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Chapter 1

Introduction

This master thesis is about MMIX (pronounced "em-mix") and the implementation of
a simulator for it. MMIX is a computer architecture designed by Donald Knuth as
a successor of MIX, which is used as an abstract machine in The Art of Computer
Programming. The name has been determined by averaging the identifying numbers of
14 similar machines:

(Cray I + IBM801 + RISC II + ClipperC300 + AMD29K + Motorola 88K
+ IBM601 + Intel i960 + Alpha 21164 + POWER2 + MIPSR4000
+ Hitachi SuperH4 + StrongARM110 + Sparc 64) / 14
= 28126 / 14 = 2009

The representation of 2009 in roman numerals is MMIX, which is the reason for the
name. [1, pg. 2] The name MIX has been chosen analogously. Apart from the name,
MMIX has not much in common with MIX. MMIX is a 64-bit big-endian binary com-
puter with 8 bits per byte, that has a RISC instruction set. On the other hand, MIX is
a hybrid binary-decimal computer with 6 bits per byte and a CISC-like instruction set
[2], [3, pg. 124,125].

1 Current Status

At the beginning of this project, two simulators for MMIX were already available, called
MMIX-SIM and MMIX-PIPE. Both were developed by Donald Knuth himself and are
published with MMIXware1, which contains the simulators, the full documentation and
example programs. The simulators have been written with the literate programming
system CWEB, also designed by Donald Knuth, that is a mixture of TEX and C, from
which both compilable C code and documentation can be generated. MMIX-SIM is
a simple, instruction-level simulator, that does only support user-programs, i. e. no
operating system kernel. That is, all user mode instructions are available, but no
interrupts or exceptions can be handled, no paging is supported and no caches are
present. It is an instruction-level simulator in the sense, that each instruction takes
exactly one cycle and one can thus step through a program instruction per instruction.
Its main goal is to be able to run and analyze example programs published in The
Art of Computer Programming. [4, pg. 1] On the other hand, MMIX-PIPE is a
highly configurable meta-simulator, that supports all features the MMIX architecture
has in mind. In contrary to MMIX-SIM, it uses pipelining and the instructions take an

1It can be downloaded at http://www-cs-faculty.stanford.edu/~uno/mmix-news.html.
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arbitrary and varying number of cycles. Due to the degree of configurability regarding
registers, caches, functional units and so on, which is also the reason for the name
"meta-simulator", it can for example be utilized to explore what settings are the most
suitable ones for building a hardware implementation of MMIX. Furthermore, the user
interface of MMIX-PIPE is not designed to analyze a program – like MMIX-SIM – but
rather the machine it runs on.

2 Motivation

The longterm goal of this project is to port an operating system to MMIX. Unfortunatly,
neither MMIX-SIM nor MMIX-PIPE are well suited for that task. Because, as just
mentioned, MMIX-SIM does not support OS kernels at all and MMIX-PIPE would
only appropriate if, for example, one liked to explore what cache-configuration or how
many functional units are ideal for a hardware implementation. It does not fit well
when one would like to develop, port or debug an operating system for MMIX.
Of course, it would be possible to change MMIX-SIM or MMIX-PIPE to fit our needs.

But MMIX-SIM does not implement most of the complicated mechanisms MMIX of-
fers, such as paging, interrupt and exception handling or caching. Therefore, it would
require many changes to its code, which is quite difficult to understand and especially
to adjust or extend. MMIX-PIPE has all these mechanisms, but uses pipelining and is
highly configurable, which increases the complexity of the code by an order of magni-
tude, compared to MMIX-SIM. Additionally, the implications of the mentioned goals
of MMIX-PIPE, do not fit well for this project.
For these reasons, it has been decided to write a new simulator from scratch2. This

way, the system is easier to understand for people who want to learn how MMIX works,
is completely in our control, which makes changes simple, and can be designed so
that it perfectly matches with our needs. The conformity to the MMIX architecture
specification is ensured by a sophisticated test system, that tries to test every possible
case and compares it with MMIX-SIM and MMIX-PIPE.

This thesis explains at first the architecture MMIX in general and describes afterwards
the implementation of the simulator, called GIMMIX. The name stands for "Gießen
Implementation of MMIX", because Gießen is the home town of our university. Both
GIMMIX and this thesis are based on the version 20110305 of MMIXware. That means,
GIMMIX is implemented to match with the specification of that version, uses MMIX-
SIM and MMIX-PIPE published with it and this thesis describes the mentioned version.

2A first approach had already been started a few years ago, but for design reasons it has been
decided to start on a green field again.
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Chapter 2

The MMIX Architecture

As already mentioned in the introduction, MMIX is a 64-bit big-endian RISC machine.
It provides 256 32-bit wide instructions, at least 256 general purpose registers and 32
special registers. Both are 64-bit wide. Additionally it has a 64-bit virtual and phys-
ical address space and supports both integer arithmetic and floating point arithmetic.
Donald Knuth described the goals of MMIX with "I strove to design MMIX so that its
machine language would be simple, elegant, and easy to learn. At the same time I was
careful to include all of the complexities needed to achieve high performance in practice,
so that MMIX could in principle be built and even perhaps be competitive with some
of the fastest general-purpose computers in the marketplace." [5, pg. v].

This chapter splits the features of MMIX in categories and describes them one after
another. In each category the concept is explained, if necessary, and the associated
instructions are introduced. It will mostly resemble the MMIX specification [6], but of
course, this thesis has a different purpose, i. e. some parts will be described in more
detail, some in less. Especially, this thesis will try to give more examples to the difficult
chapters of MMIX. But after all, it is of course not meant to be a replacement for the
specification. Thus, whenever a concept or instruction is explained, the end of it will
link to the corresponding page of the specification.

1 General Terms and Notations

Before MMIX is described in further detail, a few terms and notations that are used
throughout this thesis should be introduced.

At first, numbers without any prefix or other qualification should be read in decimal
base, whereas numbers prefixed with ’#’ should be read in hexadecimal base. General
purpose registers are named $X, where X is between 0 and 255. Special registers are
named rX, where X is any of A, B, . . . , Z, BB, TT, WW, XX, YY, ZZ. The quantities in MMIX
are:
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Name Bits Unsigned and signed integer range
Byte 8 0 . . . 255

−128 . . . 127
Wyde 16 0 . . . 65535

−32768 . . . 32767
Tetra 32 0 . . . 4, 294, 967, 295

−2, 147, 483, 648 . . . 2, 147, 483, 647
Octa 64 0 . . . 18, 446, 744, 073, 709, 551, 615

−9, 223, 372, 036, 854, 775, 808 . . . 9, 223, 372, 036, 854, 775, 807

Table 1: Quantities in MMIX [6, pg. 3]

The virtual memory is an array called M. An access of 2t consecutive bytes at lo-
cation k is written as M2t [k], where k is 2t-byte aligned (the least significant t bits
are zero). That means, for example M1[#1234] denotes the byte at location #1234 and
M8[#100] the octabyte at location #100. The virtual memory is divided in two halfs.
The memory space #0000 0000 0000 0000 . . . #7FFF FFFF FFFF FFFF is called user space
and #8000 0000 0000 0000 . . . #FFFF FFFF FFFF FFFF is called privileged space. Further-
more, the location of the instruction pointer, called @, determines the mode in which
MMIX operates. If it is in user space, it is in user mode, otherwise in privileged mode.
Finally, MMIX distinguishes between arithmetic exceptions (AE) like division by zero
or integer overflow, which are handled by the user application, program exceptions (PE)
such as privileged instruction or protection fault, which are handled by the operating
system, and machine exceptions (ME) like power failure, which are as well handled by
the OS.

2 Instruction Format

Each MMIX instruction is described by a tetra, which consists of four parts:

0824 1632

ZYXOP

The first byte is the opcode of the instruction and the other three bytes specify the
operands. Thus, MMIX allows (and uses) 256 instructions with 3 operands, each having
256 possible values. The typical instruction has the meaning "Set register X to the result
of Y OP Z". [6, pg. 2]
In this thesis, all instructions are at first outlined with a box that contains the

mnemonic, the operands of the instruction and the its effect. Afterwards the instruction
is illustrated in further detail – including special cases and raised AEs or PEs. The box
looks like the following:

Name: ADD|SUB $X,$Y,$Z|Z
Effect: $X← s($Y) + | − s($Z)|Z

This describes the four instructions ADD, ADDI, SUB and SUBI. As in this example, many
MMIX instructions come in two forms: In the first one, the Z-operand is a register, in
the second one it is an immediate value. Since there is no other difference, these are
handled at once by saying "$Z|Z". Furthermore, ADD and SUB are very similar, so that
they are grouped together. The notation s(...) denotes, that MMIX interprets it as
signed and uses two’s complement arithmetic. Otherwise it means that MMIX treats
the value as unsigned. Thus, the effect in the box shown above can be read as
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• ADD sets $X to the result of the addition of $Y and $Z, interpreting both as signed
values and hence, using signed arithmetic,

• ADDI sets $X to the result of the addition of the signed value $Y and unsigned
immediate value Z,

• SUB sets $X to the result of the substraction of the signed value $Y and signed
value $Z and

• SUBI sets $X to the result of the substraction of the signed value $Y and unsigned
immediate value Z.

Immediate values are always interpreted unsigned in MMIX. Additionally, if one of
the operands X, Y and Z is not mentioned in the name, it means implicitly that the
corresponding byte has to be zero. If it is not, MMIX will raise a breaks rules PE.
Although the effects description will be straight forward for most of the instructions,

it is not meant to be always complete or self-explaining, because that would be too
verbose and would require a formal language definition for some instructions. Rather,
it should be seen as a quick overview of what the instruction does. Thus, if necessary,
the text below the box will clarify the effects description or adds further information.

3 Registers

Since the registers are one of the most important entities in MMIX, they are explained
at first. MMIX has special, global and local registers, which will be described one after
another in this section.

3.1 Special Registers

MMIX provides 32 special registers in an array called sp in this thesis1. Most of them
will be introduced later as soon as the associated concept or instruction is described.
The other ones, that do not fit into a certain category or are very important, are
explained here.

• rA - Arithmetic status register:
Since rA affects many instructions, it is explained first. Its layout is:

064 8

ev0

1618

enr

The fields en and ev contain enable and event bits, both called abbreviated
"DVWIOUZX from left to right, where D stands for integer divide check, V for
integer overflow, W for float-to-fix overflow, I for invalid operation, O for float-
ing overflow, U for floating underflow, Z for floating division by zero, and X for
floating inexact." [6, pg. 26] The enable bits control whether an AE is raised as
soon as the corresponding exceptional condition occurs, while the event bits will
be set if no AE is raised. The field r specifies the rounding mode that is used for
floating point numbers, where 002 means round near, 012 round toward zero, 102
round toward +∞ and 112 round toward −∞. All other bits are defined to be
zero. [6, pg. 15 and 26]

1The special registers may be put in the first 32 slots of the global register array, which is the reason
why rG is always at least 32, as it will be mentioned in the next section. But actually, this is not
enforced.
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• rC - Cycle counter:
As the name suggests, MMIX increases this special register on every cycle by 1.
It can be used to measure the performance of a code snippet, for example. [6, pg.
32]

• rI - Interval counter:
The special register rI is decreased by 1 on every cycle and causes an interval
interrupt as soon as it reaches zero. It can also be used for runtime analysis. [6,
pg. 32]

• rU - Usage counter:
Register rU is structured in the following way:

p m n c

047485664

The usage count c is increased whenever op & m = p, where op is the opcode
of an instruction. The bit n indicates whether it should also be done when the
instruction pointer is in the privileged space. [6, pg. 32]

• rF - Failure location register:
This register holds the physical memory address when a parity error or other kinds
of memory faults occur. Since an MMIX implementation may use caching, the
instruction that caused this error might be long gone before it is detected. [6, pg.
40]

• rN - Serial number:
Register rN identifies the particular MMIX implementation and is structured as
follows:

v sv ts

040485664

ssv

The fields v, sv and ssv specify the MMIX architecture version. This thesis
describes version 1, subversion 0 and subsubversion 0, i. e. 1.0.0. The field ts
holds the number of seconds from 01/01/1970, 00:00:00 GMT to the date the
particular instance of MMIX was built on. [6, pg. 32]

MMIX provides two instructions to read from or write to a special register.

Name: GET $X,Z
Effect: $X ← sp[Z]

The instruction GET sets $X to the value of special register Z. MMIX does not keep
secrets from the user, i. e. all special registers are readable – even in user mode. [6, pg.
34]

Name: PUT X,$Z|Z
Effect: sp[X] ← $Z|Z

PUT sets special register X to either $Z or the immediate value Z. The registers rC, rN,
rO and rS are not writeable in general. rI, rT, rTT, rK, rQ, rU and rV are writeable
in privileged mode only. Additionally, in rA all bits except #3 FFFF have to be zero,
rG can’t be less than max(rL, 32) and not greater than 255. Furthermore, rL can’t be
increased with PUT and bits in the interrupt request register rQ, that have been set by
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MMIX since the last execution of GET $X,rQ, can not be unset. In this way, no PE,
ME or interrupt bit can be lost by accident.2 [6, pg. 34]

3.2 Global and Local Registers

MMIX maintains two banks of registers. One for global registers, called g, which has
at most 256 slots. The other one for local registers, called l, which has 2n slots, where
n is between 8 and 10. Both can be accessed by the so called dynamic registers $0, $1,
. . . , $255. MMIX uses the special register rG to separate them. rG is always at least 32
at at most 255. When saying $X, it denotes a global register whenever X is greater or
equal to rG. It will denote a local register if it is less than rG. [6, pg. 22]
Additionally, rL splits the local registers in two categories. The registers $0, . . . , $(rL

- 1) are the local registers that are currently in use. The other ones, $(rL), . . . , $(rG
- 1), are called marginal. If such a register is read, it will always yield zero. If $X is
written, whereas rL ≤ X < rG, the registers $(rL), . . . , $(X - 1) will be set to zero, $X
will be set to the desired value and rL will be set to X+ 1. [6, pg. 22]
For example, if rL is 4 and rG is 64,

• reading $3 will yield the value of l[3],

• reading $4 will yield 0,

• writing 12 to $5 will set l[4] to 0, l[5] to 12 and rL to 6,

• reading $64 will yield the value of g[64] and

• writing 100 to $70 will set g[70] to 100.

4 Integer Arithmetic

Of course, MMIX provides some instructions to perform integer arithmetic. That is,
addition, substraction, multiplication, division and some more. For most of these in-
structions, MMIX has an unsigned and a signed version. The only difference when
adding or substracting is, that the signed versions raise arithmetic exceptions – if nec-
essary – while the others will not. When multiplying or dividing, the rules for signed
or unsigned arithmetic have to be considered.

4.1 Addition and Substraction

Name: ADD|SUB $X,$Y,$Z|Z
Effect: $X← s($Y) + | − s($Z)|Z

The sum or difference of $Y and $Z|Z is put into $X. An integer overflow AE will be
raised if the result is ≥ 263 or < −263. [6, pg. 6]

Name: ADDU|SUBU $X,$Y,$Z|Z
Effect: $X← ($Y+ | − $Z|Z) mod 264

The sum or difference of $Y and $Z|Z is put into $X. [6, pg. 6]

2The restrictions will become more clear as soon as the concepts and instructions working with these
registers have been explained.
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Name: NEG $X,Y,$Z|Z
Effect: $X← Y− s($Z)|Z

MMIX provides a separate instruction for negation to save the programmer from having
to put a constant into a register first. This way, e. g. $Z can be negated by saying NEG
$X,0,$Z. It can also be used for building the value −1: NEG $X,0,1. The instruction
will throw an overflow AE if the result is > 263 − 1. [6, pg. 6]

Name: NEGU $X,Y,$Z|Z
Effect: $X← (Y− $Z|Z) mod 264

This instruction has the same effect as NEG, but does not raise an AE. [6, pg. 6]

4.2 Multiplication and Division

The more expensive integer arithmetic operations are multiplication and division. MMIX
supports 64-bit signed multiplication and division and 128-bit unsigned multiplication
and division. The division instructions perform a division and modulo calculation at
once. Additionally it is worth noting that MMIX uses the so called floored division. This
means that division rounds towards negative infinity and that the sign of the modulus
is always the same as the sign of the divisor [7, pg. 2]. For example, this differs from
the x86 architecture, which uses truncated division [8, pg. 560], that rounds towards
zero and gives the modulus the sign of the dividend [7, pg. 2]. The following table
illustrates the differences:

Y,Z trunc(Y/Z) trunc(Y%Z) bY/Zc bY%Zc
+8,+3 +2 +2 +2 +2

+8,−3 −2 +2 −3 −1
−8,+3 −2 −2 −3 +1

−8,−3 +2 −2 +2 −2

Table 2: Comparison of truncated and floored division [7, pg. 3]

The differences occur for numbers with different signs only, i. e. the unsigned division
does behave in the same way regardless of using the floored or truncated algorithm.

Name: MUL $X,$Y,$Z|Z
Effect: $X← s($Y) ∗ s($Z)|Z

The MUL instruction sets $X to the result of the multiplication. It will raise an integer
overflow AE if the result is ≥ 263 or < −263. [6, pg. 14]

Name: MULU $X,$Y,$Z|Z
Effect: $X← ($Y ∗ $Z|Z) mod 264, rH← ($Y ∗ $Z|Z)� 64

This instruction basically does the same as MUL, but treats the operands as unsigned
and places the upper 64 bit of the result into the special himult register rH and does
not raise an overflow AE. [6, pg. 14]

Name: DIV $X,$Y,$Z|Z
Effect: $X← bs($Y) / s($Z)|Zc, rR← s($Y) mod s($Z)|Z

The instruction DIV sets $X to the result of the division and the remainder register rR
to the result of the modulo operation. If s($Z)|Z is zero, a division by zero AE will be
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raised, $X will be set to zero and rR will be set to $Y. An integer overflow AE will occur
if and only if −263 is divided by −1. [6, pg. 14]

Name: DIVU $X,$Y,$Z|Z
Effect: $X← brD$Y / $Z|Zc, rR← rD$Y mod $Z|Z

Analogous to MULU, DIVU prefixes the dividend register rD to $Y, resulting in a 128-bit
number, and divides it by $Z|Z, using unsigned arithmetic. If rD ≥ $Z|Z (this includes
the case that $Z|Z is zero), $X will be set to rD and rR will be set to $Y. Additionally,
no AE is raised. [6, pg. 14]

Name: 2ADDU|4ADDU|8ADDU|16ADDU $X,$Y,$Z|Z
Effect: $X← ((2|4|8|16 ∗ $Y) + $Z|Z) mod 264

As usual, if a number should be divided or multiplied by a power of 2, shifts are much
more efficient, which will be described later. MMIX goes even further by providing
instructions that multiply a number by 2, 4, 8 or 16 and adding the result to another
value. In this way, one can easily e.g. multiply by 3 by saying 2ADDU $X,$Y,$Y. [6, pg.
6]

5 Bit Fiddling

MMIX has quite a few instructions for manipulating bits. At first, the well known bit
operations AND, OR, NOR, . . . and shifts are described, because they will not be a surprise.

5.1 Basic Bit Operations

Name: AND|OR|XOR|ANDN|ORN|NAND|NOR|NXOR $X,$Y,$Z|Z
Effect: $X← $Y ∧ | ∨ | ⊕ |∧ ∼ |∨ ∼ | ∧ | ∨ | ⊕ $Z|Z

These instructions set $X to the result of the corresponding bit operation with operands
$Y and $Z|Z. The instructions that end with ’N’ logically negate $Z|Z first and apply
the operation without ’N’ (OR or AND) afterwards. [6, pg. 7]

Name: SL|SLU|SR|SRU $X,$Y,$Z|Z
Effect: $X← $Y� | � | � |≫ $Z|Z

The instructions for shifting left, SL and SLU, have the same behaviour, except that
SL will raise an integer overflow AE, if the result is ≥ 263 or < −263. SR performs
an arithmetic right shift, i. e. it shifts in copies of the sign bit from the left, and
SRU performs a logical right shift, i. e. it shifts in zeros from the left. Since $Z|Z is
treaten unsigned, one can not use SL to shift right or similar. Additionally it is worth
mentioning, that a logical left or right shift of 64 or more will set $X to zero, whereas
an arithmetic right shift of 64 or more will set $X to −1, if $Y is negative and to zero
otherwise. [6, pg. 10]

5.2 Wyde Operations

If one liked to put an arbitrary 64-bit constant into a register or manipulate individual
wydes of a registers, one could use one of the following 16 instructions.
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Name: SETH|SETMH|SETML|SETL $X,YZ
Effect: $X← YZ� 48|32|16|0

These instructions set the corresponding wyde of $X to the 16-bit constant YZ and all
other wydes to zero [6, pg. 7]. That means, for example SETMH $X,#1234 sets $X to
#0000 1234 0000 0000.

Name: ORH|ORMH|ORML|ORL $X,YZ
Effect: $X← $X ∨ (YZ� 48|32|16|0)

Similarly, these instructions OR the 16-bit constant YZ into the corresponding wyde of
$X [6, pg. 7]. For example, if $X is #0000 F0F0 FF00 0000, ORML $X,#0FF0 will result in
#0000 F0F0 FFF0 0000.

Name: ANDNH|ANDNMH|ANDNML|ANDNL $X,YZ
Effect: $X← $X ∧ ∼ (YZ� 48|32|16|0)

Analogous to the ORX family, these instructions remove the bits set in the 16-bit constant
YZ from the corresponding wyde of $X [6, pg. 7]. For example, if $X is #0000 F0F0 FF00
0000, ANDNML $X,#F000 will result in #0000 F0F0 0F00 0000.

Name: INCH|INCMH|INCML|INCL $X,YZ
Effect: $X← ($X+ (YZ� 48|32|16|0)) mod 264

Last but not least, the INCX family adds the 16-bit constant YZ to the corresponding
wyde of $X, ignoring overflow [6, pg. 7]. For example, if $X is #0000 F0F0 FF00 0000,
INCML $X,#0101 will result in #0000 F0F1 0001 0000 (as shown with the example, other
wyde may be affected as well, in contrast to the other wyde instructions).

5.3 Exotic Bit Operations

Apart from the simple bit operations just described, MMIX does also support more
exotic ones that probably will not be used very often, but allow to do complicated
computations in hardware instead of in software, as it would be necessary with other
architectures.

Name: MUX $X,$Y,$Z|Z
Effect: $X← ($Y ∧ rM) ∨ ($Z|Z ∧ rM)

The first rather exotic operation is the bitwise multiplexer MUX. For each bit position
i, it sets bit $Yi, if rMi is 1, and bit $Zi|Zi, if rMi is 0 [6, pg. 7]. For example, if rM
is #FFFF 0000 FFFF 0000, $0 is #1234 5678 90AB CDEF and $1 is #FFFF FFFF FFFF FFFF, a
MUX $X,$0,$1 will set $X to #1234 FFFF 90AB FFFF.

