current section whose value is the
argument to this directive.

– .half: Emits two bytes to the current section whose value is the ar-
gument to this directive in big-endian representation. The .half

directive can emit half-words at unaligned memory locations, how-
ever, the ECO32 will not be able to read then a half-word units.

– .word: Emits four bytes to the current section whose value is the
argument to this directive in big-endian representation. The .word



60 7. TOOL CHAIN

directive can emit words at unaligned memory locations, however,
the ECO32 will not be able to read then a word units.

– .set: This directive expects an identifier and numeric value as its
arguments, and creates a symbol in the special absolute section with
that identifier and value.

1.4. Output Format. The output format of asld is a single file that consists
of a header and a body. If the -h option is specified, the header is omitted. The
header contains the following fields in big-endian byte order:

• Magic Number (4 bytes): Must be 3AE82DD4h.
• Code Section Size (4 bytes)
• Data Section Size (4 bytes)
• BSS Section Size (4 bytes)

The body contains the contents of the code and data sections in direct sequence,
without any padding in between. It is the responsibility of the loader to ensure
that these sections are loaded to the (virtual) section start addresses determined
at assembly time. The BSS conceptually contains only zeroed bytes, and thus isn’t
stored in the binary file. It is the responsibility of the loader to ensure that the
contents of the BSS are actually zeroed.

2. C compiler (lcc)

The lcc tool is a C compiler, based on the LCC source code, for ANSI C (C89).
Currently, it must be used in conjunction with the asld tool to compile a whole
project at once, because there is no object format for individual compiled C sources.
Assembler and C sources can be mixed in a compiler run, and will be assembled in
exactly the order specified at the command line. Unless overridden, the generated
object file is a simple segmented format.

2.1. Command Line Interface. LCC supports various switches on the com-
mand line that can be viewed by running it without arguments. The general syn-
opsis is:

lcc [option | file] ...

Each file is either a C or assembler input file. The input files are assembled in
the specified order.

The -W argument is a generic extension mechanism for command-line argu-
ments. Only the most important uses of this mechanism will be explained here:

• -Wo-kernel: Sets the start address of the code section to C0000000h as
if -Wl-rc -Wl0xC0000000 had been specified, and prevents linking to
the standard library. Since there is no useful standard library yet, this
switch must be specified. Alternatively, compilation can be done using
-s and assembly/linking be done in a separate step, which has the same
effect.

• -Wl-m -Wlmapfile: Generates a map file that lists the entities assembled
to the output file.

• -Wl-h: Generates a headerless output file. The output file does not
contain the simple segmented output format. Instead, it only contains
the contents of the code and data section in direct sequence.
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• -Wl-rc -Wl0xAddress: Specifies the start address of the code section.
This affects the (jump) addresses within the code that is ultimately writ-
ten to the output file.

• -Wl-rd -Wl0xAddress: Specifies the start address of the data section.
This affects the (load/store) addresses within the code that is ultimately
written to the output file.

• -Wl-rb -Wl0xAddress: Specifies the start address of the BSS section.
This affects the (load/store) addresses within the code that is ultimately
written to the output file.

2.2. Data Types. The C compiler uses the following bit sizes for the C data
types:

long 32
int 32

short 16
char 8

pointer 32

2.3. Register Allocation. The C compiler assigns a fixed purpose to each
register index:

Index Meaning
0 tied to value 0 by the hardware
1 reserved as an auxiliary register for use by the assembler

(not used by the compiler)
2,3 function return value
4..7 function arguments

8..15, 24, 25 caller-save local value, to be used for temporary results
16..23 callee-save local value, to be used for local variables
26..28 reserved for OS kernel

(not used by the compiler)
29 stack pointer
30 reserved for interrupt return address

(not used by the compiler)
31 function return address

3. Simulator

...

4. bin2exo

The bin2exo tool converts a binary file to a .exo file to be loaded into the flash
ROM. The .exo file contains exactly the byte sequence stored in the binary file,
converted to Motorola S-Records, without any headers, stripping, or byte swapping.
The start address at which the data is placed in ROM can be specified via the
command line.

4.1. Command-Line Options. Synopsis:

bin2exo <load address, hex> <input file> <output file>
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The load address specifies the first address in the flash ROM, specified as a
hexadecimal number, that is occupied by the contents of the input file. This file
is converted to Motorola S-Records, which are stored in the output file, which
presumably is a .exo file.