Name: BDIF|WDIF|TDIF|ODIF $X,$Y,$Z|Z
Effect: $Xi ← max(0, $Yi − $Zi|Zi) for each byte|wyde|tetra|octa i

The second family in this category is the byte, wyde, tetra and octa difference. For
example, BDIF takes the byte i of $Y, namely $Yi, and substracts the byte $Zi|Zi from
it. If the difference is less than zero, $Xi will be set to zero. Otherwise it will be set
to the difference. This is done individually for every byte pair. WDIF, TDIF and ODIF
behave analogous using wydes, tetras and octas, respectively. These instructions are for
example useful, when a graphical application wants to calculate the "pixel difference",
i. e. the absolute difference of colors, each color component represented as a byte. [6,
pg. 8]
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Name: SADD $X,$Y,$Z|Z
Effect: $X← countbits($Y \ $Z|Z)

The sideways addition SADD performs at first the complement of $Z|Z and logically ands
the result with $Y. Afterwards the number of set bits in this value is put into $X. [6, pg.
9] So, for example, if $0 is #8642 and $1 is #8002, SADD $X,$0,$1 will put 3 into $X.
Because the difference, #0640, has 3 bits set.

Name: MOR|MXOR $X,$Y,$Z|Z
Effect: $X← mat($Y) ∨ | ⊕mat($Z|Z)

The last exotic bit operation, called multiple or/exclusive-or, is the most complicated
one. It treats $Y and $Z|Z as 8 × 8 bit matrices, using one byte for each column, and
performs a kind of matrix product using OR or XOR instead of the multiplication. More
precisely, when the bits of $Y and $Z|Z are numbered as

y00y01 . . . y07y10y11 . . . y17 . . . y70y71 . . . y77 z00z01 . . . z07z10z11 . . . z17 . . . z70z71 . . . z77,

each bit xij of $X is set to

(y0j ∧ zi0) ∨ (y1j ∧ zi1) ∨ · · · ∨ (y7j ∧ zi7).

When using MXOR instead of MOR, the ORs are replaced by XORs. MOR can be used for
example to convert between big-endian and little-endian. [6, pg. 9] If $0 is #0123 4567
89AB CDEF and $1 is #0102 0408 1020 4080, a MOR $X,$0,$1 will perform the following
operation:

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1


∨



0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0


=



1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


Analogous to the matrix product, the highlighted cell in the result matrix is built by
ANDing each cell in the highlighted row of $Y with the corresponding highlighted cell of
$Z|Z individually, starting on the left and top, respectively, and performing an OR of
all these values. In this case, there is no pair of bits in which both are 1 and thus, the
highlighted cell in the result is 0. Doing that for all cells leads to the value #EFCD AB89
6745 2301, i. e. the bytes of $0 in the opposite order. [9, pg. 192]

6 Comparisons

MMIX has four instructions to compare numbers, which for example can be used for
branching. Additionally, it has instructions to conditionally set and zero or set a register.

Name: CMP $X,$Y,$Z|Z
Effect: $X← (s($Y) > s($Z)|Z)− (s($Y) < s($Z)|Z)

The instruction CMP compares $Y with $Z|Z using signed arithmetic and puts the result
into $X. If $Y is less than $Z|Z, $X will be set to −1, if they are equal, $X will be set to
0 and if $Y is greater than $Z|Z, $X will be set to 1. [6, pg. 11]
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Name: CMPU $X,$Y,$Z|Z
Effect: $X← ($Y > $Z|Z)− ($Y < $Z|Z)

This instruction behaves like CMPU, but uses unsigned arithmetic. [6, pg. 11]

Name: CSN|CSZ|CSP|CSOD|CSNN|CSNZ|CSNP|CSEV $X,$Y,$Z|Z
Effect: if s($Y) < 0| = 0| > 0|odd| ≥ 0| 6= 0| ≤ 0|even: $X← $Z|Z

The family of conditional set instructions will set $X to $Z|Z, if $Y is negative, zero,
positive, odd, nonnegative, nonzero, nonpositive or even. Otherwise nothing happens.
[6, pg. 11]

Name: ZSN|ZSZ|ZSP|ZSOD|ZSNN|ZSNZ|ZSNP|ZSEV $X,$Y,$Z|Z
Effect: $X← (s($Y) < 0| = 0| > 0|odd| ≥ 0| 6= 0| ≤ 0|even) ? $Z|Z : 0

Very similar to the conditional set instructions, the zero or set instructions set $X either
to $Z|Z or zero, depending on whether $Y is negative, zero, positive, odd, nonnegative,
nonzero, nonpositive or even. [6, pg. 11]

MMIX does also provide an atomic compare and swap instruction. It can be used for
interprocess communication with shared memory or to synchronize threads in the same
process. Since MMIX is not only designed to work on a single processor, this instruction
might also be helpful when independent computers are sharing the same memory. [6,
pg. 25]

Name: CSWAP $X,$Y,$Z|Z
Effect: if M8[$Y+ $Z|Z] = rP:

M8[$Y+ $Z|Z] ← $X, $X← 1
else:
rP←M8[$Y+ $Z|Z], $X← 0

The compare and swap octabytes instruction compares M8[$Y+ $Z|Z] with the special
prediction register rP and either replaces the octa in memory with $X or rP with the
octa in memory, depending on whether rP is equal to the octa. $X indicates whether the
octa in memory has been replaced. [6, pg. 25] For example, one could set $0 to 1, rP to
0 and do a CSWAP $0,$Y,$Z|Z, assuming that $Y + $Z|Z denotes the memory location
that is desired for synchronization. If $0 has been set to 1, the lock has been aquired
successfully. If not, the whole procedure will be repeated. That means, M8[$Y+ $Z|Z]
being 1 or 0 would indicate that someone currently has the lock or not, respectively.

7 Branches and Jumps

Of course, MMIX does also need instructions to change the course of computation. To
allow programs to use a pipeline implementation of MMIX in an efficient way, it provides
both ordinary branches and probable branches. For consistency, the different kinds of
comparisons offered by branches are the same as those existing for the conditional set
and zero or set instructions.
Similarly to the fact, that the typical "set register X to the result of Y OP Z" instruc-

tions come in two versions – one with Z as a register, one with Z as an immediate value
– the branch and jump instructions also come in two versions. The first one branches
or jumps forward, while the second one branches or jumps backwards. The backward
versions are suffixed with a ’B’.
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Name: BN|BZ|BP|BOD|BNN|BNZ|BNP|BEV $X,@+4*(YZ[-216])
Effect: if s($X) < 0| = 0| > 0|odd| ≥ 0| 6= 0| ≤ 0|even: @← @+ 4 ∗ (YZ[−216])

If $X is negative, zero, positive, odd, nonnegative, nonzero, nonpositive or even, the
branch will be taken. The forward versions increase the instruction pointer by 4 ∗ YZ,
i. e. the value of the unsigned 16-bit immediate value YZ multiplied with the number of
bytes of an instruction. The backward versions increase it by 4∗ (YZ−216). Thus, these
instructions allow to change @ to any instruction in (@−4∗216) . . . (@+4∗(216−1)). It
should be noted, that this category of branches tell MMIX that the branch will probably
not be taken. This may affect the runtime on some implementations of MMIX. [6, pg.
12]

Name: PBN|PBZ|PBP|PBOD|PBNN|PBNZ|PBNP|PBEV $X,@+4*(YZ[-216])
Effect: if s($X) < 0| = 0| > 0|odd| ≥ 0| 6= 0| ≤ 0|even: @← @+ 4 ∗ (YZ[−216])

These instructions behave exactly in the same way as the previously introduced ones.
The only difference is, that these tell MMIX that the branch will probably be taken.
[6, pg. 12]

Name: JMP @+4*(XYZ[-224])
Effect: @← @+ 4 ∗ (XYZ[−224])

Of course, MMIX has also an instruction to change the instruction pointer uncondi-
tionally: the jump. It simply sets @ to (@ + 4 ∗ (XYZ[−224])), i. e. the forward version
increases @ by the unsigned 24-bit constant XYZ, multiplied by 4. The backward version
substracts 224 from XYZ before multiplying. Thus, one can jump to any instruction in
the range (@− 4 ∗ 224) . . . (@ + 4 ∗ (224 − 1)). [6, pg. 13]

Name: GO $X,$Y,$Z|Z
Effect: $X← @+ 4, @← $Y+ $Z|Z

To be able to jump to any location in the virtual address space, MMIX has the instruc-
tion GO. It simply changes the instruction pointer to $Y+$Z|Z. Additionally, $X is set to
the location that ordinary would have been executed next. That allows using GO for a
simple type of subroutine linkage by not overwriting $X in the subroutine and returning
via GO $X,$X,0. But MMIX provides another mechanism, that is much better suited
for that task, because it makes subroutines independent of each other, as will be de-
scribed later in this chapter. An interesting corner case is, that GO permits it to jump
to addresses that are not tetra-aligned. MMIX will simply set the desired instruction
pointer, but this is not going to be a problem because when loading M4[@], the least
significant 2 bits of @ are ignored. [6, pg. 13]

Name: GETA $X,@+4*(YZ[-216])
Effect: $X← @+ 4 ∗ (YZ[−216])

This instruction does not change the instruction pointer, but is related because it builds
an absolute address from the instruction pointer and the YZ field. GETA comes in two
versions for forward and backwards calculations and uses the same rules for that as the
branches do. [6, pg. 13]

8 Memory

The memory hierarchy is one of the more complicated concepts in MMIX. This section
starts by explaining the load and store instructions, which are rather simple. Afterwards
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the structure of the virtual and physical address space is described, followed by the
translation mechanism and the translation caches. Finally, the instructions interesting
for physical memory caches, which may be present in a particular implementation of
MMIX, are introduced.

8.1 Load Instructions

MMIX has two kinds of load instructions for each quantity: a signed version and an
unsigned version. The difference is that the signed versions treat the number in memory
as signed and thus sign-extend the value to 64 bit.

Name: LDB|LDW|LDT|LDO $X,$Y,$Z|Z
Effect: $X← s(M1|2|4|8[$Y+ $Z|Z])

These are the signed load instructions, which set $X to the byte, wyde, tetra or octa at
the specified location in memory. LDB, LDW and LDT will sign-extend the number, i. e.
the bits in the upper 7, 6 and 4 bytes, respectively, are set to copies of the sign-bit of
the number in memory. [6, pg. 4]

Name: LDBU|LDWU|LDTU|LDOU $X,$Y,$Z|Z
Effect: $X← M1|2|4|8[$Y+ $Z|Z]

As already mentioned, the unsigned versions have the same behaviour, except that they
do not sign-extend the values. LDOU and LDO are completely identical and only exist
both for consistency. [6, pg. 4]

Name: LDHT $X,$Y,$Z|Z
Effect: $X← M4[$Y+ $Z|Z] � 32

The last load instruction, load high tetra, puts the tetra M4[$Y+ $Z|Z] into the higher
half or $X. The other half is set to zero. [6, pg. 4]

8.2 Store Instructions

Analogous to the load instructions, MMIX provides two store instructions for every
quantity. In this case, the signed versions throw an integer overflow AE, if the number
can not be represented with the corresponding quantity, while the unsigned versions do
not.

Name: STB|STW|STT|STO $X,$Y,$Z|Z
Effect: M1|2|4|8[$Y+ $Z|Z] ← s($X)

These instructions write the signed number in $X to the corresponding location in mem-
ory. STB will throw an integer overflow AE, if $X is not between −128 and +127, STW if
$X is not between −32, 768 and +32, 767 and STT if $X is not between −2, 147, 483, 648
and +2, 147, 483, 647. STO will not throw an integer overflow AE. [6, pg. 5]

Name: STBU|STWU|STTU|STOU $X,$Y,$Z|Z
Effect: M1|2|4|8[$Y+ $Z|Z] ← $X

The unsigned store instructions are the same as their signed correspondence, but do
not test for overflow. [6, pg. 5]

Name: STHT $X,$Y,$Z|Z
Effect: M4[$Y+ $Z|Z] ← $X� 32
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Similarly to load high tetra, store high tetra stores the most significant four bytes of $X
to M4[$Y+ $Z|Z]. [6, pg. 5]

Name: STCO X,$Y,$Z|Z
Effect: M8[$Y+ $Z|Z] ← X

For convenience and efficiency, MMIX provides another store instruction, store constant
octabyte, which stores the unsigned immediate value X as an octa to the desired location
in memory. This saves the programmer from having to put the constant into a register
first. [6, pg. 5]

8.3 Virtual and Physical Address Space

As already mentioned at the beginning, MMIX has both a 64-bit virtual and physical
address space. Their layout is illustrated by the following figure:

#0000 0000 0000 0000

#8000 0000 0000 0000

#FFFF FFFF FFFF FFFF

Segment 0

Segment 1

Segment 2

Segment 3

Virtual address space Physical address space

#0000 0000 0000 0000

#FFFF FFFF FFFF FFFF

Privileged space

Directly mapped
to physical space

#0001 0000 0000 0000

RAM

Memory mapped I/O
(uncached)

Figure 1: Virtual and physical address space layout [6, pg. 35]

The virtual address space is divided in user space and privileged space. The privi-
leged space is directly mapped to the physical address space, called m. That means,
M[X] = m[X ∧ #7FFF FFFF FFFF FFFF], if X ≥ 263. The user space is divided into four
segments, determined by the most significant 3 bits using 0002, 0012, 0102 and 0112 for
segment 0, 1, 2 and 3, respectively. The use of these segments is not restricted by the
hardware, but each segment is translated separately, as will be described in the next
section.
The first 256 terabyte of the physical space are used for RAM. The remaining space

is reserved for I/O devices. The layout of the I/O space is implementation dependent,
but MMIX defines that the I/O space is always uncached, regardless of whether the
particular MMIX implementation uses caching or not. [6, pg. 35]
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8.3.1 Address Translation

Besides the privileged space, which is directly mapped to the physical space, the user
space is translated to the physical one via a quite complicated scheme. This section
describes how this translation works in detail.

The Virtual Translation Register

The translation is defined by register rV, which has the following layout:

052566064 48 40 13 3

fnrsb4b3b2b1

The first two bytes of rV specify the number of pages in the four segments. Segment i
has at most 1024bi+1−bi pages, where b0 is defined to be zero. If bi = bi+1, segment i
must have at most one page and if bi > bi+1, segment i must be empty. For example,

• if b1 = 1, b2 = 2, b3 = 3 and b4 = 4, all segments will have at most 1024 pages,

• if b1 = 3, b2 = 2, b3 = 1 and b4 = 0, segment 0 will have at most 10243 pages and
all other segments will be empty and

• if b1 = 1, b2 = 0, b3 = 0 and b4 = 0, segment 0 will have at most 1024 pages,
segment 1 will be empty and segments 2 and 3 will have both at most 1 page.

The next field, called s, specifies that the page size is 2s, where s has to be at least
13 and at most 48. The field r tells MMIX the root location, which will be described
in further detail shortly. The field n holds the address space number and last but not
least, f is the function field, which specifies whether virtual address translation will
be done by software (f = 1) or by hardware (f = 0). Other values are illegal. If
translation by software is requested, MMIX will ignore b1, b2, b3, b4 and r of rV and
let the software decide how the actual translation mechanism works. That means, the
following structures and concepts only apply if hardware translation is used. [6, pg. 36]

The Root Location

The field r specifies an area in memory that holds the paging structures for the current
virtual address space. For each segment i it holds bi+1− bi page tables with either page
table entries (PTEs) or page table pointers (PTPs), which are described in the next
paragraphs. The page tables in the root location are, one could say, the "first layer"
of the translation, because PTPs point to other page tables that reside in a different
location in memory.

Page Table Entries

A PTE defines to which page in physical memory a page in virtual memory is mapped
to. Additionally it specifies the access permissions for that page. A PTE looks like the
following:

064 48 13 3

pnax

s

y

The field a holds the physical address divided by the page size, i. e. the physical address
is a∗2s. The field n is the address space number, which has to be equal to n in rV. The
access permissions are defined by p with bit 0 for executing, bit 1 for writing and bit 2
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for reading. That means, for example p = 1012 makes the page readable and executable.
The fields x and y are ignored by the hardware, which allows the operating system to
use them for any purpose. [6, pg. 36] It is noteworthy, that y would be empty, if the
page size were 213, and a would be empty, if the page size were 248. Additionally, the
layout of a PTE clarifies the reason for the page size restrictions.

Page Table Pointers

PTPs are pointers to other page tables that may either hold PTPs as well or hold PTEs.
They have the following layout:

064 13 3

qnc1

63

Similarly to the field a of a PTE, the field c of a PTP specifies the address of the
page table this PTP links to, divided by the page size. The field n has to match n
in rV as well, while q is ignored and the most significant bit has to be 1. This forces
the operating system to put a privileged address into a PTP, which is – as already
mentioned – directly mapped. [6, pg. 36]

The Translation Process

Finally, the actual translation process should be described. If address A should be trans-
lated, the segment is determined by i = bA/261c. The page number in this segment is
Ap = b(A ∧ #1FFF FFFF FFFF FFFF)/2sc. Assuming that Ap is equal to (a4a3a2a1a0)1024
(in the number system with base 1024), the translation works as follows:

• if a4 = a3 = a2 = a1 = 0, the PTE e is m8[2
13(r + bi) + 8a0] and thus, M[A]

corresponds to m[2s ∗ e.a+ (A mod 2s)].

• if a4 = a3 = a2 = 0, the auxiliary PTP p is used, i. e. m8[2
13(r + bi + 1) + 8a1]. In

this case, the PTE is m8[2
13 ∗ p.c+ 8a0]. Thus, one level of indirection is involved.

• if a4 = a3 = 0, two levels of indirection are used. That means, the first PTP
p1 is m8[2

13(r + bi + 2) + 8a2] and determines the next PTP. This one, p2, is
m8[2

13 ∗ p1.c+ 8a1]. And finally the PTE is m8[2
13 ∗ p2.c+ 8a0].

• . . .

[6, pg. 36] It is noteworthy, that when using the minimum page size of 213, four levels
of indirection are sufficient to cover a whole segment. Because 213 ∗ 1024 ∗ 10244 = 263

covers even more than one segment. Additionally, it is worth mentioning that the first
slot in PTP page tables in the root location is actually never used. Because this slot is
covered by the previous page table in the root location.

Example

To clarify the just explained concepts and to show the layout in memory, which they im-
ply, the following goes through an example. Supposed that rV and the paging structures
in memory are filled as:
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052566064 48 40 13 3
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Figure 2: Paging example

Hence, segment 0 has 1024 pages, segment 1 has only one page, segment 2 has 10243

pages and segment 3 has no pages at all. Additionally, the page size is 214, the address
space number is #10 and the root location is #2000 (#1 � 13). The root location is
displayed on the left, while auxiliary page tables are on the right. Furthermore, the
green cells contain PTEs, the light orange cells PTPs of level 1 and the orange cells
PTPs of level 2. For demonstration purposes, the cells display the page table index on
the left and some show the content as an octa on the right. All PTEs and PTPs end
with #87, because they have to match the n of rV and have read, write and execute
permissions (which actually has no special reason here).
Ignoring the special case that segment 1 and 2 overlap for a while, one can see that

the number of page tables in the root location for segment i corresponds to bi+1 − bi.
The first page table does always contain PTEs, the second one PTPs of level 1 and so
on. Each page table has 1024 slots and therefore it is 8192 bytes large. As the arrows
show, PTPs do always point to another page table.
Since in this case b1 is equal to b2, segment 1 has only one page. An additional

consequence of the interpretation of the segment sizes and the translation mechanism
is, that – as the figure shows – the page in segment 1 is mapped by the first PTE of the
page table responsible for segment 2. Thus, this PTE is used for the first page both in
segment 1 and segment 2.
To demonstrate the translation process, the following shows a few examples:

• Virtual address #80FF:
Obviously, #80FF belongs to segment 0 and the page number is (00002)1024. As
described, in this case the PTE is m8[2

13(#1+0) + 8 ∗ 2] = m8[#2010]. The third
slot of the first page table in segment 0 contains #20 8087, which means that the
physical base address for that page is #20 8000 and thus, the resulting physical
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address #20 80FF.

• Virtual address #2000 0000 0000 1234:
This address belongs to segment 1 and has the page number (00000)1024. The PTE
is m8[2

13(#1+1) + 8 ∗ 0] = m8[#4000] = #40 0087. Hence, the resulting physical
address is #40 1234.

• Virtual address #4000 0004 0600 4000:
Last but not least, this address belongs to segment 2 and has the page number
(00161)1024. Thus, the level 2 PTP is m8[2

13(#1+3) + 8 ∗ 1] = m8[#8008], which
loads #8000 0000 0000 A087. Therefore it links to the PTP m8[#A000+8 ∗ 6], i. e.
m8[#A030], which in turn is #8000 0000 0000 C087. The last step loads the PTE
m8[#C000+8 ∗ 1] = m8[#C008] = #60 4087, so that the final address is #60 4000.

8.3.2 Translation Caches

To prevent that every memory access requires this lengthy translation from virtual to
physical addresses, MMIX uses a translation cache. This is also known as translation
lookaside buffer (TLB). However, MMIX calls it translation cache or short TC. The ex-
act behaviour or whether separate caches for instructions and data exist, is not enforced
by the architecture. But MMIX defines that the TC contains translation keys, which
are associated with translations. The translation key is basically the virtual address,
whereas the translation is more or less the physical address. The key is structured as
follows:

v

0s616364

n 00 i 0

13 3

As usual, the field n holds the address space number. The field i is the segment number
and v is the virtual address in that segment, divided by the page size. The other parts
are defined to be zero. The layout of a translation is:

a

0s

p

3

0

38

Similarly to a PTE, the field a holds the physical address, divided by the page size.
The last three bits contain the protection bits, whereas the other bits are defined to be
zero. [6, pg. 37]
Of course, the operating system needs a way to keep the TC up to date, when for

example removing PTEs or changing their protection bits. Therefore, MMIX provides
the instruction LDVTS.

Name: LDVTS $X,$Y,$Z|Z
Effect: $X← updateTC($Y+ $Z|Z)

The instruction load virtual translation status updates the translation cache for $Y+$Z|Z,
which should have the form of a translation key, except that the least significant three
bits need not be zero. $X will be set to 0 if the key is not in the TC, 1 if it is present
for instructions, 2 if it is present for data and 3 if it is present for both. If this key is
present in the TC, the protection bits will be replaced with ($Y + $Z|Z) ∧ #7. If these
are zero, the key will be removed. [6, pg. 37]
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8.3.3 Physical Memory Caches

As already mentioned, a particular implementation of MMIX may use caches for the
RAM space of the physical memory. Which caches are present and how they are orga-
nized, is completely implementation dependent. But MMIX provides several instruc-
tions to allow a more efficient use of the caches and to keep them up to date. Similarly
to the translation caches, MMIX has in mind that an implementation may provide
separate caches for instructions and data.

Name: LDUNC $X,$Y,$Z|Z
Effect: $X← s(M8[$Y+ $Z|Z])

The first instruction in this category is LDUNC, load octa uncached. It has the same
behaviour as LDO, but tells MMIX "that the loaded octabyte (and its neighbors in a
cache block) will probably not be read or written in the near future" [6, pg. 24].

Name: STUNC $X,$Y,$Z|Z
Effect: M8[$Y+ $Z|Z] ← s($X)

The instruction store octa uncached has the same meaning as STO and tells MMIX the
same as LDUNC does. [6, pg. 24]

Name: PRELD|PREGO|PREST X,$Y,$Z|Z
Effect: -

These instructions have no (visible) effect, but inform MMIX that the X + 1 bytes
M1[$Y+ $Z|Z], . . . , M1[$Y+ $Z|Z+ X] will probably be loaded/stored, used as instruc-
tions or stored before loaded for PRELD, PREGO or PREST, respectively. That means, if
PRELD is used, it might make sense to load these bytes into the data cache. If PREGO
is used, MMIX might put these bytes into the instruction cache and if PREST is used,
MMIX may ignore the current bytes in memory. Therefore, if these bytes are requested
and are not yet in cache, MMIX does not need to load them from memory, because they
will be written before they are read anyway. MMIX does also define, that no protection
fault occurs for these instructions. [6, pg. 24]

Name: SYNCD X,$Y,$Z|Z
Effect: caches[$Y+ $Z|Z : X+ 1]→ m[$Y+ $Z|Z : X+ 1]

if in privileged mode: caches[$Y+ $Z|Z : X+ 1]← ∅

The instruction synchronize data forces the hardware to make sure that all data for the
X+1 bytes M1[$Y+ $Z|Z], . . . , M1[$Y+ $Z|Z+ X] is present in memory (and not only in
cache). If executed in the privileged space, it does additionally force MMIX to remove
these bytes from the data cache. Again, no protection fault will occur if the memory is
not accessible. [6, pg. 24]

Name: SYNCID X,$Y,$Z|Z
Effect: if in user mode:

IC[$Y+ $Z|Z : X+ 1]↔ DC[$Y+ $Z|Z : X+ 1]
else:
caches[$Y+ $Z|Z : X+ 1]← ∅

When executed in user space, synchronize instructions and data forces the hardware to
make sure that the X+1 bytes M1[$Y+ $Z|Z], . . . , M1[$Y+ $Z|Z+ X] will be interpreted
correctly when used as instructions. That means, MMIX should synchronize its data
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cache with its instruction cache (e. g. because instructions might have been manually
fabricated and might thus only be present in the data cache yet). When SYNCID is
executed in privileged space, the hardware has to remove these bytes from all caches
without writing it to memory. As with SYNCD, no protection faults can occur. [6, pg.
24,25]

Name: SYNC XYZ
Effect: if XYZ = 0: drain pipeline

if XYZ = 1: drain stores
if XYZ = 2: drain loads
if XYZ = 3: drain loads and stores
if XYZ = 4: go into power-saver mode
if XYZ = 5: flush caches to memory
if XYZ = 6: clear TCs
if XYZ = 7: clear caches

The last instruction in this category is synchronize, which is used for various purposes,
whereas the 24-bit constant XYZ determines what action is performed. The first four
actions drain the pipeline, in the sense that it stalls until all preceding instructions are
finished (or all stores, loads, loads and stores for 1, 2, 3, respectively, are finished before
the corresponding instructions after them). The fifth action tells MMIX to go into a
power-saver mode, i. e. MMIX is allowed to execute instructions slower or not at all
until some kind of signal arrives. The next one writes all cache content to main memory,
while the last two simply remove all entries from the TCs or the instruction and data
caches. Using SYNC with XYZ > 3 is allowed in privileged mode only. [6, pg. 25]

9 Floating Point Operations

Besides integer arithmetic, MMIX does also provide instructions to work with floating
point numbers. The floating point arithmetic respects the IEEE/ANSI Standard 754.
Since 64-bit quantities are the words of MMIX, arithmetic does always work with 64-bit
floats, i. e. "doubles". But MMIX does also support some instructions to convert from
64-bit floats to 32-bit floats and the other way around.

9.1 Representation of Floating Point Numbers

A 64-bit floating point number has the following structure:

e

0526364

s f

That means, it has a sign-bit s, an 11-bit exponent e and a 52-bit fraction f . Taking
e as an unsigned integer and f as a fraction between 0 and (.111 . . . 1)2 = 1− 2−52, an
octabyte has the following significance:

±0.0, if e = f = 0 (zero);
±2e−1023(1 + f), if 0 < e < 2047 (normal);

±2−1022f , if e = 0 and f > 0 (subnormal);
±∞, if e = 2047 and f = 0 (infinite);

±NaN (f), if e = 2047 and 0 < f < 1/2 (signaling NaN);
±NaN (f), if e = 2047 and f ≥ 1/2 (quiet NaN).
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As shown, there are two representations for zero - a positive and a negative one. There
are normal numbers, that can range from approximately ±10−308 to ±10308. Addition-
ally subnormal numbers (also called denormal or denormalized numbers) are supported,
which can range from approximately ±10−324 to ±10−308, but have fewer bits of pre-
cision. If the exponent has the maximum value, i. e. 2047, it encodes infinity or not a
number (NaN ). The latter distinguishes between signaling and quiet NaN . Signaling
NaNs raise an invalid AE when they are used, while quiet NaNswill not. [6, pg. 15]
Furthermore, the standard defines that four rounding modes should be available:

round to nearest (and to even in case of ties, i. e. the least significant bit should be
zero), round off (toward zero), round up (toward +∞) and round down (toward −∞).
MMIX uses the special register rA to specify the rounding mode. Additionally, all
instructions having only one operand, specify the rounding mode with operand Y using
Y = 0 for the round mode in rA, Y = 1 for round off, Y = 2 for round up, Y = 3 for
round down and Y = 4 for round near. [6, pg. 15 and 21]
Last but not least, there are five kinds of arithmetic exceptions, that can occur when

working with floating point numbers:

1. Floating overflow (value too large to be representable),

2. Floating underflow (value too small to be representable),

3. Floating divide by zero,

4. Floating inexact (exact result not representable) and

5. Floating invalid (square root of negative number, using signaling NaN , . . . ).

As already said, all of these will either raise an AE or set the corresponding event bit in
rA, depending on whether the corresponding enable bit in rA is set or not. [6, pg. 15]

9.2 Arithmetic

The first category of floating point operations are the arithmetic instructions. The
floating point instructions don’t have an immediate version, because it does not make
much sense to specify a float with a single byte. Additionally, this section uses the
notation f(. . . ) to indicate that a value is interpreted as a 64-bit floating point number.

Name: FADD|FSUB $X,$Y,$Z
Effect: $X← f($Y) + | − f($Z)

FADD computes the sum of $Y and $Z, treating them as floating point numbers and puts
the result in $X. FSUB performs the same operation, but switches the sign of $Z first, if
$Z is not NaN . If the sum of (+∞) + (−∞) or (−∞) + (+∞) is computed, an invalid
AE will be raised. [6, pg. 16]

Name: FMUL|FDIV $X,$Y,$Z
Effect: $X← f($Y) ∗ |/f($Z)

These instructions multiply or divide the floating point numbers $Y and $Z. Several
cases result in an invalid AE, like (±0.0) ∗ (±∞), (±0.0)/(±0.0) or (±∞)/(±∞). Of
course, dividing by (±0.0) raises a floating divide by zero AE. [6, pg. 16]

Name: FREM $X,$Y,$Z
Effect: $X← f($Y) mod f($Z)
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The floating remainder instruction computes the remainder and puts it into $X. This
is defined "to be $Y− n ∗ $Z, where n is the nearest integer to $Y/$Z, and n is an even
integer in case of ties" [6, pg. 16]. If $Y is infinite and/or $Z is zero, an invalid AE will
be raised. [6, pg. 16]

Name: FSQRT $X,Y,$Z
Effect: $X←

√
f($Z), using round-mode Y

The last one in this family is floating square root. It puts the square root of $Z into $X.
An invalid AE will be raised if $Z is negative, except for −0.0. [6, pg. 17]

9.3 Comparison

Of course, besides doing arithmetic, one has to be able to compare floating point num-
bers. This does not work well using the integer comparison instructions, because one
would have to take care of negative numbers, +0.0, −0.0 and NaNmanually. Therefore,
the floating point comparisons simplify that task.

Name: FCMP $X,$Y,$Z
Effect: $X← (f($Y) > f($Z))− (f($Y) < f($Z))

As the effect description shows, FCMP is basically the same as CMP, but treats the
operands as floating point numbers. Thus, $X will be set to −1, if $Y is less than
$Z, 0 if $Y is equal to $Z and 1 if $Y is greater than $Z. It will raise an invalid AE and
set $X to zero, if $Y or $Z is NaN . [6, pg. 17]

Name: FEQL $X,$Y,$Z
Effect: $X← (f($Y) = f($Z)) ? 1 : 0

Floating equal to sets $X to 1, if $Y and $Z are equal. But it is noteworthy, that NaN is
not equal to anything and −0.0 is equal to +0.0. [6, pg. 17]

Name: FUN $X,$Y,$Z
Effect: $X← (f($Y) = NaN ∨ f($Z) = NaN ) ? 1 : 0

The last comparison instruction is floating unordered and sets $X to 1, if $Y and $Z are
considered unordered, i. e. at least one of them is NaN . [6, pg. 17]

9.4 Neighborhood Comparison

Because of the limited precision of floating point numbers, operations might produce
inexact results. The larger the numbers, the larger the potential difference of the pro-
duced result to the exact result. For that reason, an absolute comparison of floats, as
the last section described, is not always desired. Therefore, MMIX offers another cat-
egory of instructions that allow comparisons with respect to an epsilon and depending
on the magnitude of the floating point numbers in question.
At first, MMIX defines a so called neighborhood of a number. Assuming that epsilon

is a float called ε, the float u with fraction f and exponent e has the neighborhood:

Nε(u) =



{x | |x− u| ≤ 2e−1022ε} if u is normal
{x | |x− u| ≤ 2−1021ε} if u is subnormal
{0} if u is zero
{±∞} if u is ±∞ and ε < 1
{everything except ∓∞} if u is ±∞ and 1 ≤ ε < 2 and
{everything} if u is ±∞ and ε ≥ 2.
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[6, pg. 19] Without going into the details of this definition, it basically means that
the neighborhood of a normal float depends on its exponent. That is, the larger the
exponent, the larger the neighborhood.
Displayed graphically (and a bit exaggerated for demonstration purposes), the neigh-

borhoods of a few numbers might look like the following:

0 u5 u6u1u2 u3 u4

Figure 3: Example neighborhoods, demonstrating float relationships

MMIX distinguishes four cases when comparing floats u and v with respect to ε:

1. u ≈ v, if u ∈ Nε(v) and v ∈ Nε(u).
That means, two numbers will be considered equivalent, if both are in the neigh-
borhood of the corresponding other number. In the example, only u1 ≈ u2,
because u1 ∈ Nε(u2) and u2 ∈ Nε(u1).

2. u ∼ v, if u ∈ Nε(v) or v ∈ Nε(u).
Thus, two numbers will be considered similar, if only one of them belongs to the
neighborhood of the corresponding other number. For example, u5 ∼ u6, because
u5 ∈ Nε(u6), but u6 /∈ Nε(u5).

3. u ≺ v, if u < Nε(v) and Nε(u) < v.
For example, u3 ≺ u4 because u3 is less than all numbers in Nε(u4) and all
numbers in Nε(u3) are less than u4.

4. u � v, if u > Nε(v) and Nε(u) > v.
Analogous, u4 � u3.

[6, pg. 19] The following instructions are based on this definition and use the special
epsilon register rE for ε.

Name: FCMPE $X,$Y,$Z
Effect: $X← (f($Y) � f($Z) (rE))− (f($Y) ≺ f($Z) (rE))

Analogous to FCMP, FCMPE – called floating compare with respect to epsilon – compares
$Y with $Z according to the definition above and sets $X to −1, 0 or 1. It should be
noted, that $X will be set to zero, if $Y is similar or equivalent to $Z. An invalid AE
will be raised, if $Y, $Z or rE is NaNor rE is negative. [6, pg. 19]

Name: FEQLE $X,$Y,$Z
Effect: $X← (f($Y) ≈ f($Z) (rE)) ? 1 : 0

Similarly to FEQL, FEQLE will set $X to 1, if $Y is equivalent to $Z, depending on rE. It
raises the same arithmetic exceptions as FCMPE. [6, pg. 19]

Name: FUNE $X,$Y,$Z
Effect: $X← (f($Y) = NaN ∨ f($Z) = NaN ∨ rE = NaN ∨ rE < 0) ? 1 : 0
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The last one in this group is FUNE, which will set $X to 1, if $Y, $Z or rE are exceptional
as described for FCMPE and FEQLE. [6, pg. 19]

9.5 Conversion between Float and Integer

MMIX offers three groups of instructions to convert an integer to a floating point number
and the other way around.

Name: FIX|FIXU $X,Y,$Z
Effect: $X← (int)f($Z) mod 264, using round-mode Y

The instructions convert floating to fixed and convert floating to fixed unsigned take $Z
as a float, convert it to an integer and put it into $X. Only when using FIX, an invalid
AE will be raised if $Z is infinite or NaNand a float-to-fix AE will occur, if the result
is less than −263 or greater than 263 − 1. [6, pg. 20]

Name: FINT $X,Y,$Z
Effect: $X← f((int)f($Z)), using round-mode Y

The instruction floating integer rounds the float $Z to a floating integer and places it
in $X. Infinity and NaNare not changed. The difference to FIX is, that FINT writes a
floating point number to $X, while FIX writes a signed integer to $X. [6, pg. 17]

Name: FLOT|FLOTU $X,Y,$Z|Z
Effect: $X← f(s($Z)|Z), using round-mode Y

Finally, the instructions convert fixed to floating and convert fixed to floating unsigned
treat $Z|Z as an integer and convert it to the nearest floating point number. Only if
using FLOT, an floating inexact AE will be raised, if rounding is necessary. [6, pg. 20]

9.6 Short Floats

Although MMIX is a 64-bit architecture and thus, works with 64-bit floating point
values by default, it does also provide some instructions to use 32-bit floating point
numbers, called short floats. But MMIX has no separate arithmetic or comparison
instructions for them. Instead it offers instructions to load a short float from memory
into a float and store a float as a short float to memory.

Name: LDSF $X,$Y,$Z|Z
Effect: $X← f(sf(M4[$Y+ $Z|Z]))

The first one, called load short float, loads the tetra M4[$Y+ $Z|Z], treating it as a 32-bit
float, converts it to a 64-bit float and puts it into $X. [6, pg. 20]

Name: STSF $X,$Y,$Z|Z
Effect: M4[$Y+ $Z|Z] ← sf(f($X))

STSF goes the other way: it treats $X as a 64-bit float, converts it to a 32-bit float and
stores that into M4[$Y+ $Z|Z]. It may trigger a floating overflow, underflow, inexact
and invalid AE. [6, pg. 20]

Name: SFLOT|SFLOTU $X,Y,$Z|Z
Effect: $X← f(sf(s($Z)|Z)), using round-mode Y

These instructions behave like FLOT and FLOTU, but convert s($Z)|Z to a 32-bit float
first, which ensures that no AE will be raised if $X is stored with STSF afterwards. [6,
pg. 20]
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10 Register Stack

Actually, the local registers in MMIX are more complicated than explained at the
beginning. Because MMIX uses a combination of registers and memory for the stack.
This way, subroutine linkage is realized. Additionally, MMIX offers instructions to save
or restore the complete state of a running program using the stack. Both are explained
in detail in this section.

10.1 Subroutine Linkage

Because of the complexity of the subroutine linkage mechanism, it is explained in two
steps. At first, it is shown from the perspective of the programmer. Afterwards the
internal functional principle is described.

10.1.1 Programmers View

The programmer has rG local registers named $0, . . . , $(rG - 1) at his hand. The
registers $0, . . . , $(rL - 1) are the currently used ones, while $(rL), . . . , $(rG - 1)
are the marginal registers. Furthermore he can think of the stack as an potentially
unbounded list S. The stack pointer, i. e. the pointer that indicates the slot in S that
is going to be written next, is called τ , which is initially zero. [6, pg. 22]

Calling and Returning

MMIX provides two instruction families to call subroutines and return from them.

Name: PUSHJ $X,@+4*(YZ[-216]), PUSHGO $X,$Y,$Z|Z
Effect: S[τ ]← $0, S[τ + 1]← $1, . . . , S[τ + X− 1]← $(X− 1)

S[τ + X]← X

τ ← τ + X+ 1
$0← $X+ 1, $1← $X+ 2, . . . , $(rL− X− 2)← $(rL− 1)
rL← rL− X− 1
rJ← @+ 4
@← (@ + 4 ∗ (YZ[−216])) | ($Y+ $Z|Z)

At first, PUSHJ (push registers and jump) and PUSHGO (push registers and go) are essen-
tially the same, except that MMIX determines the new value of the instruction pointer
in different ways. The first action they perform is to push the current local registers
$0, . . . , $(X - 1) onto the stack S. Afterwards the number of registers, that have been
pushed down, is saved in S[τ + X] and τ is increased correspondingly. The next step is
to rename the current registers $(X + 1), . . . , $(rL - 1) to $0, . . . , $(rL - X - 2).
That means, all used registers above X are passed as arguments to the subroutine, where
they appear as $0, $1 and so on. Finally, rL is adjusted, so that only the arguments are
currently in use, the return-jump register rJ is set to the instruction that would have
been executed normally and the instruction pointer is changed. [6, pg. 22]
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Name: POP X,YZ
Effect: x← S[τ − 1] mod 256

S[τ − 1]← $(X− 1)
rL← min(x+ X, rG)
$(rL− 1)← $(rL− x− 2), . . . $(x+ 1)← $0
$x← S[τ − 1], $(x− 1)← S[τ − 2], . . . , $0← S[τ − x− 1]
τ ← τ − x− 1
@← rJ+ 4 ∗ YZ

Of course, POP (pop registers and return from subroutine) basically behaves in the op-
posite way as PUSHJ and PUSHGO do. At first, the number of registers that have been
pushed down by the associated PUSHJ or PUSHGO are loaded from S[τ − 1]. It can not
be more than 255, because MMIX has only 256 dynamic registers. In the next step,
MMIX sets S[τ − 1] to the "main return value" $(X - 1), which is used later. Next,
rL is adjusted to be the number of local registers the caller wanted to keep plus the
number of return values, denoted by X. Of course, that should not be more than rG.
Subsequently, the registers holding the return values (except the main return value) are
renamed, so that they appear in $(x + 1), . . . , $(rL - 1) for the caller. Finally, the
previously saved values are restored from the stack, τ is adjusted correspondingly and
MMIX jumps back to the location stored in rJ. Optionally, some instructions can be
skipped with YZ > 0. It is noteworthy that the main return value appears in the so
called hole $x, i. e. the register that has stored the number of registers that have been
pushed down. [6, pg. 22,23]

Example

To make the just described instructions more clear, the following goes through an ex-
ample. It supposes, that the first four local registers have some values and a PUSHJ
$1,Sub is executed. The following figure illustrates the state before the PUSHJ and the
state afterwards, i. e. the initial state in subroutine Sub:

PUSHJ $1,Sub
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Figure 4: Register stack: User perspective, state 1 to 2

The figure displays the used local registers green and the marginal ones orange. At first
$0 and $1 are saved on the stack, whereas $1 has been set to the number of pushed
down values. Afterwards $2 and $3 are pushed as arguments to Sub, appearing as $0
and $1. Thus, rL is 2 and τ is 2 as well.
In the next step of the example Sub performs some calculations, leading to state 3,

and executes a POP 4,0 to return to the caller, whose state is shown on the right:
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POP 4,0
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Figure 5: Register stack: User perspective, state 3 to 4

As the figure shows, $0, . . . , $4 have been set to some arbitrary values. The subsequent
POP 4,0 at first loads the number of pushed down registers from the stack, i. e. S[τ−1] =
1. Based on that, it restores #100 from S[0] into $0, sets the hole ($1) to the last return
value #203 and $2, . . . , $4 to the other return values in the original order. Thus, rL is
1 + X = 5 and τ is zero again.
At this point it might look strange that the last return value appears first for the

caller, followed by the other ones in the same order they were in the registers of Sub.
The section about the internal view will show the reason for that behaviour.

Special Cases

Unfortunatly it is even more complicated as just described, because some special cases
have been suppressed. The instructions PUSHJ|PUSHGO $X,... have the following spe-
cial cases:

• If rL ≤ X < rG, the value of rL will be increased to X+ 1 first.

• If X ≥ rG, all local registers $0, . . . , $(rL - 1) will be saved, followed by rL and
rL will be reset to zero.

On the other hand, POP X,YZ has to take care of:

• If X > rL, X will be replaced by rL+ 1 first and the hole will be set to zero.

• If X = 0, the hole will disappear, i. e. it will become marginal.

[6, pg. 22,23]

10.1.2 Internal View

After having described the procedure of calling subroutines and returning from them
from the perspective of the programmer, it should be explained how MMIX does actually
achieve that.
As mentioned previously, MMIX has a local register array l with either 256, 512 or

1024 slots. It is used as a ring, which means that if we have the local registers l[0], l[1],
. . . , l[255], register l[256] will be the same as l[0], l[257] the same as l[1] and so on.
To realize the register stack, MMIX has to manage the registers and the stack in

memory. To do so, the register ring is divided into three parts by α, β and γ. l[α],
l[α+1], . . . , l[β−1] are corresponding to $0, $1, . . . , $(rL - 1). The registers l[β], . . . ,

34



l[γ − 1] are currently unused and l[γ], . . . , l[α − 1] are the registers that are currently
not accessible, called hidden, but have not yet been stored to memory. The situation
on the stack in memory is described by the special registers rO and rS. The former is
the offset of $0 in memory, i. e. the location it would be written to. The latter is the
location the next register is going to be written to. α, β and γ relate to rO and rS in
the following way (when 2n is the number of slots in l):

α = (rO/8) mod 2n, β = (α+ rL) mod 2n, and γ = (rS/8) mod 2n

To make sure that no value is lost, MMIX has to take care that α, β and γ never
move past each other. Whenever a PUSHJ|PUSHGO is done, α moves towards β. Setting
$X with X ≥ rL means that rL is increased, i. e. β is moved towards γ. If β moved past
γ, registers would have to be written to memory first to free as many slots as required.
To do so, l[γ] is written to M8[rS] and γ is increased by one and thus rS by 8, until
the new β is less than γ. When doing a POP, α moves backwards to γ. If this moved α
past γ, we would have to load values back from memory first. That means, γ and rS
are decreased and M8[rS] is put into l[γ] until the new α is less than γ. [6, pg. 33]

The following figures illustrate the actions with a similar example as in the previous
section. For simplicity it is assumed that only 4 local registers are present3:

State 1: rL=3
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Figure 6: Register stack: Internal perspective, state 1 to 2

The green and yellow cells have the same meaning as in figures 4 and 5, while the red
cells are the hidden registers. The register block on the left shows the current assignment
of dynamic registers, the local register index and the value in the register. The right
block displays the stack in memory with the address and the value. Additionally the
values of α, β, γ, rO and rS are indicated by pointing to the corresponding register or
memory slot.

In the first state, three registers are used, α and γ are zero, β is α + rL = 3 and
rO and rS have the value #1000. State 2 is reached by doing a PUSHJ $1. Hence, the
offset α in the register ring is increased by 2 and the offset rO in memory is increased by
16. Additionally, the hole (l[1]) is set to the number of registers that have been pushed
down.