4.2. Generating a Boot ROM. The bin2exo tool can be used to convert
a binary file to a boot ROM for the ECO32. To do so, the binary file must be
converted to a .exo file with start address 0 and loaded into the flash ROM using
the GXSLOAD tool. This maps the contents of the binary file to physical address
20000000h (virtual address E0000000h) upwards, and thus causes the ECO32 to
interpret the contents of the file as raw instructions after reset.

Note that while neither the binary file nor the bin2exo tool or the .exo file
have a notion of a byte order, using the file as a boot image causes the ECO32 to
access its contents in a big-endian fashion, just as expected. This is the result of
various intermediate steps, such as the GXSLOAD program, the parallel interface to
the XSA board, the CPLD configuration, the byte order of the flash ROM itself,
and the ROM interface that connects the flash ROM to the SoC bus. Not all of
these steps are well-documented, and no assumptions should be made about the
intermediate byte order if this chain is broken.

5. bit2exo

The bit2exo tool converts a Xilinx .bit file to a .exo file that can be loaded
into the Flash ROM to configure the FPGA on startup. It is important to use
bit2exo, and not bin2exo for this job, because the .bit file contains headers that
must be stripped from the actual bit stream. The start address at which the bit
stream is placed in ROM can be specified in hexadecimal via the command line,
and should be the start address of one of the four ROM quadrants:

ROM Quadrant Start Address
0 000000h
1 080000h
2 100000h
3 180000h

Due to the architecture of the ECO32, quadrant 0 usually contains the boot
loader code and therefore cannot be used for the FPGA configuration. By placing
the configuration in quadrant 3, quadrants 0 through 2 can be usd as a continguous
program ROM. Note: Do not forget to place the jumpers on the FPGA board to
tell the FGPA from which quadrant to load its configuration.

5.1. Command-Line Options. Synopsis:

bin2exo <load address, hex> <input file> <output file>

The load address specifies the first address in the flash ROM, specified as a
hexadecimal number, that is occupied by the contents of the bit stream found in
the input file after stripping all headers. The bit stream is converted to Motorola
S-Records, which are stored in the output file, which presumably is a .exo file.



CHAPTER 8

Implementation Notes

1. XSA-3S1000 SDRAM Controller

1.1. Refresh. SDRAM cells must be refreshed repeatedly to keep their value.
The SDRAM knows three methods of refreshing cells:

• Self-Refresh: The SDRAM is detached from the FPGA and refreshes all
cells periodically. No other functions can be used while self-refresh is in
progress. This mode is not used by the current controller.

• Auto-Refresh: The SDRAM keeps an internal row counter purely for re-
freshing. The auto-refresh command refreshes the current row and in-
creases the counter. This mode is used by the current controller to refresh
all rows periodically. The refresh circuit is independent from the RAM ac-
cess interface and refreshes all rows periodically regardless of the memory
access pattern of the client.

• Manual Refresh: Manual refresh of a row occurs when that row is acti-
vated. Implicit manual access occurs when a row is activated for reading
or writing, and may occur depending on the access pattern of the client.
It is not exploited though. Explicit manual refresh occurs when a row is
opened purely to refresh it, and is not used by the current controller.

An access arbiter is required to interleave access to the SDRAM by the refresh
circuit and by the actual memory access interface. In the current implementation,
an access burst in progress is allowed to finish, then refreshing gets absolute priority.
The actual implementation keeps a counter of pending rows to refresh and a timer.
Whenever the timer runs out, the number of rows to refresh is increased by one.
Whenever the number of rows to refresh is greater than zero and the memory access
interface does not actually access the SDRAM, a row is refreshed and the number
of rows to refresh is decreased by one. This scheme allows “alarms” from the refresh
timer to accumulate while a burst is in progress, and perform them all in sequence
when the burst is completed.

1.2. States. After initialization, the SDRAM has three persistent states:

• Idle (pre-charged): The row data register of the SDRAM is pre-charged
and ready to activate a row. This state can also be used to set the mode
register or to activate auto-refresh.