3This is not specification conform, as explained previously, but simplifies the example.
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State 2: rL=1
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Figure 7: Register stack: Internal perspective, state 2 to 3

The third state, shown in figure 7, is reached by setting $0, $1 and $2 to #200, #201
and #202, respectively. Setting $0 does not increase rL, so that only l[2] is changed.
The other two both increase rL by one, i. e. move β towards γ. Thus, in each case γ
and rS are increased and a value is written to memory.
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Figure 8: Register stack: Internal perspective, state 3 to 4

The last transition, illustrated in figure 8, is achieved by doing a POP 2,0. As described,
POP moves α back. The hole tells MMIX how many registers have been pushed down
by the preceding PUSHJ or PUSHGO. In this case, the hole has been written to memory,
so that it has to be loaded back first. Afterwards MMIX has to move α two steps
up because one register has been saved and the hole has been created. To be able to
decrease α and rO, one further value has to be loaded from memory. To return the
two values, a move of l[3] to l[1] is sufficient because the other value is already in the
desired slot (as all other return values would be, if there were more than two). This is
the reason for the – at a first glance – strange order of the return values.

10.2 Saving and Restoring the State

Another concept, that works with the register stack as well, is the procedure of storing
and restoring the state of the running program. It is intended both for the operating
system and user applications. The former may use it for example to implement process
switching or to save the state when handling an interrupt. The latter can use it to
implement thread switching in user space, for example.

Name: SAVE $X
Effect: S[τ++]← $0, . . . , S[τ++]← $(rL− 1)

S[τ++]← rL, rL← 0
S[τ++]← g[rG], . . . , S[τ++]← g[255]
for s ∈ {rB, rD, rE, rH, rJ, rM, rR, rP, rW, rX, rY, rZ, (rG� 56) ∨ rA}
S[τ++]← s

$X← τ
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Put simply, SAVE (save process state) stores all registers that might affect the computa-
tion on the stack and writes the address of the topmost octabyte on the stack into $X.
In detail, it means that at first all hidden registers are written to memory (which is not
listed in the effect description, because it shows it from the programmer perspective).
Afterwards all used local registers are written behind them, followed by rL and rL is
set to zero. In the next step, all global registers are written to memory, followed by the
special registers that affect the computation, whose last value is an octabyte containing
rG in the most significant byte and rA in the least significant ones. As will be described
shortly, the value of $X after executing SAVE $X can be used for UNSAVE. [6, pg. 34]

Name: UNSAVE $Z
Effect: τ ← $Z

for s ∈ {(rG� 56) ∨ rA, rZ, rY, rX, rW, rP, rR, rM, rJ, rH, rE, rD, rB}
s← S[−−τ ]

g[255]← S[−−τ ], . . . , g[rG]← S[−−τ ]
rL← S[−−τ ]
$(rL− 1)← S[−−τ ], . . . , $0← S[−−τ ]

Consequently, UNSAVE (restore process state) goes the other way. It first sets the stack
pointer to $Z and restores all special registers in the opposite order from the stack,
followed by the global ones. Afterwards rL is loaded, that tells MMIX the number of
local registers to restore from stack, which is done in the last step. [6, pg. 34] It should
be noted, that the hidden registers, that had been stored on the stack during SAVE
before the used local ones, are not restored by UNSAVE. This is done by the next POP,
i. e. as soon as they are needed.

11 Interrupts and Exceptions

As already mentioned a few times in this thesis, MMIX does of course have a concept for
interrupts and exceptions as well. It distinguishes between four different kinds: Forced
trips, dynamic trips, forced traps and dynamic traps.4 The first two are simply called
trips, while the other two are called traps. The main difference is, that trips are handled
by the user application, while traps are handled by the operating system.

11.1 Triggering of Trips and Traps

At first, the procedure of triggering a trip or trap is described. The forced trips and
traps are requested explicitly by an instruction, whereas dynamic trips and traps are
either raised because an exceptional condition occurred (synchronous) or an interrupt
occurred (asynchronous).

11.1.1 Triggering Trips

All trips make use of the special registers rB, rW, rX, rY and rZ. Register rB is called
bootstrap register and is used to save $255. The where interrupted register rW indicates
the location the interruption occurred at, execution register rX holds the 4 instruction
bytes and some other information. The registers rY and rZ (Y operand and Z operand)
are used to pass operands to the trip handler. [6, pg. 28]

4Actually, the MMIX specification speaks of three kinds, because forced trips and dynamic trips are
put together. [6, pg. 28] But taking it as a whole, forced trips and dynamic trips conceptually differ in
the same way as forced traps and dynamic traps do. Therefore, this thesis speaks of four kinds.
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A forced trip can be triggered with the following instruction:

Name: TRIP X,Y,Z
Effect: rX← 263 ∨ M4[@]

rW← @+ 4
rY← $Y, rZ← $Z
rB← $255, $255← rJ

@← 0

As the effect description shows, TRIP puts various information into the special registers
that can be used by the handler. The X operand of the instruction is not used by the
instruction itself, but since its bytes are put into rX, the handler may utilize it. Forced
trips are always handled at address 0. [6, pg. 28] The meaning of 263 in rX and why rJ
is saved, will be explained when the handling of trips and traps is described.
Dynamic trips are raised for arithmetic exceptions, which are controlled by rA. The

only differences to forced trips are the location they are handled at and that rY and
rZ will be set to the decoded operands of the instruction that caused the AE. Each
arithmetic exception has its own location:

#10 : Integer divide check (D)
#20 : Integer overflow (V)
#30 : Float-to-fix overflow (W)
#40 : Invalid operation (I)
#50 : Floating overflow (O)
#60 : Floating underflow (U)
#70 : Floating division by zero (Z)
#80 : Floating inexact (X)

Forced and dynamic trips are triggered in user mode only, i. e. they are ignored in
privileged mode. [6, pg. 28]

11.1.2 Triggering Traps

Similarly to trips, traps use the special registers rBB, rWW, rXX, rYY and rZZ, with the
same purposes as their trip correspondences. The reason for the separate registers is,
that a trap may of course be triggered while a trip is handled. Additionally, register
rT specifies the location at which forced traps are handled, whereas rTT specifies the
location for dynamic traps. [6, pg. 28,29]
MMIX uses the special interrupt mask register rK to control which dynamic traps

are enabled. As soon as a bit in the special interrupt request register rQ is 1 and the
corresponding bit in rK is 1 as well, a dynamic trap is triggered. These registers have
the following layout:

low-priority I/O high-priority I/O

032 84064

machineprogram

In general, the bits on the right have a higher priority than the bits on the left. There-
fore, high-speed devices like network cards should get bits on the right, while slow
devices like terminals should get bits on the left. But MMIX does not define the mean-
ings of the I/O bits. Only the program bits (PEs) and some of the machine bits (MEs)
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are specified. The program bits are called rwxnkbsp with the following meanings:

r bit: instruction tries to load from a page without read permission;
w bit: instruction tries to store to a page without write permission;
x bit: instruction appears in a page without execute permission;
n bit: instruction refers to a privileged (negative) address;
k bit: instruction is privileged, for use by the kernel only;
b bit: instruction breaks the rules of MMIX;
s bit: instruction violates security (see below);
p bit: instruction comes from a privileged address.

The four specified machine bits from right to left stand for power failure, memory parity
error, nonexistent memory and rebooting. MMIX defines, that the program bits have
to be set in rK when executing in user mode (otherwise a security PE is raised) and
that program bit p has to be zero in rK when executing in privileged mode (otherwise
a privileged PE is raised). [6, pg. 29]
Analogous to the forced trip, the forced trap instruction is defined as:

Name: TRAP X,Y,Z
Effect: rXX← 263 ∨ M4[@]

rWW← @+ 4
rYY← $Y, rZZ← $Z
rBB← $255, $255← rJ

rK← 0
@← rT

That means, besides the different handler location, the different set of special registers
and the fact that TRAP clears rK, TRIP and TRAP are equivalent. By clearing rK, dynamic
traps are disabled. [6, pg. 28] The operating system may even use instructions in a way
that would raise a PE, if the corresponding bit in rK were set. Because MMIX defines
that "an instruction that traps with bits x, k or b does nothing; a load instruction that
traps with r or n loads zero; a store instruction that traps with any of rwxnkbsp stores
nothing" [6, pg. 29]. The meaning of the operands X, Y and Z can be defined by the
operating system for any purpose. But two settings are predefined by MMIX:

1. XYZ = 0 should terminate the user process and

2. XYZ = 1 should offer a default action for a trip, for which the user program has not
provided a handler (thus, instead of handling the trip, it can do a TRAP 0,0,1).

Analogous to forced and dynamic trips, the differences between forced and dynamic
traps are, that for dynamic traps, the operands in rYY and rZZ correspond to the
operands of the interrupted instruction and the handler location is different. Addition-
ally, MMIX defines that if "the interrupted instruction contributed 1s to any of the
rwxnkbsp bits of rQ, the corresponding bits are set to 1 also in rXX" [6, pg. 29]. More
precisely, these bits occur in the first byte of the upper tetra of rXX.

11.2 Handling of Trips and Traps

After having described the mechanisms of triggering trips and traps, it should be ex-
plained how they can be handled. This section starts with the instruction that resumes
an interrupted computation, followed by the handling of trips and traps.
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11.2.1 Resuming

Of course, MMIX has to be able to resume the ordinary execution after a trip or trap
has been handled. To do so, it provides a quite sophisticated instruction that can be
used for various purposes.

Name: RESUME Z
Effect: if Z = 1:

rK← $255, $255← rBB

@← rW|rWW
ropcode ← (rX|rXX)� 56
if ropcode = 0: repeat(rX|rXX)
if ropcode = 1: continue(rX|rXX)
if ropcode = 2: set(rX|rXX)
if Z = 1 and ropcode = 3: trans(rX|rXX)

The instruction RESUME comes in two versions: RESUME 0 resumes the computation after
a trip, while RESUME 1 resumes it after a trap. Thus, RESUME 0 uses rW and rX, while
RESUME 1 uses rWW and rXX. That does also mean, that the latter is prohibited in user
mode. The default behaviour of RESUME, when the so called ropcode is #80 (see TRIP
and TRAP), is quite simple. The trip-version continues the execution at rW, while the
trap-version restores rK and $255 first and continues at rWW afterwards. But as the
effect description shows, there are four other defined values of ropcode, which are more
complicated. The four sketchy described actions have the following meaning:

• repeat(rX|rXX):
MMIX interprets the lower four bytes of rX|rXX as an instruction and executes it.
This is allowed for all instructions except RESUME itself.

• continue(rX|rXX):
Continue is similar to repeat. It does also interpret the lower four bytes of rX|rXX
as an instruction. But it does not use the operands provided in the instruction,
but takes rY|rYY and rZ|rZZ instead. It is allowed for all "Set $X to the result of
$Y OP $Z|Z" and "Set $X to the result of OP $Z|Z" instructions and for TRAP as
well. Some implementations of MMIX may also allow SYNCD and SYNCID. Another
restriction is, that the instruction can not increase rL, i. e. the X operand of the
instruction has to be less than rL.

• set(rX|rXX):
This ropcode tells MMIX to set the register, denoted by the third least significant
byte of rX|rXX, to rZ|rZZ. Additionally, the third most significant byte is used to
raise AEs. Again, rL can not be increased.

• trans(rX|rXX):
Last but not least, this ropcode can be used to put a translation into the trans-
lation cache. It uses rYY as the virtual address and rZZ as the PTE and puts it
into a TC. If the opcode of the instruction in the lower half of rXX is SWYM (sym-
pathize with your machinery ; the NOP instruction of MMIX, that does nothing),
the translation will be put into the instruction TC, otherwise in the data TC.
Additionally, if this opcode is not SWYM, the action repeat(rXX) will be performed.

All these actions behave as if they appeared as an instruction at location rW|rWW−4, i. e.
as if they have been inserted into the instruction stream at that position. [6, pg. 30] It
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will be described shortly for what reasons the different actions, depending on ropcode,
are offered.

11.2.2 Handling Trips

As said in the last section, all different kinds of trips have their own handler location,
which are 16 bytes away from each other. That means, each handler has 4 instructions
available to do what ever is necessary. For example, it could do something like:

PUSHJ $255,Handler; PUT rJ,$255; GET $255,rB; RESUME 0

This way, the actual handler is called, saving all local registers on the stack. Before
resuming, rJ and $255 have to be restored, because – as described previously – RESUME
will not do that. [6, pg. 28]
Another way is to let the operating system perform the default actions for a trip by:

TRAP 0,0,1; GET $255,rB; RESUME 0

In this case, no subroutine is called and thus, rJ has not to be restored. [6, pg. 28]
Additionally, the reason why RESUME does not restore the values saved by TRIP, is that
MMIX pursues the goal to perform only the minimum set of actions that are required.
When handling a dynamic trip, the operands of the instruction that caused the AE

are put into rY and rZ. For example, if DIV $0,$1,0 is executed, MMIX will raise a
division by zero AE and set rY to $1 and rZ to 0. The handler could simply recognize
that an AE occurred. But it could also replace rY and rZ with something else and
change the ropcode in rX from #80 to #01 (continue). This way, the instruction would
be repeated with operands rY and rZ. Another way would be to set the ropcode to #02,
which would set $X to the value specified in rZ. [6, pg. 28]

11.2.3 Handling Traps

Similarly to dynamic trips, dynamic traps that are triggered because of a PE, save the
operands of the instruction that caused it in rYY and rZZ. MMIX does not define the
meaning of these registers for all instructions. But it is defined that all "Set $X to the
result of $Y OP $Z|Z" instructions put $Y in rYY and $Z|Z into $Z. Additionally, load
instructions put the virtual address into rYY5, while store instructions do additionally
put the octa to be stored (including unchanged bytes for cases like STB) into rZZ. [6,
pg. 27]
Additionally it is noteworthy, that the OS has not many choices when considering

PE handling. Because the only PEs, which are well defined, are the protection faults.
For all others, i. e. when refering to a negative address, using a privileged instruction,
breaking the rules of MMIX, violating security or jumping to a privileged address, the
MMIX specification does not define the values of rWW and rXX. Thus, the operating
system is unable to resume the computation of the user program in a reliable way. But
of course, these PEs indicate a malicious or faulty user program anyway, so that the
best option is a kill (and perhaps providing feedback to the user in form of a log entry
or similar).

5Unfortunatly, the specification does not mention that explicitly for loads. But MMIX-PIPE does
behave as explained and it would make no sense to do it for store instructions, but not for load
instructions. After all, both may trigger a protection fault, for which the operating system has to know
the virtual address. Having to calculate it from the Y and Z operand of the instruction for loads and
simply read it from rYY for stores, would be very strange.
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MMIX does also allow cheaper implementations of it, that let the software realize
some instructions. In this case, these instructions cause a forced trap. For example,
expensive operations like DIV or FREM could be implemented in software by checking the
opcode in rXX when handling a forced trap. If it is one of these instructions, the result
will be computed, put into rZZ and the ropcode will be set to #02. A subsequent RESUME
1 will place rZZ into the desired register. As already said, even arithmetic exceptions
could be raised by specifying them in the third most significant byte of rXX. [6, pg. 28]
A similar feature is, that address translation can be done in software. This can be

requested by setting field f of rV to 1, but some implementations of MMIX might
even require that. As soon as a translation is necessary, i. e. it is not already in the
corresponding TC, a forced trap with ropcode #03 is triggered. The virtual address will
be available in rYY. When the translation is done, the handler should put the physical
address into rZZ. A subsequent RESUME 1 will put this translation into the TC and
repeat the instruction, which will succeed this time. It should be noted, that if an
instruction fetch fails, MMIX will put the instruction SWYM into rXX. This way, the
translation will be put into the instruction TC and the fetch will be repeated when
RESUME 1 is executed. [6, pg. 28]

11.3 Interruptibility

Because of the complexity of some instructions (like SAVE, POP, DIV, FREM and so on),
MMIX allows them to be interruptible. The specification words it as:

Non-catastrophic interrupts in MMIX are always precise, in the sense that
all legal instructions before a certain point have effectively been executed,
and no instructions after that point have yet been executed. The current
instruction, which may or may not have been completed at the time of inter-
rupt and which may or may not need to be resumed after the interrupt has
been serviced, is put into the special execution register rX, and its operands
(if any) are placed in special registers rY and rZ.6 [6, pg. 27]

That means, if an interrupt occurs while executing an instruction, a particular MMIX
implementation may wait briefly until an interruption is possible and then put the
state of computation of the current instruction into rXX, rYY and rZZ. In this case, the
meaning of the registers is completely implementation dependent. For example, FREM
$X,$Y,$Z may set rYY and rZZ, such that rYY mod rZZ = $Y mod $Z, but the actual
values of rYY and rZZ may be different than $Y and $Z. [6, pg. 27 and 29] If MMIX
sets ropcode to #01 (continue), the operating system will not be required to care about
that, because a RESUME 1 will simply execute that instruction again with rYY and rZZ,
which will lead to the same result.
It should also be mentioned, that rXX might not hold the instruction found at address

rWW− 4. Not only because of jumps, but also because MMIX might put an instruction
into rXX, that has been inserted internally. For example, if ADD $X,$Y,$Z is executed
with X ≥ rL, the hardware may insert an instruction to increase rL first.

6Actually, rXX, rYY and rZZ are meant (which were introduced later in the specification), because
the other ones are only used for trips, which are either explicitly requested or raised for AEs. Thus,
they do not occur at arbitrary points of time during a computation, as interrupts from I/O devices
may.
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Chapter 3

The Implementation of GIMMIX

Now that the entire MMIX architecture has been explained, the simulator GIMMIX
should be described. As already mentioned in the introduction, GIMMIX has been
developed with the goal to be able to port an operating system to it. Therefore GIMMIX
pursues to be correct (which implies to be not more complex than necessary), implement
MMIX completely and offer a convenient and productive user interface, so that an OS
can be debugged.
This chapter splits the depiction of GIMMIX into five parts. At first, the design

decisions for the implementation are explained, followed by an overview of the simulator.
Subsequently, the implementation of the MMIX architecture (the "core") is described
in detail and yet existing devices are introduced shortly. Finally, the command line
interface (CLI), which allows it to debug an OS or arbitrary other programs for MMIX,
is presented.

1 Basic Design Decisions

Before starting with the description of the simulator, a few general design decisions that
have been made should be explained.

1.1 No Pipelining

At first, it has been decided to abandon pipelining. Since it is a simulator, i. e. im-
plemented in software, and has not the goal to explore the difficulties for a potential
hardware pipelining implementation or similar, using pipelining would not bring advan-
tages. Without it, the simulator is much simpler and thus the correctness is easier to
achieve.

1.2 Uninterruptible Instructions

Similarly to the previous one and a bit related to it, it has been decided to make
instructions uninterruptible, i. e. an instruction is either executed completely or not
at all, as far as no program or machine exception occurs. As mentioned in 11.3 of
chapter 2, MMIX allows it to make complex instructions like POP or SAVE interruptible
by encoding the current state of computation in rXX, rYY and rZZ. But it does not
require implementations to do that, which means that it is specification conform to
make all instructions uninterruptible. [6, pg. 27]
Without this decision, GIMMIX would have required a concept that allows it to

execute instructions in multiple steps, pause them for interrupts and resume them later.
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This would have made it a lot more complex, without leading to real advantages for
similar reasons as in the previous decision. Thus, for simplicity all instructions in
GIMMIX are uninterruptible.

1.3 Programming Language

Obviously, when one wants to run an operating system in a simulator, i. e. a program
that implements the whole simulated machine in software, efficiency is very important.
Additionally, a lot of control over the produced machine code is necessary to be able to
imitate the exact behaviour of the simulated machine. Therefore it has been decided
to use the programming language C, which both allows to build efficient programs and
offers a lot of control. Additionally, MMIX-SIM and MMIX-PIPE are implemented in C
as well1, so that it is easier to use code from them, such as the floating point algorithms.
Since an octa is the word quantity of MMIX, it will be used at nearly all places in

the simulator. Therefore, its representation affects more or less the whole code. Using
C89 on a 32-bit platform would mean, that no 64-bit type is available [10]. Thus, a
struct would have to be created, that contains two 32-bit integers; one for the upper
half of the octa and one for the lower half. Of course, every operation that is done with
an octa, would have to be broken down to operations with the two 32-bit integers. In
other words, the whole code of the simulator would get a lot more difficult to read and
write, just because of the fact that there is no 64-bit type.
But there is an alternative. C99 provides the so called exact-width integer type

uint64_t, which does always correspond to an unsigned 64-bit integer, independent
of the underlying platform [11]. That is, the compiler will arrange things, such that this
type (including all possible operations with it) is available. Although most currently
available compilers offer no complete implementation of C99 yet [12], even the old ver-
sion 3.0 (released 2001 [13]) of the GNU C Compiler, which is used in this project,
supports this feature including many other useful ones [14]. For these reasons, C99 has
been selected, but GIMMIX will only utilize some basic features of it such as exact-width
integer types, "// comments", mixed declarations and code, initialization in for-loops
and snprintf, which are available in gcc and should be in almost all other compilers
as well.

1.4 Host Platform

The host platform, i. e. the platform that runs the simulator, is expected to be a Linux
system. Although most parts of GIMMIX are platform independent, some of them –
like the simulated terminals for example – assume Linux. Furthermore, the simulator
core (excluding e. g. some test generation programs, that expect x86) uses only standard
C99, which means it should be hardware independent (but it has not been tested with
different hardware).
Since both 32 and 64-bit platforms are widely spread nowadays, GIMMIX has the

effort to support both of them. This is mostly achieved behind the scenes by adding a
layer on top of the printf, scanf and strtol families. For the first two families, the
layer lets the user specify the size of an argument with ’O’,’T’,’W’ or ’B’ (additionally
to ’h’, ’l’ and ’L’) for octa, tetra, wyde or byte, respectively. For strtol, the layer
calls simply either strtol or strtoll, depending on the platform. But there are a few
other things to take care of. For example, when using logical or arithmetical negation,
the result depends on the size of the operand. That means, e. g. -sizeof(octa)

1As mentioned, they are written with CWEB, which produces C code in the end.
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could lead to different results. If the type of sizeof(octa) is 32 bit wyde, the logical
negation would produce #FFFF FFF8, instead of the perhaps intended #FFFF FFFF FFFF
FFF8. Thus, whenever such operators are used with this intention, the operand has to
be casted to an octa first.

2 Overview

Before explaining the main parts of GIMMIX, this section gives an overview and intro-
duces the basic components, that are used throughout the code.
Conceptually, GIMMIX consists of several modules that interact with each other. The

name of a module corresponds to a source file or folder in the directory src and to the
associated header file or folder in the directory include. The following FMC diagram
illustrates the most important modules and their relationships, whereas the CLI, the
core and the devices are only shown as black boxes for now:

Sim

Core Dev
CLI

Config

Event

R

R

Exception
Stack

R

R

Figure 1: Architecture of GIMMIX in FMC notation

That means, the modules core and dev, to which the core sends requests for tasks like
reading an octa from a specific physical address, are in a sense enveloped in sim. Sim
supports some basic operations like initializing the whole system, resetting it or shutting
it down. This is controlled by the module CLI (when running in interactive mode).
The following sections describe the other general modules in the figure.

2.1 Exception

Although exception handling in C via setjmp and longjmp is not as convenient and
powerful as for example in Java, it offers some advantages. That is, it separates "normal"
code from exceptional code and provides the possibility to handle an exception only at
places, where it can be handled in a sensible way. To achieve that and allow nested "try
and catches", the module exception manages a stack of jmp_bufs, which hold the state
created by setjmp. It is used for trips and traps in the core and also for exceptions in
the CLI. The most important functions are:
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• ex_push(jmp_buf *environment):
This function pushes the given environment onto the stack and is thus the equiv-
alent to a try. The environment has to be created by the caller, because one can
not jump back to a stack frame, that has been already destroyed.

• ex_throw(int exception,octa bits):
As the name suggests, it throws the exception with given number and additional
information in bits, which is used for example to specify what trip or trap should
be triggered. That is, it calls longjmp with the topmost jmpbuf and exception
as arguments, so that the caller of setjmp receives exception as return-value.

• ex_pop():
This function removes the topmost environment from the stack. Hence, it is the
equivalent to the end of a try-catch-construct.

In this thesis, the term "exception" without the prefix "arithmetical", "program" or
"machine", refers to this concept, instead of the different exceptions of MMIX.

2.2 Event

As already mentioned, GIMMIX offers a sophisticated CLI that should allow it to debug
an operating system or other programs in a convenient way. To do so, the CLI needs of
course access to the core, i. e. it has to read the current state and should also be able
to display the effect of an instruction or set breakpoints. Integrating all those facilities
into the core would mean, that it gets more difficult to read and understand and it
would also introduce strong coupling between the CLI and the core. Since the core is
quite stable (the architecture is not expected to change much), but it may indeed be
imaginable to provide a graphical user interface (GUI) to GIMMIX some day, it has
been decided to work with events to supply the user interface with information. This
way, the core is completely independent of the CLI and thus, assuming that a GUI is
ready, it could replace the CLI within minutes, without affecting the core.
The module event implements this idea by providing ev_register to register a call-

back function for a specific event and ev_unregister to unregister it again. Addition-
ally, events can be fired by calling ev_fire, ev_fire1 or ev_fire2 to raise an event
with 0, 1 or 2 arguments, respectively. As figure 1 suggests, the core fires events and
the event module forwards them to the CLI (and any other interested modules), which
has registered the corresponding callbacks at the beginning. It is noteworthy, that if
GIMMIX is used in non-interactive mode, the CLI will not be used at all and thus no
callback will be registered, which will allow GIMMIX to be as performant as possible.

2.3 Config

Of course, GIMMIX should be configurable to some extent, which is realized by the
module config. It consists of two categories of settings: the settings in the first one
are configurable during compile time (i. e. constants are used) and the other ones are
configurable during runtime. The latter can be passed to GIMMIX as command line
arguments. In a sense, the compile time options are those that would be fixed when
GIMMIX were a solid piece of hardware (number of local registers, cache size, device
addresses, . . . ), while the runtime options could be changed more easily (amount of
main memory, number of terminals, disk image, . . . ). But of course, there are also
practical reasons, why one has to be able to specify the disk image or the rom image
via command line argument.
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3 Simulator Core

This section describes the most important part of the simulator, i. e. the implementation
of the MMIX architecture.

3.1 Structure

The following figure breaks the core, that has been displayed as a black box in the
previous FMC diagram, further down into pieces:

...
Register

CPU

Decoder Instr

Int Float

MMU Cache

Bus

TC

Instr

Data

Instr

Data

R R R

R

R

...

Dev2

Dev1

R R

R R

Core

Figure 2: Architecture of the core in FMC notation

That means, it consists of four parts: CPU, MMU, cache and bus, whereas requests
are always done from left to right. For example, when using LDO to read an octa from
main memory (RAM, which is a device as well), the load instruction will request it
from the MMU, which might have to translate the virtual address to a physical one
first. Subsequently, the MMU will send a request to the cache to read an octa from
the obtained physical address. If it is not in the data cache yet, the cache will send a
request to the bus, which in turn will find the associated device and forward the request
to it. Finally, the RAM device reads the octa from main memory and the result is
passed back, ending at the load instruction.
The CPU consists of several parts as well. It has a module named decoder, which

obviously is responsible for decoding an instruction. Additionally, the module instr
implements all MMIX instructions, using int and float for integer and floating point
arithmetic, respectively. Finally, the module register realizes the register stack.
The different parts shown in the diagram are explained in more detail in the following

sections.

3.2 CPU

As the name suggests, the CPU is the central unit in GIMMIX, that is responsible for
executing the instructions, using the help of several other modules.

3.2.1 Executing an Instruction

The execution of instructions is separated into three phases:

1. fetching the instruction, i. e. loading the tetra from memory,
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2. decoding the instruction, which means that the operands are extracted from the
tetra and translated into arguments, depending on the opcode and

3. executing the instruction, taking the arguments and performing the required ac-
tions.

The code in module CPU, that realizes the described procedure, looks like the following:

jmp_buf env;
int ex = setjmp(env);
if(ex != EX_NONE)

cpu_triggerException(ex,ex_getBits ());
else {

ex_push (&env);

// fetch instruction
ev_fire(EV_BEFORE_FETCH);
instrRaw = mmu_readInstr(pc,MEM_SIDE_EFFECTS);

// decode
instr = dec_getInstr(OPCODE(instrRaw));
cpu_checkSecurity ();
dec_decode(instrRaw ,&iargs);

// execute
ev_fire(EV_BEFORE_EXEC);
instr ->execute (&iargs);

// handle realtime tasks
if(++ instrCount == INSTRS_PER_TICK) {

instrCount = 0;
timer_tick ();

}
cpu_checkForInterrupt ();
cpu_counterTick ();

}
ex_pop ();
ev_fire(EV_AFTER_EXEC);
pc += sizeof(tetra);

Listing 3.1: Executing an instruction (slightly shortened)

As the listing shows, the whole procedure is surrounded by a kind of try-catch-construct,
because several parts of it may throw an exception. If an exception is thrown, it will
jump back to the setjmp call, which will return the exception-number. Afterwards the
requested trip or trap is triggered (this will be described in detail later). Additionally,
the code fires events at several interesting places to allow the CLI to perform some
actions. After the instruction has been executed, realtime tasks are done if necessary
(which might result in a finished disk-command or similar), it is checked whether rQ∧rK
is non-zero and the counters are ticked (rC, rU and rI). Finally, the PC is advanced
to the next instruction. It should be mentioned, that the function cpu_checkSecurity
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ensures that all program bits are set in rK, when running in user mode, and that the
privileged PC bit is not set, when running in privileged mode.
The actual decoding is done by the function dev_decode of the module decoder. The

decoder contains a table, that assigns to each instruction both an instruction format
and an argument format. The first one defines the meaning of the three operand bytes
X, Y and Z. The second one defines the arguments for the execution function. More
precisely, those functions receive a struct that contains the fields x, y and z, but the
meaning of the fields differs, depending on the argument format. For example:

• ADD (I_RRR, A_DSS): x = X, y = $Y, z = $Z

• ADDI (I_RRI8, A_DSS): x = X, y = $Y, z = Z

• BNN (I_RF16, A_CT): x = $X, z = @+ 4 ∗ YZ

• STBI (I_RRI8, A_SA): x = $X, y = $Y+ Z

In other words, the decoder performs a mapping from the instruction operands to the
arguments, which hide certain details from the execution function. For example, the
functions that implement the branches will simply receive the address to jump to and do
not have to care about jumping forward or backwards and so on. Similarly, instructions
like ADD and ADDI are put together, i. e. there is only one execution function for both,
because the differences are handled by the decoder.
Besides the fact that the separation of decoding and executing prevents code dupli-

cation and is arguably more elegant, there is also a technical reason for it. Because, as
described in the previous chapter, the instruction RESUME has a ropcode that allows it to
execute the typical "set X to the result of Y OP Z" instructions and some other, whereas
the operands are taken from rYY and rZZ instead of from the instruction itself. Thus,
many instructions need to be executable both in the ordinary and in this special way.
Since this separation hides the origins of the operands from the execution function, this
is no problem anymore, because when implementing RESUME, one can simply create the
argument struct from the instruction in rXX and exchange y and z with rYY and rZZ,
respectively.

3.2.2 Execution Functions

The execution functions, mentioned in the previous section, are in most cases very short
and simple. Because the arguments are provided in the desired form from the decoder
and because other modules like MMU, int, float and register do the hard work. The
following listing shows a few examples:

void cpu_instr_nor(const sInstrArgs *iargs) {
octa res = ~(iargs ->y | iargs ->z);
reg_set(iargs ->x,res);

}

void cpu_instr_stou(const sInstrArgs *iargs) {
mmu_writeOcta(iargs ->y,iargs ->x,MEM_SIDE_EFFECTS);

}

void cpu_instr_bev(const sInstrArgs *iargs) {
if(!(iargs ->x & 1))
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jumpTo(iargs ->z);
}
static void jumpTo(octa addr) {

if(! cpu_isPCOk(addr))
ex_throw(EX_DYNAMIC_TRAP ,TRAP_PRIVILEGED_PC);

// substract sizeof(tetra) because it will be increased
cpu_setPC(addr - sizeof(tetra));

}

Listing 3.2: Examples of the execution functions

That means, the implementation of NOR simply performs the bit operation and sets $X,
STOU uses mmu_writeOcta to write iargs->x to iargs->y and BEV jumps to the desired
location if iargs->x is even. The latter has to check the PC first to make sure that no
jump from user space to privileged space can be done.
Besides this simplicity, there is an important point every instruction has to take care

of. Although all instructions are uninterruptable, i. e. an interrupt can not happen
during their execution, of course program exceptions can occur. Thus, every execution
function (and many other functions as well) has to pay attention to this. In most cases,
as in cpu_instr_stou above, it is simple because there is at most one function, that
might throw an exception. Therefore, calling this function at first, i. e. before the state
has changed, solves the problem. But if multiple functions might throw an exception,
it gets more complicated:

1 void cpu_instr_cswap(const sInstrArgs *iargs) {
2 octa addr = iargs ->y + iargs ->z;
3 octa mem = mmu_readOcta(addr ,MEM_SIDE_EFFECTS);
4 if(mem == reg_getSpecial(rP)) {
5 octa val = reg_get(iargs ->x);
6 reg_set(iargs ->x,0);
7 reg_set(iargs ->x,val);
8 mmu_writeOcta(addr ,val ,MEM_SIDE_EFFECTS);
9 reg_set(iargs ->x,1);

10 }
11 else {
12 reg_set(iargs ->x,0);
13 reg_setSpecial(rP,mem);
14 }
15 }

Listing 3.3: Execution function of CSWAP

In this case, the functions to be careful with are mmu_readOcta, reg_set (storing values
on the stack might lead to an exception) and mmu_writeOcta. Obviously, if multiple
functions change the state and might throw an exception, calling them at first will not
work. The following trick solves the problem for CSWAP. The read in line 3 does not
change the state (caches are not considered critical in this case) and can thus be called
at first. The reg_set in line 6 sets $X to an arbitrary value. If this function throws,
nothing will have been changed yet. If it does not, line 7 will set $X back to the original
value, which can not throw because the previous reg_set would have already done that.
Hence, if the write in line 8 throws, the state will not have been changed yet. If line 9
is reached, reg_set will not throw either. All in all, no matter which function throws,
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the state has not changed (line 12 is not critical here). Additionally, all used functions
are assumed to be exception-safe as well. It will be described later, that a few functions
actually do not garantee to be atomic, i. e. do not change the state if an exception
occurs, but only make sure that a consistent state is reached.

3.2.3 Arithmetic

As described, MMIX supports both integer and floating point arithmetic. GIMMIX
uses the modules int for integer arithmetic and float for floating point arithmetic. The
former only implements the operations that differ from the behaviour defined by C99.
The latter handles all operations in software, i. e. uses the integer arithmetic of the
underlying platform. Both – and especially float – contain very complicated algorithms,
but because they are not the central points of this thesis, they are described only sketchy.
Besides that, they have been inherited from MMIX-SIM/MMIX-PIPE and have only
been adjusted for GIMMIX. All functions are implemented, so that they are independent
of the rest of the simulator. That means, they do not access registers, change the state
or similar.

Integer Arithmetic

The module int contains functions for 128-bit signed and unsigned multiplication and
division. They basically break down the operation to the 16-bit or 32-bit multiplication
or division of the underlying platform, because 128-bit versions are not available. Ad-
ditionally, the division has to handle the differences to C99. Because MMIX requires
floored division, while C99 defines that truncated division is used [15, pg. 82]. Ad-
ditionally it is worth mentioning, that the signed versions of both multiplication and
division are based on the unsigned versions and only adjust the result accordingly.
The three shift types of MMIX – shift left, shift right arithmetically and shift right

logically – are implemented in this module as well. The reason is, that C99 says:

If the value of the right operand is negative or is greater than or equal to
the width of the promoted left operand, the behavior is undefined. [15, pg.
84]

Thus, the functions implementing the shifts ensure, that for example 1 � 65 leads to
zero, as MMIX defines it.2

Floating Point Arithmetic

The basic principle in module float is to use the function fl_unpack to extract the
components of a float from an octa. It returns a structure called sFloat, that contains
the sign, the exponent, the fraction and the type (ZERO, NAN, INF or NUM). If the number
is denormalized, it will be normalized and the exponent gets negative to abstract away
the differences. Additionally, the fraction is always shifted left by 2, leading to two zero
bits at the end, that are used for rounding and detection of inexact results.
All floating point operations work with instances of sFloat. Most of them consist

of a switch, that does the corresponding action or returns the corresponding value,
depending on the type of the operand(s). Finally, fl_pack is used to build an octa
from the sFloat structure, which has represented the result so far. Consequently, it
goes the opposite way than fl_unpack. It also rounds the result with the requested

2For example, the result of 1 � 65 with gcc 4.4.5 on x86_64 is 2 instead of 0, because x � y does
actually mean x � (y mod (sizeof(y) ∗ 8)).
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rounding mode and indicates overflow, underflow and inexact AEs, if necessary. These
are not directly triggered, but passed back to the caller. As soon as short floats are
used, fl_spack and fl_sunpack are chosen instead of fl_pack and fl_unpack.

3.2.4 Register

The module register is one of the most important and also most complicated ones.
Therefore, this thesis describes it in depth. Obviously, it is responsible for managing
the registers. Additionally, it implements the main parts of the instructions PUSHJ,
PUSHGO, POP, SAVE and UNSAVE. More precisely, the parts that affect the register stack.
Thus, checking the instruction operands, setting the new PC and similar tasks, are done
by their execution functions, while the rest is done by the register module.

Basic Data Structures and Operations

The basic data structures and functions of register are quite simple. It has the arrays
local, global and special to hold local, global and special registers, respectively.
Furthermore, it manages the abbreviations L for rL, G for rG, S for rS/8 and O for rO/8.
The last two are used as indices into local and – instead of what the description of
MMIX said – modulo is not used all the time (i. e. in general, O 6= (rO/8)∧(2n−1)), but
only if local is accessed. In code listings, 2n− 1 will be called LREG_MASK, analogously
to GREG_MASK for the global registers.
To offer other modules access to the mentioned arrays, the following functions are

provided:

• reg_getLocal/reg_setLocal:
These functions return or set the value of the specified local register, independent
of O. This is not used by the core, but only by the CLI at the moment.

• reg_getGlobal/reg_setGlobal:
These ones return or set the value of the specified global register and are also only
used by the CLI.

• reg_getSpecial/reg_setSpecial:
Similarly, these functions return or set the value of the specified special register.

• reg_get/reg_set:
Finally, these two return or set the value of the specified dynamic register, i. e.
if rno is the desired register number, rno ≥ G will denote global register rno,
rno < L will denote local register (O + rno) ∧ (2n − 1) and other values denote
marginals.

The most interesting function just described is reg_set, which is implemented as fol-
lows:

void reg_set(int rno ,octa value) {
if(rno >= G)

global[rno & GREG_MASK] = value;
else {

while(rno >= L) {
local[(O + L) & LREG_MASK] = 0;
if(((S - O - (L + 1)) & LREG_MASK) == 0)

reg_stackStore ();
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special[rL] = L = L + 1;
}
local[(O + rno) & LREG_MASK] = value;

}
}

Listing 3.4: Implementation of reg_set

As the listing shows, if rno is greater than or equal to L, L will be increased first and
registers will be set to zero. If the register ring is full, i. e. if the number of used
local registers (plus one to leave a slot free) is equal to the number of available slots
(difference of S and O), a register will have to be written to memory first. More precisely,
reg_stackStore writes local[S & LREG_MASK] to M8[rS] and increases rS by 8 and S
by 1.
Similarly to the implementation of CSWAP, reg_set has to take care of exceptions,

that might be thrown when writing to memory. But in contrary to CSWAP, it does not
ensure that the state does not change. Instead, it will always leave in a consistent state.
That means, if reg_stackStore fires an exception, the function might have already
increased L and cleared some registers. But it is no problem, because the state is ok
and the repetition of the instruction will continue at the point just left. To allow that,
it is important that the increasing of L is done after storing a value on the stack. Doing
it in the other way around would lead to an inconsistent state.

Pushing Registers Down

The function, that performs the central tasks of PUSHJ and PUSHGO is called reg_push
and receives the X operand of the instruction as argument. It is implemented in the
following way:

void reg_push(int rno) {
int curL = L;
if(rno >= G) {

rno = curL ++;
if(((S - O - curL) & LREG_MASK) == 0)

reg_stackStore ();
local[(O + rno) & LREG_MASK] = rno; // set hole

}
else {

reg_set(rno ,rno); // set hole
curL = L;

}

O += rno + 1; // push down
special[rO] += (rno + 1) * sizeof(octa);
L = curL - (rno + 1); // move L down (keep arguments)
special[rL] = L;

}

Listing 3.5: Implementation of reg_push

That means, at first the hole is set to rno to remember the number of pushed down
registers. Afterwards, O is increased correspondingly and L is adjusted, so that the
arguments for the callee are kept. If rno ≥ G, rno will be set to L, L will be increased
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by 1 and a register might have to be written to memory first. Similarly to reg_set, the
function has to take care of the exceptions thrown by reg_stackStore. Thus, L is not
changed before the call to ensure that the state has not been changed if it throws.

Popping Registers

The implementation for POP, which receives the number of registers to return as argu-
ment, is a bit more complicated:

void reg_pop(int rno) {
octa holeData; // last return value -> hole
if(rno != 0 && rno <= L)

holeData = local[(O + rno - 1) & LREG_MASK ];
else

holeData = 0; // if rno > L, hole <- 0

int numRets = rno <= L ? rno : L + 1;
if(special[rS] == special[rO]) {

reg_stackLoad ();
if(((S - O - L) & LREG_MASK) == 0)

special[rL] = --L;
}
int numRegs = local[(O - 1) & LREG_MASK] & 0xFF;

while((tetra)(O - S) <= (tetra)numRegs) {
reg_stackLoad ();
if(((S - O - L) & LREG_MASK) == 0)

special[rL] = --L;
}

L = numRegs + numRets;
if(L > G)

L = G;
// set hole
if(L > numRegs)

local[(O - 1) & LREG_MASK] = holeData;
O -= numRegs + 1;
special[rO] -= (numRegs + 1) * sizeof(octa);
special[rL] = L;

}

Listing 3.6: Implementation of reg_pop

At first, the value for the hole is calculated. If rno ≤ L, it will be set to the last
return value, if rno > L, it will be set to zero and if rno = 0, the hole will not
be set at all. Afterwards, the number of local registers the caller wanted to keep, is
determined. It might be necessary to load this value back from memory into a register
first. Subsequently, if required, local registers will be restored until the desired numRegs
are available. Finally, L is set for the caller, the hole is written and O is decreased
correspondingly.
Again, exception-safety has to be considered. Of course, both calls of reg_stackLoad

might throw an exception. At a first glance one might think that it is sufficient to
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make sure, that all instructions can be repeated successfully, after the PE that they had
triggered previously, has been handled. In this case it would mean, that we do not need
to care about it, because only a few registers of the caller might have been already loaded
and will not be loaded again when repeating the instruction. But unfortunatly this is
not enough. Because the OS might choose not to repeat the function directly, but e. g.
let the user application handle a signal first (or something else, that is asynchronous
to the ordinary control flow)3. In this case, arbitrary other instructions may be used
and thus, the state of MMIX and in particular the state of the register stack has to be
consistent. To ensure it in reg_pop, L has to be decreased when a register is restored.
This way, one register of the callee is exchanged for a register of the caller. If this was
not been done, the condition that α, β and γ may never move past each other, would
be violated.

Page Faults on the Stack

Unfortunatly, the current version of the MMIX architecture, described in this thesis,
has a design flaw. Because if a process causes a page fault while accessing the stack
(for example, when using PUSHJ, POP, SAVE or setting a register), the operating system
will not be able to save the state, handle the PE and resume the process successfully.
Because obviously, the OS needs at least a few registers to be able to handle a PE. But
in general (i. e. if the OS does not define, that some global registers can not be used by
user applications), no register is available. Thus, the OS has to save a few registers first.
For example, SAVE could be used for that purpose to save the whole state of the running
program. But SAVE will write the state onto the stack, which does of course not work,
because the stack has caused the page fault. Using PUSHJ to push some registers down
would be an alternative way to supply the OS with a few registers. But equally, PUSHJ
might have to save registers on the stack. Additionally it is not possible to save the
state manually, because at least one register has to be available to build the destination
memory address. In sum, there is no way to save the state of the running program.
The consequence is, that the OS has either to restrict the user applications to dedicate
some global registers to the OS, or it has to assign a stack of constant size, that is not
swapped out or similar, to the applications.
Since these limitations are not acceptable, it has been chosen to solve this problem.

The basic idea is to give the operating system a different stack than the user applications.
To do so, a new special register called rSS is introduced, which holds the desired address
of the kernel stack. Additionally, SAVE and UNSAVE are extended to offer a second
version, which switches to the kernel stack and back to the user stack, respectively.
That means, that SAVE will first set rS to rSS and will save the whole state on this
stack. Consequently, UNSAVE will do the opposite, i. e. it first loads all values from the
kernel stack back into registers and then will switch back to the user stack. This way,
a trap handler can look like:

SAVE $255 ,1 % the 1 requests the new version of SAVE
% ... handle the trap ...
UNSAVE 1,$255
% set $255 to rK for the current process
RESUME 1

3At least, the MMIX specification does not say the opposite. Therefore it is considered valid to let
the user application handle a signal first when leaving the kernel, even if the kernel has been entered
because of a PE.
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Listing 3.7: Trap handler, using the extended SAVE and UNSAVE

Since SAVE stores the state on a different stack (of course, the OS has to make sure that
it is big enough), it does not matter for what reason the PE has been triggered. Even if
the user stack is currently unusable, the state can be saved and thus, the user program
can be resumed afterwards.
To allow the operating system to use nested interrupts, i. e. enable interrupts while

another one is handled, a SAVE $X,1 does not always switch the stack, but only if rS
is currently in user space. Thus, rSS is expected to be in privileged space. An UNSAVE
will perform the switch only if the associated SAVE has done it, too. Of course, the
operating system should assign a different kernel stack for every process or thread. The
implementation of SAVE and UNSAVE will be described in detail shortly.

An alternative solution for this problem has been suggested by Prof. Dr. Martin
Ruckert, a professor for mathematics at the university of applied sciences in Munich
and the author of "Das MMIX-Buch" [9]. He proposed to add the rules, that 1. the
page(s) affected by the range rS to rO are always mapped (i. e. readable and writable)
and 2. rG is at most 224. The first one ensures, that the OS can begin a trap handler
with PUSHJ $255,YZ, because it may write to rS, but will never move rS past rO. The
second makes sure, that the OS has 32 local registers available after the PUSHJ. Because
the push increases rO and might increase it to a new unmapped page. To garantee that
no register is written beyond the old rO (which is mapped, because of the first rule), the
second rule is necessary. If the size of the local register ring is larger than the number of
local registers that can be used, the ring will always have a few slots left until a register
will have to be written beyond the old rO. That is, if only 224 local registers can be
used and the ring size is at least 256, at least 32 slots will be free. Of course, PUSHJ
and other functions that change rO have to trigger an exception if rO should be moved
to an unmapped page. The PUSHJ that starts the trap handling will not trigger another
trap, because rK is zero at that point. Additionally, the OS is forced to let no process
run, for which the range rS to rO is not completely mapped.