• Row Active: A row has been loaded into the row data register. Either
a transfer of data to or from this row can be started, or the row data
register can be pre-charged to activate another row. Minimum delays
must be obeyed to ensure that the value from the row data register can
be written back to the DRAM array, either unchanged (for manual refresh)
or changed (for actually writing data to the DRAM array).
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• Transfer: Reading or writing data to or from the row data register. The
SDRAM supports an auto-precharge mode (???).

It also has transitional states to represent the non-immediate transition between
the persistent states:

• Mode Register Accessing: A transition from Idle to Idle. Represents the
time to store a new value in the mode register.

• Activating: A transition from Idle to Active. Represents the time to load
a row from the DRAM array. The time to complete this transition is
tRCD, the RAS-to-CAS delay (so called because the activation of a row is
signalled by RAS going low, and access to a memory cell is signalled by
CAS going low.)

• Precharging: A transition from Active to Idle. Represents the time to
pre-charge the row data register of the SDRAM.

1.3. Clocking. Based on current knowledge (!!!)
The explanation in this section assumes that the SDRAM controller uses reg-

isters for all data signals both at the input and output pins, without any logic in
between, clocked by the internal FPGA clock.

The FPGA uses a DCM to generate the clock for the SDRAM. The input clock
to the DCM is the global clock of the FPGA circuits. The output clock is fed
through an output buffer to the SDRAM. The SDRAM feedback clock is fed to an
IBUFG and to the feedback input of the DCM.

How this works: The path from the DCM output to the SDRAM serves two
purposes. The first purpose is to act as a clock source at the SDRAM clk pin. The
SDRAM works synchronous to this clock source: It samples its inputs when a clock
edge occurs at the clk pin, and changes its outputs in such a way that setup and
hold timing is not violated with respect to the clk pin.

When the SDRAM tries to send data to the FPGA, it asserts the data signals
between two clock edges, such that the data is stable on each clock edge. Data and
(feedback) clock signals have comparable delays between their source at SDRAM
pins and their destination inside the FPGA. These delays consist of PCB trace
delays, input buffer delays, and FPGA-internal delays. Sicne the delays are com-
parable, the FPGA could in theory use the clock signal coming from the SDRAM
to clock registers which sample the data signals coming from the SDRAM without
violating setup/hold timing.

This is where the second purpose of the DCM comes in: The feedback clock
from the SDRAM is kept in phase with the FPGA-internal clock, meaning that
the FPGA can as well use the internal clock to sample the data signals from the
SDRAM. The DCM therefore ensures that reading data from the SDRAM works
without problems using the internal clock.

Writing data to the SDRAM works by keeping the clock frequency low enough:
The internal FPGA registers load their new values when a clock edge occurs inside
the FPGA, i.e. one SDRAM-to-FPGA signal delay after the clock edge occurs at
the SDRAM. The new values are available after the clock-to-out delay of the FPGA
registers. They arrive at the SDRAM one FPGA-to-SDRAM delay later, and must
respect the setup timing of the SDRAM. The sum of all these delays must be less
than the clock period.
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The net effect is that clock edges occur in an alternating fashion in the FPGA
and in the SDRAM. This leaves roughly half a clock period to transfer a signal to
or from the SDRAM. For example, a read command with a CAS latency of 3 is
explained as the data being available three clock periods after the CAS. Executing
this command works as follows (timing measured in clock periods):

• 0: a CAS command is loaded into the FPGA output registers with an
FPGA clock edge

• 0.5: The SDRAM samples its inputs at an SDRAM clock edge and rec-
ognizes the command

• 1.5: ... working ...
• 2.5: ... working ...
• 3.3: The SDRAM asserts data outputs roughly here
• 3.5: The SDRAM guarantees valid data at this SDRAM clock edge
• 4.0: The FPGA samples the data signals at this FPGA clock edge

Depending on the clock frequency, the distance between clock edges may shift:
The delay from an SDRAM clock edge to the next FPGA clock edge is determined
by the signal delay, and is therefore independent from the clock frequency. The
delay from an FPGA clock edge to the next FPGA clock edge is simply the re-
mainder of the clock period. With the clock period long enough, the delay from an
FPGA clock edge to the next SDRAM clock edge is long enough for signals to be
transmitted. Signals back to the FPGA experience the same delay as the feedback
clock and therefore always arrive early enough.
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