Both solutions have their advantages and disadvantages:

• Without a separate kernel stack, a security problem arises. Because every user
application can see the values, that have been written by the kernel. This might
cause trouble if passwords, cryptographic keys or similar occur at that place.
Therefore, every serious OS would have to establish a separate kernel stack any-
way, by saving the user state and using UNSAVE to change the stack. Thus, the
first solution simplifies that and makes it more efficient by requiring only a single
SAVE.

• On the other hand, the first solution forces the OS to use the new SAVE and
UNSAVE versions, if the problem should be solved and dynamic stack extension
is desired. Since these instructions require a lot of memory accesses, they are
time-consuming.

• The second solution allows the OS to use PUSHJ and POP to handle a trap, which
is much faster.

• But the second solution does even require to use these instructions and forces
the OS to handle a page fault caused on the stack, if necessary, before the state
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can be saved with SAVE. Having only 32 registers to do so might make it difficult
for large operating systems, that come with a sophisticated machinery for virtual
memory. Even if it can be arranged, so that 32 registers are sufficient, it will be
more inconvenient than a simple SAVE.

• Additionally, the second solution restricts the operating system in two ways. All
user applications have at most 224 local registers and the OS has to make sure
that the pages for the range rS to rO are always mapped. This does also mean,
that current programs or operating system for MMIX might not work anymore.

• On the contrary, the first solution is completely downwards compatible, i. e. every
MMIX program that respects the current specifiation will run on a new MMIX
with the separate kernel stack.

It would also be imaginable to implement both solutions. This would offer more flexi-
bility for the operating system. Some OSs might choose the simple SAVE and UNSAVE,
while others might select PUSHJ to be able to handle page faults more quickly and to
use SAVE only if necessary.
But for simplicity and – most important – compatibility, only the first solution has

been implemented in GIMMIX. Because it has not yet been decided if one of the two
solutions, both or something entirely different will be selected for the next version of
the MMIX architecture.

Saving the State

Now that the page fault problem on the stack has been explained, the extended version of
SAVE should be described. As already said, SAVE has to store all local and global registers
and all special registers that might affect the computation on the stack. Depending on
whether it should switch the stack, they are stored on the current one or on the kernel
stack. At first, a few preparations are necessary:

void reg_save(int dst ,bool changeStack) {
octa oldrS = special[rS],oldrO = special[rO];
bool doChangeStack = changeStack && !(oldrS & MSB (64));
if(! doChangeStack)

<check wether all stores will succeed >

int oldL = L;
O += L;
special[rO] += L * sizeof(octa);

if(doChangeStack) {
octa newrO = special[rSS] + L * sizeof(octa) + (

oldrO - oldrS);
reg_setSpecial(rO,newrO);
special[rS] = special[rSS];

}

Listing 3.8: Implementation of reg_save, part 1 (partially pseudo-code)

For later computations, the old rS and rO are saved and it is determined whether the
stack should really be changed. If not, one has to make sure that all values can be
stored, because this is done on the user stack, which might cause page faults. This
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way, the function will not change the state, if the stack is not completely mapped.
Afterwards L is saved and all local registers are pushed down. Finally, if necessary, the
stack is switched. That means, rO is changed to point to the end of all local registers
that have to be saved. rS is set to the beginning of the kernel stack, whereas S is not
changed here, because S indicates the register to store, while rS indicates the memory
location. That is, S does still point to the register to save, but rS points to the kernel
stack.
After the preparations, all pushed down registers (the current locals were pushed

down previously), followed by rL are stored on the stack:

special[rL] = L = 0;
while(special[rO] != special[rS])

reg_stackStore ();
reg_stackStoreVal(oldL ,RSTACK_DEFAULT ,S & LREG_MASK);

Listing 3.9: Implementation of reg_save, part 2

The last step stores the global and special registers on the stack:

if(doChangeStack) {
reg_stackStoreVal(oldrO ,RSTACK_SPECIAL ,rO);
reg_stackStoreVal(oldrO + (oldL + 1) * sizeof(octa),

RSTACK_SPECIAL ,rS);
}
<store global and special reg.>
if(doChangeStack)

S = special[rS] / sizeof(octa);
O = S;
special[rO] = special[rS];
reg_set(dst ,special[rO] - sizeof(octa));

}

Listing 3.10: Implementation of reg_save, part 3 (partially pseudo-code)

If the stack is changed, the original rO and rS will have to be stored as well. As will
be described shortly, rS has to be saved, so that it points to the beginning of the local
registers to be restored in UNSAVE. When all registers have been saved and the stack is
changed, S has to be corrected to correspond to the current value of rS. Finally, rO is
set to rS and the top of the stack is written to the destination register. Additionally
it should be mentioned, that a bit in the octa containing rG and rA stores whether the
stack has been switched, which is required for UNSAVE.

Restoring the State

Of course, UNSAVE goes in the opposite direction. It has to restore the state from a given
stack pointer. The implementation starts with loading the value containing rG, rA and
the "change-stack bit" and checking whether the whole procedure will succeed:

void reg_unsave(octa src ,bool changeStack) {
src &= ~(octa)(sizeof(octa) - 1); // octa -align it

octa rGrA = mmu_readOcta(src ,MEM_SIDE_EFFECTS);
if((rGrA >> 56) < MIN_GLOBAL)
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ex_throw(EX_DYNAMIC_TRAP ,TRAP_BREAKS_RULES);
if((( rGrA) & 0xFFFFFF) & ~(octa)0x3FFFF)

ex_throw(EX_DYNAMIC_TRAP ,TRAP_BREAKS_RULES);
if(changeStack && !(rGrA & ((octa)1 << 32)))

changeStack = false;
if(! changeStack)

<check whether all loads will succeed >

Listing 3.11: Implementation of reg_unsave, part 1 (partially pseudo-code)

As the listing shows, the stack is only changed back, if it is desired and the associated
SAVE had done it. Afterwards rS is set, which points to the stack to restore, and all
global and special registers are loaded back into registers:

reg_setSpecial(rS,src + sizeof(octa));
<restore global and special reg.>
if(changeStack) {

octa newrS = reg_stackLoadVal(RSTACK_SPECIAL ,rS);
octa newrO = reg_stackLoadVal(RSTACK_SPECIAL ,rO);
reg_setSpecial(rO,newrO);
S = newrS / sizeof(octa);

}

reg_stackLoad (); // load L ...
int k = local[S & LREG_MASK ]&0 xFF; // ... into this slot
for(int j = 0; j < k; j++)

reg_stackLoad ();

Listing 3.12: Implementation of reg_unsave, part 2 (partially pseudo-code)

If the stack should be switched, rS and rO are loaded from the stack as well. But rS is
not set immediately – in contrary to S – because the following loads should put the local
registers into the corresponding slots, but they should still be loaded from the kernel
stack. Finally, the new values for rS, rO, rL and rG are set:

if(changeStack) {
while(special[rS] != special[rSS])

reg_stackLoad ();
special[rS] = S * sizeof(octa);

}
else {

O = S;
special[rO] = special[rS];

}
L = k > G ? G : k;
special[rL] = L;
special[rG] = G;

}

Listing 3.13: Implementation of reg_unsave, part 3

As can be seen in the listing, if the stack is changed, all values on the kernel stack, that
were hidden previously, will have to be loaded back into registers. Because as soon as
the program uses the user stack again, those values would be lost on the kernel stack.
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3.2.5 Trips and Traps

The last chapter about the CPU module explains how GIMMIX implements the inter-
rupt and exception facilities of MMIX. At first, it is described how they are triggered,
followed by the explanation of the RESUME implementation.

Triggering Trips and Traps

GIMMIX uses ex_throw for all kinds of trips and traps. To do so, it introduces the types
EX_FORCED_TRIP, EX_DYNAMIC_TRIP, EX_FORCED_TRAP and EX_DYNAMIC_TRAP, which are
passed as first argument to ex_throw. The different kinds are raised in the following
ways:

• Forced trips and forced traps are triggered by the instructions TRIP and TRAP.
Thus, their execution functions call ex_throw directly with the corresponding
arguments.

• Dynamic trips will call cpu_setArithEx to set rA correspondingly. The CPU
module will call ex_throw later, if necessary, i. e. if the enable bit for that AE is
set. This way, the instructions are executed completely, even if an AE has been
caused. MMIX defines the behaviour for all these cases.

• Dynamic traps for interrupts use cpu_setInterrupt to set a bit in rQ. After each
instruction, the CPU checks whether rQ ∧ rK is non-zero and calls ex_throw, if
necessary.

• Dynamic traps for memory faults use cpu_setMemEx, which sets rQ, if the bit in
rK is zero. Otherwise it stores the fault location and optionally the value to store
and tells the caller that an exception should be raised. The reason is, that if
the bit in rK is zero, failed loads should load zero and failed stores should store
nothing. Thus, similarly to dynamic trips, the execution of the instruction has to
be continued. The fault location and the value is required later for rYY and rZZ.

• Dynamic traps for other reasons (e. g. if the instruction breaks the rules) are
simply raised by calling ex_throw.

That means, finally, all kind of trips and traps use ex_throw, which is catched in
cpu_execInstr. As already mentioned, the function cpu_triggerException will be
called in this case. Besides the first argument of ex_throw, which indicates the kind of
trip or trap, the second argument provides additional information about the dynamic
types. That is, it indicates the AE for dynamic trips and the interrupt, PE or ME for
dynamic traps. The function cpu_triggerException performs the following actions:

1. Determine the value for rX/rXX;

2. If it is a dynamic trap exception, set the bit(s) in rQ. If rQ∧rK is still zero, return;

3. If it is a trip, set registers rX, rW, rY, rZ, rB and $255. If a trap should be issued,
rK is cleared and rXX, rWW, rYY, rZZ, rBB and $255 are set;

4. Set the new PC.

The first action is the most interesting one and will thus be explained in more detail.
At first, GIMMIX defines two additional, internal trap bits, that are used to determine
what should be done: TRAP_SOFT_TRANS and TRAP_REPEAT. The former is used whenever
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an address translation should be done in software and the latter for memory faults, for
which the instruction should be repeated. At first, the implementation determines the
ropcode to set in rX/rXX:

octa rxVal;
if(ex == EX_FORCED_TRAP && (bits & TRAP_SOFT_TRANS)) {

if(bits & TRAP_PROT_EXEC)
pc -= sizeof(tetra);

rxVal = (octa)3 << 56;
}
else if(ex == EX_DYNAMIC_TRAP && (bits & TRAP_REPEAT)) {

bits &= ~TRAP_REPEAT;
rxVal = 0;

}
else

rxVal = MSB (64);

Listing 3.14: Determining rX/rXX in cpu_triggerException, part 1

If software translation is requested, rxVal will be set to 3, which will urge RESUME to put
a translation into the corresponding TC. Additionally, if TRAP_PROT_EXEC is set, i. e. a
protection fault occurred because of a missing execution permission, the fetch will be
repeated. Therefore, the PC is decreased to set rWW to the old @ instead of the default
@ + 4. The second condition is true for all memory faults, that require a repetition of
the instruction. This is requested for all protection faults with missing permissions, if
the n field of a PTE or PTP is not equal to n in rV or if the segment limit has been
exceeded. That means, basically for all types of memory faults, that are theoretically
resolvable by the operating system. The third ropcode in the listing is the default one,
which simply skips the instruction when RESUME is used.
Afterwards the instruction is put into the value to be constructed:

if(bits & TRAP_PROT_EXEC)
rxVal |= (octa)SWYM << 24;

else
rxVal |= useResume ? instrRawResume : instrRaw;

Listing 3.15: Determining rX/rXX in cpu_triggerException, part 2

That means, if an execution protection fault occurs, the NOP instruction SWYM will
be put into rxVal. As already mentioned, RESUME will put the translation into the
instruction TC in this case. Otherwise the current instruction will be put into rxVal. If
RESUME is executed and not RESUME itself but the inserted instruction has caused a trap,
useResume will be true, so that the inserted instruction will be put into rxVal. Finally,
the PE bits are added, which tells the operating system whether a PE has caused the
interruption and if so, which one:

if((bits & 0xFF00000000) && ex == EX_DYNAMIC_TRAP)
rxVal |= bits & 0xFF00000000;

Listing 3.16: Determining rX/rXX in cpu_triggerException, part 3
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Implementation of RESUME

As described in the chapter about the MMIX architecture, the RESUME instruction is
very complicated, because of the different ropcodes it defines to allow different kind
of actions before resuming the ordinary computation. At first, the following overview
describes how it is implemented in principle:

void cpu_instr_resume(const sInstrArgs *iargs) {
if(iargs ->y > 1)

ex_throw(EX_DYNAMIC_TRAP ,TRAP_BREAKS_RULES);

int isPriv = cpu_isPriv ();
int rx,ry,rz,rw;
if(iargs ->y == 1 && isPriv)

rx = rXX , ry = rYY , ...
else

rx = rX, ry = rY, ...

if(! isPriv) {
if(iargs ->y != 0)

ex_throw(EX_DYNAMIC_TRAP ,TRAP_PRIVILEGED_INSTR);
if(reg_getSpecial(rw) & MSB (64))

ex_throw(EX_DYNAMIC_TRAP ,TRAP_PRIVILEGED_PC);
}
octa x = reg_getSpecial(rx);
if(!(x & MSB (64)))

<check if the ropcode can be used in desired way >

if(iargs ->y == 1 && isPriv) {
reg_setSpecial(rK,reg_get (255));
reg_set (255, reg_getSpecial(rBB));

}
cpu_setPC(reg_getSpecial(rw) - sizeof(tetra));

if(!(x & MSB (64)))
<execute action , depending on ropcode >

}

Listing 3.17: The implementation of RESUME (partially pseudo-code)

That means, the implementation is split into four parts:

1. The special registers to use are determined,

2. it is checked whether RESUME is allowed in the way it should be executed,

3. it resumes the ordinary computation and

4. executes the desired action, if necessary.

Again, exception-safety has to be considered, because some of the actions may cause an
exception. In this case, two situations are distinguished. At first, RESUME itself might
cause an exception. For example, if RESUME 1 is executed in user mode or if the "re-
sume again" action wants to insert RESUME itself. Second, the inserted instruction might
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cause exceptions, such as a protection fault when accessing memory. Conceptually, this
instruction is inserted into the instruction stream at position rW|rWW− 4. Therefore, all
checks regarding RESUME itself are done before returning to the ordinary computation
and the checks for the inserted instruction including its execution is performed after-
wards. This order is not only important for exception-safety, but also to ensure a correct
environment. That is, e. g. the instruction pointer has to be set before the actions to
ensure that relative jumps and similar instructions work as expected.
The individual ropcode actions are implemented as separate functions. For example,

"resume again" looks like the following:

static void resumeAgain(bool isPriv ,tetra raw) {
sInstrArgs iargs;
dec_decode(raw ,& iargs);
const sInstr *instr = dec_getInstr(OPCODE(raw));
cpu_setResumeInstr(raw);
cpu_setResumeInstrArgs (&iargs);
if(! isPriv && (cpu_getPC () & MSB (64)))

ex_throw(EX_DYNAMIC_TRAP ,TRAP_PRIVILEGED_PC);
instr ->execute (&iargs);

}

Listing 3.18: Implementation of the "resume again" action

As the listing shows, the instruction (raw) is decoded and at the end, it is executed
with the corresponding execution function. The calls of cpu_setResumeInstr and
cpu_setResumeInstrArgs notify the CPU module about the instruction that should
be executed and about its arguments. This is necessary to allow the CPU to put, for
example, the correct instruction into rX|rXX, if an exception is triggered (see useResume
above). Furthermore, it has to be checked whether the CPU was in user mode previ-
ously (!isPriv) and has changed into the privileged mode. This is of course not allowed,
but without this check it would be possible to set rW to 0 and perform a RESUME 0 in
user mode to execute one instruction in privileged mode. Because this instruction is
executed at rW− 4 and the instruction pointer determines the mode the CPU runs in.

3.3 MMU

The memory management unit is the first piece of the memory hierarchy in GIMMIX.
It is responsible for loading values from the next piece of the hierarchy (the cache), per-
forming address translation and mapping byte, wyde or tetra requests to octa requests,
when accessing the cache.
The module MMU provides three kinds of functions for the simulator core:

1. Functions to read from memory,

2. functions to write to memory and

3. functions to synchronize caches and memory.

Additionally, the whole memory hierarchy uses four flags to communicate the desired
behaviour to the different parts of the hierarchy:

1. MEM_SIDE_EFFECTS: If disabled, the state of GIMMIX is not changed and no
events are fired. This is used by the CLI, which should of course not change the
state when for example a value is read from memory.
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2. MEM_UNCACHED: Tells the cache, that if a value is not yet in the cache, the affected
cache block should not be loaded, but the value should be read/written directly
from/to memory.

3. MEM_UNINITIALIZED: If enabled, the cache will not load the affected cache block
from memory, if not already present, but initialize the cache block to zero.

4. MEM_IGNORE_PROT_EX: If enabled, no dynamic trap will be triggered for protection
faults. This is used for synchronizing cache and memory, for which MMIX defines
that no protection faults occur.

3.3.1 Reading from Memory

The MMU module offers five reading functions – one for each quantity and a separate
function to read an instruction (to use the instruction TC and instruction cache). All
read functions use the internal function mmu_doRead to perform the actual reading. The
octa-version will simply return the value read by that function, while others extract the
quantity from the corresponding position. For example, mmu_readTetra is implemented
as:

tetra mmu_readTetra(octa addr ,int flags) {
int off = (addr & (sizeof(octa) - 1)) >> 2;
octa data = mmu_doRead(addr ,MEM_READ ,flags);
return (data >> (32 * (1 - off))) & 0xFFFFFFFF;

}

Listing 3.19: Implementation of mmu_readTetra

The actual reading function looks like the following:

static octa mmu_doRead(octa addr ,int mode ,int flags) {
octa res;
jmp_buf env;
int ex = setjmp(env);
if(ex != EX_NONE) {

mmu_handleMemEx(ex,addr ,0,flags);
// loads that cause an exception , load zero
res = 0;

}
else {

ex_push (&env);
int exp = (mode & MEM_READ) ? MEM_READ : MEM_EXEC;
int cache = (mode & MEM_READ) ? CACHE_DATA :

CACHE_INSTR;
octa phys = mmu_translate(addr ,mode ,exp ,flags &

MEM_SIDE_EFFECTS);
res = cache_read(cache ,phys ,flags);

}
ex_pop ();
return res;

}

Listing 3.20: Implementation of mmu_doRead
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As the listing shows, exceptions are catched here, because not all exceptions actually
cause a trap. It depends on the current rK and whether the flag MEM_IGNORE_PROT_EX is
set. If no trap is caused, the instruction will have to be finished, i. e. the register has to
be set, for example. The decision whether to trap or not is made by mmu_handleMemEx,
which uses cpu_setMemEx and calls ex_rethrow to throw the catched exception again, if
necessary. The first step of mmu_doRead is to translate the virtual address to a physical
one via mmu_translate. Afterwards the octa is read from the cache, which in turn
might request it from the corresponding device.

3.3.2 Writing to Memory

Before taking a closer look at the address translation, it should be described how the
write functions work. Analogous to the read functions, the MMU provides a function
for each quantity of MMIX, whereas all functions except the one that writes an octa,
reads an octa first using mmu_doRead, replaces the corresponding byte, wyde or tetra
and writes the octa back to memory using mmu_doWrite. This function is implemented
as follows:

static void mmu_doWrite(octa addr ,octa value ,int flags) {
jmp_buf env;
int ex = setjmp(env);
if(ex != EX_NONE) {

mmu_handleMemEx(ex,addr ,value ,flags);
// stores that cause an exception , store nothing

}
else {

ex_push (&env);
octa phys = mmu_translate(addr ,MEM_WRITE ,MEM_WRITE ,

flags & MEM_SIDE_EFFECTS);
cache_write(CACHE_DATA ,phys ,value ,flags);

}
ex_pop ();

}

Listing 3.21: Implementation of mmu_doWrite

Of course, the implementation is very similar to the one of mmu_doRead. Exceptions are
catched and handled by mmu_handleMemEx, the address is translated first and finally, it
writes to the cache.

3.3.3 Address Translation

Virtual addresses are translated to physical ones via mmu_translate. Without going
too far into the details here, it works roughly in the following way:

octa mmu_translate(octa addr ,int mode ,int expected ,bool
sideEffects) {
int tc = (mode & MEM_EXEC) ? TC_INSTR : TC_DATA;
if(sideEffects)

ev_fire2(EV_VAT ,addr ,mode);
if(addr & MSB (64))

return addr & ~MSB (64);
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<check rV, i.e. page size and f field >
octa pte;
sTCEntry *tce = NULL;
if(sideEffects)

tce = tc_getByKey(tc ,tc_addrToKey(addr));
if(tce == NULL) {

if(sideEffects && vtr.f == 1)
ex_throw(EX_FORCED_TRAP ,TRAP_SOFT_TRANS | mode);

<translate the address , yielding the PTE >
pte = tc_pteToTrans(pte);
if(sideEffects)

tc_set(tc,tc_addrToKey(addr),pte);
}
else

pte = tce ->translation;

if(!(pte & expected))
ex_throw(EX_DYNAMIC_TRAP ,TRAP_REPEAT | (mode&~pte));

octa trans = pte & ~(octa)0x7;
octa phys = (trans << 10) + (addr & ((1 << vtr.s) - 1));
return phys;

}

Listing 3.22: Implementation of mmu_translate (partially pseudo-code)

That means, if the address is in privileged space, no translation will be done, but only
the most significant bit will be cleared. If it is in user space, the corresponding TC will
be asked whether a translation exists. If so, it will be used, otherwise the actual address
translation will be performed and the resulting PTE will be put into the translation
cache. Additionally, if software translation is desired, the corresponding exception will
be thrown (vtr is a struct containing all fields of rV). As soon as the PTE is known, the
access permissions are checked and if these are sufficient, the resulting physical address
is returned.
It should be noted, that the function takes mode and expected, which are both a

combination of the bits MEM_READ, MEM_WRITE and MEM_EXEC. The former determines
the actual access type and the thrown exceptions, whereas the latter contains the flags
that are required to be set in the PTE. The reason for the separation is that the functions
for writing a byte, wyde or tetra have to perform a read request first. Of course, this
request should fail, if the page does not allow reads. But it may have to throw both a
read and write protection fault, because we have to write afterwards. More precisely,
the bits that are missing have to be reported. That is, if read permission is missing, but
write permission is present, a read protection fault will be thrown. If both are missing,
both will be thrown. For this reason, the read requests used in the write functions, use
MEM_READ for mode and MEM_READ | MEM_WRITE for expected. In the ordinary cases,
mode and expected are the same. Additionally, the way the functions for writing a
byte, wyde or tetra to memory have to be implemented including the thrown exceptions
implies, that when a page is only writable, no bytes, wydes and tetras can be written
to that page, but only octas.
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Furthermore, the state will not be changed and no events will be fired, if no side
effects are desired. In other words, if the CLI accesses memory, the translation will be
done every time and the translation caches will be ignored.

3.3.4 Translation Cache

Since the translation procedure is handled in the MMU module, the module TC is very
simple. It only holds two arrays with TC entries – one for the instruction TC and one for
the data TC – and offers other modules access to it. The most important functions are
tc_getByKey, tc_set, tc_remove and tc_removeAll. The first one searches for a given
key (i. e. more or less the virtual address) and returns the translation entry containing
the key and the translation, if found. The function tc_set puts a translation into the
TC, tc_remove removes a specific entry and tc_removeAll removes all entries from a
TC. Last but not least, tc_pteToTrans and tc_addrToKey can be used to transform a
PTE to a translation and a virtual address to a key, respectively.

3.4 Cache

As already said, providing caches for physical memory is optional in MMIX. Therefore,
it can be implemented in nearly arbitrary ways or not at all.

3.4.1 Organisation

For GIMMIX, it has been decided to keep it as simple as possible, but complicated
enough to be able to implement all instructions regarding caches in a sensible way. In
short, GIMMIX provides a fully associative, write-back, write-alloc cache and with a
random replacement policy. Each cache consists of a specific number of cache blocks
(also known as cache lines), whereas each cache block contains a specific number of
octas and has a dirty flag. Additionally, each cache block has a tag, which corresponds
to the physical address of the first octa in it. More detailed:

• Fully associative means, that every address can be put into every cache slot.
Thus, all slots will be searched if an address is looked up. It has been chosen for
simplicity.

• Write-back means, that the cache content is not immediatly written back to main
memory, but only as soon as necessary or explicitly requested. Without it, the OS
would not have to make sure that the main memory is up to date, if for example
instructions were loaded into memory (in privileged mode, a SYNCID removes
blocks from the caches without writing it to main memory first. Thus, without
write-back, a SYNCID would be enough; otherwise, a SYNCD has to be done first).

• The term write-alloc means, that if writing and the associated cache block of an
address it not yet in cache, the block will be read from memory into the cache
first and the value will be put into that block. The advantage in this case is, that
it makes it more transparent and consistent, because all data is always at first in
the cache (if not explicitly requested otherwise).

• A random replacement policy has been chosen to make the selection of victims
simple. Random in this case means, that the module will walk through the slots
in linear order, i. e. 0, 1, . . . , n− 1, 0, 1, . . . , if n is the number of slots.
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The module cache provides an instruction and a data cache and offers functions for
reading/writing from/to a specific physical address, removing blocks and flushing blocks
to memory. All these functions refer to the cache, that has been specified via parameter
(either instruction or data cache).

3.4.2 Reading and Writing

The functions for reading and writing are the most interesting ones and are thus ex-
plained in more detail. The function cache_read is implemented as follows:

octa cache_read(int cache ,octa addr ,int flags) {
if(addr >= DEV_START_ADDR)

return bus_read(addr ,flags & MEM_SIDE_EFFECTS);

sCache *c = caches + cache;
sCacheBlock *block = cache_get(c,addr ,flags ,false);
if(!block)

return bus_read(addr ,flags & MEM_SIDE_EFFECTS);
return block ->data[(addr & ~c->tagMask) / sizeof(octa)];

}

Listing 3.23: Implementation of cache_read

At first, it is checked whether the physical address refers to an I/O device, whose area
starts at DEV_START_ADDR (defined as #0001 0000 0000 0000). I/O devices are always
uncached and thus, cache_read directly reads from the bus, ignoring the cache. If main
memory is requested, cache_get will be used to get the cache block for the specified
address. By default, the value will be extracted from the corresponding position and
returned. But there are cases, that require a direct access of the bus. For example,
when no side effects are desired or flags contains MEM_UNCACHED.
The function to write to the cache is implemented analogously, except that it calls

bus_write and sets the corresponding octa in the cache block to the specified value.
Both functions use cache_get to determine the affected cache block, which should be
described in more detail:

static sCacheBlock *cache_get(sCache *cache ,octa addr ,int
flags ,bool isWrite) {
sCacheBlock *block = cache_find(cache ,addr);
if(flags & MEM_SIDE_EFFECTS)

ev_fire2(EV_CACHE_LOOKUP ,cache - caches ,addr);

if(block == NULL) {
if(!( flags & MEM_UNCACHED) &&

(isWrite || (flags & MEM_SIDE_EFFECTS))) {
block = cache_findVictim(cache);
if(block) {

if(block ->dirty)
cache_flushBlock(cache ,block ,flags);

if(!( flags & MEM_UNINITIALIZED))
cache_fill(cache ,block ,addr ,flags);

else {
block ->tag = addr & cache ->tagMask;
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memset(block ->data ,0,cache ->blockSize);
}

}
}

}
return block;

}

Listing 3.24: Implementation of cache_get

At first, cache_find is called, which simply iterates through all cache blocks and returns
the block, if it is already present. If it is not yet present, it might have to be loaded first.
As the listing shows, this will not be done, if MEM_UNCACHED is desired and otherwise
always when writing to the cache, but for reading only, if side effects are tolerated.
The idea behind it is, that writes – in contrary to reads – are considered as an explicit
request to change the state of MMIX. That means, if the CLI is used to set a value in
memory, for example, the state will be changed. Instead, reading in the CLI does never
produce any side effect. If the block has to be loaded, a free block will be required.
The function cache_findVictim will choose a free one or an arbitrary victim. This
does always succeed, except if cache has no cache blocks at all (that is, the cache is
disabled, which can be configured). If a block has been found, it will have to be flushed
to memory, if it is dirty. Finally, it is either filled with zeros or filled with the values
from the corresponding memory location.

3.4.3 Implementation of Caching Instructions

Last but not least, it should be explained how the instructions regarding caching are
implemented in GIMMIX. Because the MMIX architecture does not specify that com-
pletely, but leaves some details up to the particular implementation.

• LDUNC $X,$Y,$Z|Z behaves as LDO, but passes MEM_UNCACHED to the memory hi-
erarchy to request that the associated cache block is not loaded from memory, if
not already present.

• STUNC $X,$Y,$Z|Z behaves as STO, but does also use the flag MEM_UNCACHED.

• PRELD X,$Y,$Z|Z ensures, that the bytes M1[$Y+ $Z|Z], . . . , M1[$Y+ $Z|Z+ X]
are present in the data cache.

• PREGO X,$Y,$Z|Z has the same behaviour, but puts the bytes in that range into
the instruction cache.

• PREST X,$Y,$Z|Zmakes sure, that the bytes M1[$Y+ $Z|Z], . . . , M1[$Y+ $Z|Z+ X]
are in cache, but passes MEM_UNINITIALIZED to the memory hierarchy. This way,
the data is not loaded from memory, but initialized with zeros (which is of course
not required, but simplifies debugging).

• SYNCD X,$Y,$Z|Z flushes the cache blocks affected by the range M1[$Y+ $Z|Z],
. . . , M1[$Y+ $Z|Z+ X] to main memory. If running in privileged mode, they will
additionally be removed from the cache.

• SYNCID X,$Y,$Z|Z will remove the specified range from the instruction cache and
flushes the range in the data cache, if running in user mode. This way, manually
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fabricated instructions will be interpreted correctly, because they have to be loaded
from main memory into the instruction cache first and the content of the data
cache has been flushed to main memory. If running in privileged mode, the range
will be removed from both the instruction and the data cache.

The instructions PRELD, PREGO and PREST use MEM_IGNORE_PROT_EX to ignore protec-
tion faults. Analogously, SYNCD and SYNCID catch these exceptions to ensure, that no
protection fault is triggered.

3.5 Bus

GIMMIX uses the module bus as an interface to the attached devices. The idea is to
make the rest of the simulator core independent of the present devices. In this case,
a compromise between simplicity and dynamic has been chosen. Because on the one
hand, it is expected that some day more devices will be provided, but on the other
hand, it is considered unlikely, that devices are offered by third party vendors. Thus, it
is not that dynamic that no code change is necessary at all (by using shared libraries,
for example), but dynamic enough to require as few code changes as possible and still
keep the extension mechanism simple.
To achieve that, the bus maintains a single linked list with the attached devices. The

init function of the bus, which is called during initialization of the simulator, calls the
init function of all devices. These in turn will use bus_register to register themself to
the bus. That is, they tell the bus their name, their address range in I/O space, their
interrupt mask and the callback functions for reading, writing, resetting the device and
shutting it down. This way, for a new device, the file implementing the device has to
be added and its init function has to be called in the init function of the bus. No other
changes are necessary.
The most important functions of the bus are bus_read and bus_write. Since there

are no interesting differences, it is sufficient to take a look at bus_read:

octa bus_read(octa addr ,bool sideEffects) {
addr &= ~(octa)(sizeof(octa) - 1);
const sDevice *dev = bus_getDevByAddr(addr);
if(dev == NULL)

ex_throw(EX_DYNAMIC_TRAP ,TRAP_NONEX_MEMORY);

octa data = dev ->read(addr ,sideEffects);
if(sideEffects)

ev_fire2(EV_DEV_READ ,addr ,data);
return data;

}

Listing 3.25: Implementation of bus_read

As the listing shows, at first the desired device is searched with bus_getDevByAddr. If
no device is found, the physical memory does not exist and thus, an exception will be
thrown. Otherwise the read function of the device will be called and the value will be
returned. It is noteworthy, that the main memory (RAM) and the ROM are devices as
well, because the only difference to the actual I/O devices like terminal, disk and so on
is the address range. That is, RAM uses #0000 0000 0000 0000 to #0000 FFFE FFFF FFFF
and ROM uses #0000 FFFF 0000 0000 to #0000 FFFF FFFF FFFF, while the other devices
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use the space beginning at #0001 0000 0000 0000. To prevent the introduction of a
special case for RAM and ROM, they are treated like all other devices as well.

4 Devices

As indicated previously, all devices in MMIX are memory mapped. That is, each device
owns a specific range in the I/O space of the physical memory to provide access to itself.
It is used for reading the state of the device, changing the state and urging the device
to perform some kind of action. To behave like a hardware implementation, GIMMIX
has a configurable tick mechanism, managed by the timer device, to simulate a delay
when accessing devices. It achieves that by defining the number of instructions that
can be executed in a tick as INSTRS_PER_TICK and thus calling the tick function of
the timer every INSTRS_PER_TICK instructions. Each device can register callbacks at
the timer, that are called after a specific number of ticks. For example when doing a
disk operation, reading from terminal or similar. This way, the delay of each operation
can be defined in ticks to approximate the delay that would be present in a hardware
implementation. This concept has been inherited from the ECO32 project. ECO32
is a simple, but still realistic 32-bit big-endian RISC processor, designed by Prof. Dr.
Geisse for research and teaching purposes [16].
To be able to do something useful, GIMMIX already provides a few devices. All of

them – except RAM – have been taken from ECO32 and have been adjusted to fit the
needs of GIMMIX. The following devices are present so far:

• RAM:
The RAM device obviously simulates the main memory of GIMMIX. Without
going into the details here, it manages the memory in a so called treap, a combi-
nation of a binary tree and a heap [17], whereas each node in the tree holds 2048
bytes of the memory. As soon as a memory location is accessed, a node is created,
if not already done, and inserted into the tree. This way, GIMMIX can allow large
amounts of main memory and will only have to pay for it, if it is actually used.
The implementation has been inherited from MMIX-SIM (see [4, pg. 12]).

• ROM:
The ROM device contains a memory area of constant size, in which a firmware
or similar can be integrated. For example, a program that allows the user of the
machine to boot from the hard disk.

• Timer:
As already said, the timer is used internally for the tick machinery. Additionally,
it offers the opportunity to raise a timer interrupt after a specific number of ticks,
configureable over device registers (accessible at a specific memory location).

• Terminal:
The terminal device allows to attach a variable number of terminals to GIMMIX.
To achieve that, an instance of xterm4 is started for each terminal. Each of them
has a receiver, that reads from xterm every few ticks and notifies about read
characters by setting a flag in a device register and optionally by triggering an
interrupt. Analogously, it has a transmitter that allows the software to write a
character to the xterm terminal, which sets a flag and optionally raises an interrupt
as soon as the operation is finished, as well.

4Xterm is a terminal emulator for the X Window System. [18]
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• Disk:
The disk device offers a hard disk for the software by using a disk image file,
divided into 512 byte sectors. Disk commands can be started by putting the sector
number and sector count into specific device registers and finally setting the start
flag and mode (read or write). The read command reads the requested sectors
from the disk image into a disk buffer, which can in turn be read by the software
when reading from the corresponding memory location. Consequently, the write
command writes the content of the disk buffer to the disk image. Analogously to
the terminals, it sets a flag when an operation is finished and optionally raises an
interrupt.

• Output:
Last but not least, GIMMIX has an output device, that allows the software to
write characters to a file. This is intented for debugging purposes only.

5 Command Line Interface

The last not yet described part of the GIMMIX simulator is the command line interface.
As already mentioned, GIMMIX has the goal to provide a convenient, intuitive and
productive interface, to allow it to debug an operating system. Of course, the user
needs some commands to work with the simulator, such as "execute one instruction",
"print a part of the state" or "disassemble instructions". Additionally, it has been
decided to develop a small language, that is used by all commands. The language
allows it to access the different entities of MMIX (registers, virtual memory, . . . ) and
do calculations with them. This way, the user has a lot of flexibility when examining a
program, all commands work in a common way and it is easy to add new commands.

5.1 The Language

The language is designed to be both usable interactively and non-interactively. That
is, when controlling the simulator with the command line interface, it is used interac-
tively. But it is also possible to execute scripts before entering the CLI; for example to
establish an initial environment for convenience or to start and control the simulator
fully automatized. To achieve that goal, the language consists of an arbitrary number
of commands with one command per line. Each line looks like:

commandName [<arg1> <arg2> ...]

That is, the command name comes first, followed by an arbitrary number of argu-
ments. The command name and the arguments are separated by whitespace. Thus,
no whitespace can be used inside an argument. This has been chosen, because it is no
general purpose programming language, in which complex expressions are used, but it
is intended as a language to use the simulator. That means, it is expected that the
user does not want to type more than necessary and whitespace in an expression is not
required.
Each argument is an expression, whose grammar looks like the following:

expr = string | integer | float
| expr ,"+", expr | expr ,"-",expr
| expr ,"*", expr | expr ,"/", expr | expr ,"%", expr
| expr ,"s*",expr | expr ,"s/",expr | expr ,"s%",expr
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| expr ,"&", expr | expr ,"|", expr | expr ,"^", expr
| expr ,"<<",expr | expr ,">>",expr | expr ,">>>",expr
| "~",expr | "-",expr
| "@"
| expr ,"..", expr | expr ,":", expr
| "M","[",expr ,"]"
| "M1","[",expr ,"]" | "M2","[",expr ,"]"
| "M4","[",expr ,"]" | "M8","[",expr ,"]"
| "m","[",expr ,"]"
| "l","[",expr ,"]" | "g","[",expr ,"]"
| "sp","[",expr ,"]"
| "$","[",expr ,"]" | "$",integer
| "(",expr ,")";

Listing 3.26: Grammar of expressions in EBNF

The nonterminal string begins with a letter ([A-Za-z]), followed by an arbitrary num-
ber of alphanumeric characters. An integer can be specified in base 2 using the prefix
0b, octal using 0, hexadecimal using 0x or # and decimal without a prefix. Additionally,
the special registers rA, . . . , rZ, rBB, rSS, rTT, rWW, rXX, rYY and rZZ are translated
into their internal number, so that they can be used at arbitrary places (e. g. sp[rA]).
Finally, a float can be specified in the form accepted by the function strtod of the
C standard library. That means, either by optionally starting with the decimal part,
followed by a dot and the fraction part or by using the scientific notation. Thus, for
example 1.0, .6, 2.5e1 or 12E-1.
As the grammar shows, the notation is very similar to the one generally used in

this thesis. Additionally, one can see that three data types exist in the language:
integers, floating point numbers and strings. Furthermore, it has the following groups
of operators:

• Arithmetic:
One can use the well known arithmetic operations addition, substraction, multi-
plication, division and modulo with +, -, *, / and %, respectively. Additionally,
their signed counterpart is available for *, / and % by prefixing it with an "s".

• Bit and shift operators:
The bit operations AND, OR and XOR are denoted by &, | and ^. Additionally <<
performs a left shift, >> an arithmetic right shift and >>> a logical right shift.

• Negation:
All values can be negated arithmetically by using - and all integers can addition-
ally be negated logically via ~.

• Instruction Pointer:
The instruction pointer can be accessed by @.

• Ranges:
One of the most important and interesting concepts of the language are the so
called ranges. The range X..Y corresponds to X, X+1, . . . , Y and the range X:Y
corresponds to X, X+1, . . . , X+Y-1. Thus, the first one specifies the beginning and
end, whereas the second one specifies the beginning and the length.
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• Fetches:
The last group of operations are the so called fetches. Analogous to the notation
used throughout this thesis, M accesses virtual memory, while m accesses physical
memory. More precisely, M[x] denotes the 8 unaligned bytes at location x, M1[x]
denotes the byte at location x, M2[x] denotes the wyde at wyde-aligned location
x, M4[x] denotes the tetra at tetra-aligned location x and finally, M8[x] denotes
the octa at octa-aligned location x. The value of the expression m[x] is the octa
at octa-aligned physical memory location x. Additionally, one can access a local,
global and special register x via l[x], g[x] and sp[x], respectively. Finally,
dynamic register x can be specified by either $[x] or $x.

It should be noted, that all operations behave like defined in MMIX. That is, unsigned
division behaves like DIVU, signed division like DIV and so on.

5.2 Commands

GIMMIX provides several commands to allow the user of the simulator to inspect or
change the current state, debug and control a program. But of course, it is expected
that more commands might be added in future. The following gives an overview of the
most important commands and their functional principles.

5.2.1 Print and Set

p [<fmt>] <expr..>... Print expression(s) in format <fmt>

The print command is one of the most important ones, because it allows it to print
arbitrary values or entities of GIMMIX. The argument <fmt> is optional and can be
u for decimal unsigned, d for decimal signed, o for octal unsigned, x for hexadecimal
unsigned, lx for hexadecimal unsigned with 16 digits (default), f for float or s for string.
For example, "p $1" prints the value of dynamic register 1 and "p o 42" prints the
value 42 in octal base. The ".." after expr indicates that ranges are supported, while
the "..." at the end indicates that multiple arguments of it can be given. That is, "p
1..4" would print the values 1, 2, 3 and 4 and "p 1 2 3 4" would do that as well.
Additionally, besides printing values or entities of GIMMIX, another useful application
of this command is to analyse different representations of values. That is, "p x -8"
to see the hexadecimal representation of −8, "p x 1.4" for the hexadecimal integer
representation for the float 1.4, "p f #3FF<<52" for the float that is represented by
#3FF0 0000 0000 0000 and so on.

set <obj..> <expr..> Set <obj> to <expr>

The set command can be used to change the state, such as a register, a value at a specific
memory location or the instruction pointer. For example, "set $[1..3] 10..12" would
set $1 to 10, $2 to 11 and $3 to 12.

5.2.2 Execution of Instructions

s [<count>] Execute one or <count> instruction(s)
c [<count>] Continue one or <count> time(s)
ou [<count>] Step out of current function one or <count> time(s)
ov [<count>] Step over next instruction one or <count> time(s)
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To control the running program, the CLI offers the commands step (s), continue (c),
stepout (ou) and stepover (ov), whereas stepout means that GIMMIX continues until
the current function is left via POP. If the next instruction is not PUSHJ or PUSHGO,
stepover will execute only this instruction. Otherwise it will continue until the called
function is left by POP. That is, it "steps over" a function call.

d [<addr..>] Disassemble instruction(s) at @ or <addr>
The disassemble command interprets either the 16 following tetras at the instruction
pointer or the tetra(s) at <addr> as instructions and prints their name and operands.
For example, "d @:16" would disassemble the next four instructions at the PC.

b v <mode> <addr> Break if <addr> (virt.) is accessed for <mode> (rwx)
b p <mode> <addr> Break if <addr> (phys.) is accessed for <mode> (rwx)
b e <expr..> Break if the value of <expr> changed
b <addr> Break if <addr> (virt.) is accessed for x

Of course, one has to be able to set breakpoints. GIMMIX provides a very general
facility to do so. Because the break command b can be used to stop the CPU as soon
as a specific virtual or physical address is accessed for a specific mode. That is, when
specifying x as mode, it stops the CPU as soon as an instruction should be executed
at that position; i. e. this would be an ordinary breakpoint. But one can also stop the
CPU as soon as a specific memory location is read or written. Additionally, the third
version of it offers the opportunity to set expression breakpoints. That means, with "b
e $1" the CPU would stop as soon as the value of $1 has changed and, as the command
description indicates, ranges are supported as well. The final variant of this command
is only an abbreviation for "b v x <addr>".

e [<flags>] Print effects of last instruction
To be able to see all effects that an instruction caused, the command e can be used. It
optionally takes an argument with flags, which are any combination of s, d, c, v and f.
By default, only s is used. The flag s prints all reads and writes from/to the stack. Flag
c prints fills and write-backs of the caches, d prints accesses to the devices and v prints
virtual address translations. Finally, f specifies that effects, that occur during the fetch
phase, are printed as well. For example, a typical output of the command could be:

8000000000001008: SETH $1,#6000 : rL=2,$1=l[1] = #6000000000000000

That means, the last executed instruction at location #8000 0000 0000 1008 was SETH
$1,#6000. Behind the disassembled instruction, the effects are displayed. In this case,
$1, currently stored in l[1], has been set to #6000 0000 0000 0000 and rL has been
increased to 2.

5.2.3 Examining the State

itc [<addr..>] Print all ITC entries or search for <addr>
dtc [<addr..>] Print all DTC entries or search for <addr>
ic [<addr..>] Print all IC entries or search for <addr>
dc [<addr..>] Print all DC entries or search for <addr>

Of course, the user of the machine should also have the opportunity to print the current
content of the caches. Therefore, itc prints the instruction translation cache, dtc the
data translation cache, ic the instruction cache and dc the data cache.
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dev Print the state of the attached devices

Especially when developing or porting an operating system, it is very helpful to see
the current state of all devices. Thus, GIMMIX offers this instruction, which prints
all devices with their memory range, interrupt mask and the current device register
contents.

tr <cmd> [<arg>...] Execute the given command after each CPU stop

Another important command is the trace command. It can be used to execute an
arbitrary command everytime the CPU stops, i. e. as soon as a step, continue or similar
is finished. The most frequent usage is probably "tr e" to display the effect of each
instruction. But it can also be used to track the values of registers $4, $5 and $6 via
"tr p $[4..6]", for example.

5.3 Implementation

After the conceptual description of the command line interface, the most important
points of its implementation should be explained.

5.3.1 General Structure

The following FMC diagram shows the interior of the last black box, displayed in the
overview diagram at the beginning:
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Figure 3: Architecture of the CLI in FMC notation

Conceptually, the user interacts with the CLI, whose main module is the console. De-
pending on whether the console is used interactively or not, it either uses the getline
library5 to read a line from the command line into the buffer or reads a specified script
file into the buffer. Afterwards this input is parsed to construct an abstract syntax tree
(AST). The scanner and parser for this task have been generated by flex and Bison,
respectively. As soon as the AST is present, it is passed to the eval module, which

5A small library, that allows basic line editing and provides a history, written by Chris Thewalt. It
can be found in the folder lib/getline of GIMMIX.
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executes it. If a node that represents a command is found, the module cmds comes into
play. It holds a table with all available commands and will execute the corresponding
function to execute the command. The commands will typically control the simulator,
read the state or manipulate it.
As the FMC diagram indicates, the console manages a stack of environments to allow

nesting. Each line or script execution will get a new environment on the top of the
stack. This way, a command may use the console to execute a line or script as well. For
example, the command tr uses this feature by storing the desired command as a string
and executing it later with the console.

5.3.2 Command Infrastructure

Because it is expected that the CLI language itself will not change much in future,
but the commands will probably be changed and – most important – new ones will be
added, it has been decided to separate cleanly between the language and the commands.
Additionally, implementing and adding new commands should be as simple as possible.
Similarly to the device infrastructure of GIMMIX, a compromise between dynamic and
simplicity has been selected. That is, the module cmds keeps a table with all commands,
but each command is implemented in its own file. Thus, to add a new command, a file
has to be added and the table has to be extended.
Each command has an execution function, which receives the number of arguments

and an array of AST nodes – one for each argument. Additionally, the cmds module
provides the function cmds_evalArg:

sCmdArg cmds_evalArg(const sASTNode *arg ,int expTypes ,octa
offset ,bool *finished);

The function receives the argument to evaluate, the types that are supported (integer,
float or string), an offset and a pointer to a boolean. The last two are used to implement
ranges. Since the language is intended for scripting as well and it is imaginable that a
user would like to, e. g. , execute 1000 instructions and pipe the contents of the first 64
megabytes of memory into a file to analyze it with other tools later, it has been decided
not to simply convert a range to an array. Because as the example shows, it might cost
a lot of time and memory. Instead, the evaluation function receives the current offset
and tells the caller whether all ranges are already finished. That means, in each step
one value of each range is extracted, depending on the current offset.
The return value of cmds_evalArg is a struct called sCmdArg, that provides all required

information about the value of the argument for the caller. It contains the type (integer,
float or string), the origin (M8, l, $, and so on or an arbitrary expression such as 1+2),
the location for origins like virtual memory or registers (that is, the memory address or
register index) and of course the value of the argument as integer, float or string. The
location and origin are for example used by p to print the origin of an argument or by
set to set the corresponding entity of GIMMIX.

5.3.3 Command Implementation

A typical command, that makes use of ranges, is disassemble. Ignoring the details of
the disassembling process, its implementation looks like the following:

void cli_cmd_disasm(size_t argc ,const sASTNode **argv) {
if(argc > 1)
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cmds_throwEx(NULL);
if(argc == 0) {

for(int i = 0; i < DEFAULT_INSTR_COUNT; i++)
doDisasm(cpu_getPC () + i * sizeof(tetra));

}
else {

sCmdArg a;
bool fin = false;
for(octa off = 0; ; off += sizeof(tetra)) {

a = cmds_evalArg(argv[0],ARGVAL_INT ,off ,&fin);
if(fin)

break;
doDisasm(a.d.integer & -(octa)sizeof(tetra));

}
}

}

Listing 3.27: Implementation of command d

As the listing shows, at first the number of arguments is checked and if no arguments are
given, DEFAULT_INSTR_COUNT (16) instructions at the PC will be disassembled. If one
argument is given, cmds_evalArg will be called until fin has been set to true, whereas
in each step the offset off will be increased to reach the next instruction. Thus, "d
@:16" would disassemble the instructions at addresses @, @+4, @+8 and @+12.
Another interesting example, that utilizes the origin and location, is the command

set. The slightly shortened implementation is:

void cli_cmd_set(size_t argc ,const sASTNode **argv) {
if(argc != 2)

cmds_throwEx(NULL);
for(octa off = 0; ; off++) {

bool oFin = false , vFin = false;
sCmdArg obj ,val;
obj = cmds_evalArg(argv[0],ARGVAL_INT ,off ,&oFin);
val = cmds_evalArg(argv[1],

ARGVAL_INT | ARGVAL_FLOAT ,off ,&vFin);
if(oFin)

break;

switch(obj.origin) {
case ORG_VMEM1:

mmu_writeByte(obj.location ,val.d.integer ,0);
break;

...
case ORG_EXPR:

cmds_throwEx("Can’t set arbitrary expr\n");
break;

}
}

}
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Listing 3.28: Implementation of command set

That means, it iterates over both the objects to set and the values at the same time, until
the last object has been assigned. Additionally, the origin is used to determine what
entity of GIMMIX should be changed. Of course, set is not possible for expressions
like 1*2+M[0] as first argument. It is only allowed for the instruction pointer and for
fetches, that are specified without any operator in the "outmost layer", i. e. M4[@+4]
for example.
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Chapter 4

Test System

As already mentioned in the introduction, it is very important that GIMMIX behaves
correctly according to the MMIX specification. Additionally, since not all details are
defined by the specification and to increase the confidence that everything has been
understood and implemented correctly, the behaviour of GIMMIX is compared to the
one of MMIX-SIM and MMIX-PIPE.
For this reason, a sophisticated test system has been built, that consists of two parts.

At first, test programs for MMIX are executed on as many of the three simulators as
possible and their results are compared. Second, unit tests are used to test parts of
GIMMIX, that are not visible to the software. This chapter describes the ideas behind
both systems and the most important facilities that are required.

1 Program Tests

The basic idea behind the program tests is to let the simulators execute some instruc-
tions, that put values into registers and/or write to specific memory locations, and check
afterwards if the registers and memory locations have the expected content.

1.1 Test Infrastructure

Each test consists of a mms-file, that holds the assembly code to test, and a test-file,
that specifies the expected results. The first line of the test-file describes the values to
compare, while the rest of the file is matched against the produced values. The first
line is passed to the post commands module, which interprets it and prints the desired
values. The line consists of an arbitrary number of commands, separated by ",". Each
command can either be r:$X..$Y to print dynamic registers $X, $(X + 1), . . . , $Y or
m:X..Y to print the octas between physical memory addresses X and Y, inclusively.
MMIX-SIM, MMIX-PIPE and GIMMIX have been extended to support these post

commands. They can be specified via command line argument to urge the simulator to
execute them after the execution of the program is finished. This way, the contents of
the specified registers or memory locations are printed to stdout. GIMMIX provides the
shellscript runtests.sh, that executes all test programs on the simulators, whereas the
post commands are extracted from the first line of the test-file. Afterwards, the output
of GIMMIX is compared to the expected output (all lines of the test-file, except the first
one), to the output of MMIX-PIPE and to the output of MMIX-SIM. If there are any
differences, the tool diff1 will be used to illustrate them. Additionally, it distinguishes

1Diff is a comparison utility, that finds and displays differences between two files. [19]
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between the following subfolders of folder tests, in which all program tests reside:

• user: This directory contains tests, that can and should be executed in user mode.
All three simulators have an option to execute a program in user mode, for which
an initial environment is supplied. That is, paging is pre-configured by setting
rV and PTEs all installed for all four segments. Furthermore, rS, rO, rK, rT and
rTT are initialized correspondingly. Most important, all tests in this folder are
executable with all three simulators, i. e. also with MMIX-SIM.

• kernel: This directory holds the tests, that should be executed in privileged mode.
Therefore, they do not expect this initial environment, but start without any pre-
configuration and in privileged mode. These tests are executed with MMIX-PIPE
and GIMMIX only.

• diff : To test some behaviours that are implementation-defined, to test the fix for
the page fault problem on the stack or to test cases that are currently erroneous
in MMIX-PIPE or MMIX-SIM, the folder diff is used. All tests in it are executed
on GIMMIX only.

• cli: Finally, this directory holds tests for the command line interface. Thus, the
tests are typically no programs for MMIX, but scripts for the CLI. Of course, they
are executed in GIMMIX only.

All other folders are ignored by runtests.sh. But it is noteworthy, that the folder
manual holds some programs for GIMMIX, that make use of the yet existing devices.
These are not included into the program test system, because they are not automatically
testable that easily.

1.2 Test Programs

Although the tests programs can not be explained in detail, this section will give an
overview about them.

1.2.1 User Tests

Since all three simulators can execute the user tests, as many cases as possible are tested
in this way. Most of them simply test the behaviour of a set of instructions. While a
part of the tests have been written manually, all tests, in which the individual test cases
work in a common pattern, are generated by scripts or programs. All these generators
are placed in the directory testgen, which contains two groups of generators. The first
group are Ruby scripts, that are used for most of the tests. Ruby has been chosen,
because it allows a quick development of the tests and provides an arbitrary-precision
arithmetic, independend of the underlying platform (in other scripting languages, such
as PHP, the width of integers depends on the platform, on which the interpreter runs
[20]). This way, e. g. bit operations with 64-bit integers can be performed, regardless
of whether the generator is run on a 32-bit or 64-bit platform. The second group are
C programs, that are primarily used for the floating point arithmetic tests. Because
this way, the double precision arithmetic of a well tested language and platform can
be utilized to make sure, that the implementation of the floating point instructions
in GIMMIX is correct. Ruby is not well suited in this case, because of the arbitrary
precision arithmetic; instead C fits better, because of the amount of control and the
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similarities of double precision arithmetic and 64-bit float arithmetic in MMIX. Addi-
tionally it is noteworthy, that some of these test generators expect x86 as underlying
platform, because the rounding mode of the x87 floating point unit is set and some
reactions on not defined details by IEEE-754 and therefore x87-specific behaviour are
necessary. For example, the sign-bit of NaN results is not defined by the standard [21,
pg. 17].

1.2.2 Kernel Tests

Most of the tests in the kernel directory have been written manually. They test the
PEs of MMIX, interrupts, paging and privileged instructions. But some of them are
generated automatically as well. Most important, the paging tests are generated auto-
matically with a Ruby script, that generates PTPs, PTEs and access tests for a given
value of rV.

1.2.3 Diff Tests

As already mentioned, MMIX-PIPE and GIMMIX differ in a few details. For example,
the values of rXX, rYY and rZZ are not equal for some PEs, because MMIX does not
define it completely. Another example is, that GIMMIX will trigger an exception if a
not existing memory location in the I/O space is accessed or a bit in rQ is set, that is
not used for an interrupt, PE or ME, while MMIX-PIPE will not do that. The second
reason for this directory is, that the fix for the page fault problem on the stack has to
be tested, which of course does not work in MMIX-PIPE.

1.2.4 CLI Tests

Finally, the directory cli contains scripts to test the language and commands of the CLI.
In this case, obviously, the expected results are only compared with the actual results.
Currently, the expressions of the language, handling of whitespace and the most critical
and important commands such as p, set, e, b, d, tr and a few others are tested.

1.3 Code Coverage

To ensure that all lines in the important parts of the simulator are executed by the tests,
a small code coverage system has been developed. The basic functional principle is to
cause gcc to let the simulator generate information for gcov2 during the execution of the
simulator. The shellscript runcov.sh runs the simulator for a specific or for all tests
and uses gcov to produce the coverage information. This information is analyzed by a
few Ruby scripts to generate HTML pages, that display the results. These pages contain
a list of all tests, whereas each of them displays the source files of the simulator with the
percentage of executed lines. Additionally, one HTML page per source file is generated,
displaying the source code and highlighting the lines correspondingly, depending on
whether they have been executed or not.

2Gcov is a test coverage program, that can be used together with gcc to improve the performance
of a program and discover untested parts of it. [22]
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2 Unit Tests

The second part of the test system consists of unit tests. As already said, they are used
to test the parts of GIMMIX, that are not visible to the software or would be difficult
to test. To achieve that, a small unit test framework has been developed. Although
existing frameworks like CUnit3 or Check4 have been considered, it has been decided
to built an own framework, because the existing ones are quite heavy and most of their
functionality would not be used anyway. Additionally, of course they do not provide
special functions to compare bytes, wydes, tetras and octas. Thus, by building our own
framework, it can be designed to fit our needs exactly.
The test framework found in unittests/test.c allows it to register and run tests,

and offers functions to assert equalities. The function test_register is intended to
register a test suite, which contains one or more test cases. Each test case has a name
and a function, that runs that test case. After registering all test suites, test_start
can be called to execute all test cases in all test suites. To support a convenient and
informative facility for asserts, it offers the macros test_assertTrue, test_assertInt,
test_assertByte, test_assertOcta and so on, which call the actual assert function
with the current function name and line number. This way, reasons of failures can be
identified and fixed more quickly.
Currently, tests suites exist for testing the physical memory (independent of the rest

of the memory hierarchy), the complete memory hierarchy (focused on the different
flags such as MEM_UNCACHED or MEM_SIDE_EFFECTS), the system instructions like LDUNC,
SYNCD, SYNC and so on and the interruptibility of instructions.

3Available at http://cunit.sourceforge.net.
4Available at http://check.sourceforge.net.
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Chapter 5

Future Possibilities

The current state of the GIMMIX project is, as described in the previous chapters,
that the simulator itself including a few basic devices is completely finished. That is,
the simulator realizes the entire MMIX architecture. Additionally, a convenient and
powerful command line interface exists and the whole system has been tested as much
as possible to reach the confidence, that everything works as intended. This final chapter
mentions yet missing parts to reach the goal of porting an operating system to MMIX
and suggests a few possible enhancements.

1 Missing Parts for an Operating System Port

At first, the yet missing tools and changes for developing or porting an operating system
for MMIX are listed.

1.1 TRAP 0,0,0 halts the Simulator

To allow automatized tests, the simulator has to be stoppable in some way. Since
MMIX-SIM uses a TRAP with only zeros as arguments for a quit command, GIMMIX
does so as well. Additionally, MMIX-PIPE has been changed, so that it stops for TRAP
0,0,0, too. Of course, this is only temporary, because MMIX defines that a TRAP 0,0,0
terminates a user process. That is, the operating system should handle that trap – like
all others as well – and the simulator should not stop. Hence, to be able to develop or
port an operating system, this "feature" has to be removed or replaced with something
else.

1.2 Toolchain

Currently, GIMMIX does not provide its own assembler and has no C compiler and
linker at all. Instead, it uses the assembler mmixal, written by Donald Knuth, to
produce special MMIX object files. These in turn are converted by a tool to an ASCII
file, that specifies which values should be written to which physical memory addresses.
GIMMIX interprets this format to load a program into the main memory. Of course,
this is only a temporary solution. Later, a ROM should be put into the simulator, which
initiates the boot process. Although it is imaginable that programs can still be loaded
directly into GIMMIX for testing purposes, these will probably not be specified in that
ASCII format, but in a binary format. MMIX-PIPE understands the ASCII format as
well and MMIX-SIM is able to load the MMIX object files, which is one of the reasons
why GIMMIX uses this solution currently.
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As already mentioned, the project uses no C compiler yet. By now, a GNU toolchain
(gcc cross-compiler, binutils1 and newlib2) for MMIX3 is already available due to the
efforts of Hans-Peter Nilsson, which could be used in future. Another opportunity
would be to build a backend for the lcc4, which has already been started in the previous
GIMMIX approach, but is not yet finished.

1.3 Startup and Tools

Although GIMMIX already provides a ROM and a disk device, tools for disk creation,
partitioning, filesystem creation and so on are still missing. The previously mentioned
project ECO32 offers tools for such tasks, which could be used for GIMMIX as well.

2 Extensions and Enhancements

As mentioned, the simulator is considered complete, but there are of course still imag-
inable improvements and additional features. These are listed in this section.

2.1 More Devices

The currently provided devices are only the basic ones, which have been added primarily
to ensure that the device infrastructure is sufficient. Therefore, a few more will have to
be added in future. For example, every reasonable operating system will need a screen
and a keyboard, instead or additional to the already existing terminals. Furthermore,
a real-time clock would be a useful device. A screen and a keyboard are for example
present in the ECO32 project and could thus be ported to GIMMIX.

2.2 Working with Symbols in the CLI

Since the loading format used in GIMMIX is not considered final, the CLI does not
offer the opportunity to use symbols instead of addresses at the moment. That is, for
example breakpoints can only be set by specifying virtual or physical addresses, but
not via symbols, that have been assigned to virtual addresses. Of course, this would
simplify the debugging process.

2.3 Interface to GDB

As soon as programs for MMIX can be written in C, for example, it would be more
convenient to debug such programs in the language they have been written in, instead
of having to work with the generated assembly. To do so, GIMMIX could provide an
interface for GDB, that offers the opportunity to control GIMMIX with GDB. Fortu-
natly, an alpha version of GDB for MMIX5 is already available because of the work of
Mr. Ruckert. Therefore, as soon as the GDB interface in GIMMIX is present, it should
be possible to use that version of GDB to debug programs running on GIMMIX.

1GNU binutils is a collection of tools for analyzing binary files, building archives or stripping symbols
from a file [23].

2Newlib is a small C library, that is intended for embedded systems [24].
3The GNU toolchain is available at http://www.bitrange.com/mmix.
4Lcc is a retarget compiler for ANSI C [25].
5The complete GNU toolchain for MMIX including GDB is available at http://math.cs.hm.edu/

mmix/examples/MMIXonMMIX/index.html.
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2.4 Infrastructure for MMIX Programs without OS

To be able to run all example programs for MMIX – especially those that are or will be
listed in the volumns of the The Art of Computer Programming books about MMIX
– directly in GIMMIX, i. e. without an operating system, a few additions to GIMMIX
are necessary. These are:

• Those programs expect a rudimentary operating system, that provides special
system calls via forced traps to perform I/O requests. That is, opening a file,
reading a file, writing to a file and so on, which can for example be used to
write to stdout or read from stdin. In contrary to GIMMIX, MMIX-SIM and
MMIX-PIPE offer these system calls.

• Additionally, mmixal allows it to pre-allocate global registers and initialize them
with specific values. This feature is currently not usable, because the ASCII file
format does not support that. MMIX-SIM (and MMIX-PIPE, when started in
user mode), for example, starts with the instruction UNSAVE to establish a part of
the user environment, including the requested global registers.

• To allow more interaction with the host platform, MMIX-SIM provides the number
of arguments, given to itself, in $0 and a pointer to the first one in $1. Additionally,
feedback can be passed back by putting a value in $255, which will be returned
by the main function of MMIX-SIM.

These features are not present in GIMMIX at the moment, because it has a different goal
than MMIX-SIM and MMIX-PIPE. Nevertheless, it might make sense to provide such
facilities as well, e. g. requested by a command line argument, to allow the execution of
all the programs for MMIX, that require them.

2.5 Acid Test Mode

When developing or porting an operating system, a deterministic machine is appreciated
in most cases. That means, that the behaviour of the machine is always exactly the
same, when the start conditions do not change. This is especially a problem when
working with real hardware, because for example the timing of devices varies. Of course,
a deterministic behaviour simplifies debugging, since errors are reproducible. But in
some cases, it might be helpful to produce non-deterministic behaviour or random start
conditions on purpose, to make sure that the OS works correctly in these cases as well
or to detect errors, that would not have arisen otherwise. GIMMIX could help by
providing an "acid test mode", which initializes registers, main memory and so on with
random values, randomizes the timing behaviour of devices or similar.

2.6 Graphical User Interface

As already mentioned, a graphical user interface for GIMMIX could be provided. Since
the simulator core is completely independent of the current command line interface,
it could be easily exchanged with a GUI or both could coexist. A GUI would have
the advantage, that many entities of MMIX such as the dynamic registers, special
registers, main memory and so on could be displayed simultaneously. Additionally, the
disassembly of the previous and next few instructions could be displayed as well. Thus,
it would allow a more productive interaction with the simulator.
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2.7 Provide Information about Hardware for Software

Currently, operating systems for MMIX are very dependent on the particular MMIX im-
plementation they are designed for. Because, the devices, the amount of main memory,
the cache configuration and so on, is either not investigatable at all or only with a lot
of effort. Therefore, it could make sense to add a kind of "meta-device", that provides
that information at specific addresses in the I/O space. This way, the OS could react
dynamically on present devices, find out the amount of main memory easily and make
more efficient use of caches. Of course, this meta-device should be part of the MMIX
specification, so that all MMIX implementations provide it.

2.8 Mapping of the I/O Space

Unfortunatly, at the moment MMIX does not allow to map the I/O space via paging.
That is, the I/O space can only be accessed in privileged mode by using the directly
mapped space. The reason is, that the physical address in a PTE is only 48 bit wyde,
which does not include the I/O space. This will be a problem for microkernel operating
systems, because it is not possible to implement drivers as user processes. A solution
might be to limit the I/O space to range from #0001 0000 0000 0000 to #00FF FFFF FFFF
FFFF and extend the width of the physical address in a PTE to 56 bits. This way, the
upper 8 bits of a PTE would still remain for the operating system and the I/O space
should still be large enough as well. Additionally, the width of a translation in the TCs
would have to be extended. These changes would allow the operating system to map
pages from the I/O space into the user space, so that user processes can access it.
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Glossary

AST is the acronym for "abstract syntax tree", a tree representation of the syntactic
structure of source code written in a language [26]. 76, 77

Bison is a general-purpose parser generator, which uses a specification of a context-free
grammar to construct for example a C source file [27]. 76

C89 and C99 are both standards of the programming language C. C89 has been stan-
dardized in 1989 by the American National Standards Institute (ANSI) and is also
known as ANSI C. [28] C99 on the other hand, has been published by ISO/IEC
in 1999 and has been adopted as an ANSI standard in May 2000 [29]. 44, 51

CISC is the acronym for "complex instruction set computer", which can – in contrast to
RISC – typically perform several operations with a single instruction and supports
complex addressing modes [30]. 7, 90

Donald Knuth is a computer scientist and Professor Emeritus at Stanford University,
who is famous for the creation of TEX, METAFONT, CWEB and The Art of
Computer Programming [31]. 7, 9, 91

EBNF is the acronym for "Extended Backus-Naur Form", which is a family of nota-
tions for expressing context-free grammars, an extension of the basic Backus-Naur
Form (BNF) [32]. 73, 93

Endianness refers to the ordering that is used to store bytes in external memory. The
most important ones are big-endian and little-endian. The former stores the most
significant byte at the lowest address, while the latter stores the most significant
byte at the highest address [33]. 7, 9, 17, 71

Exception is a term, that has to be used for two different concepts in this thesis, due
to the common understanding in both cases. At first, it refers to an extraordinary
condition in MMIX, which indicates, that an instruction can not be executed at
all or a special case arised. MMIX distinguishes between arithmetic exceptions
(AE) like division by zero or integer overflow, which are handled by the user
application, program exceptions (PE) such as privileged instruction or protection
fault, which are handled by the operating system, and machine exceptions (ME)
like power failure, which are as well handled by the OS. Second, the term refers to
the exception concept in the code of GIMMIX via setjmp and longjmp. In this
thesis, the context or the exact term that is used, will clarify what is meant. 7,
8, 10–15, 20, 27–31, 37–43, 45, 46, 48, 50, 51, 53–56, 59–64, 66, 70, 83
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flex is a tool for generating scanners, which in turn are programs that recognize lex-
ical patterns in text. The scanner to generate is described in pairs of regular
expressions and C code, from which a C source file is generated [34]. 76

FMC is the acronym for "Fundamental Modeling Concepts" and is a general notation
to communicate the concepts and structure of complex informational systems in
an efficient way. The basic elements are agents, displayed as rectangular nodes,
and storages, displayed as rounded nodes. Agents communicate with each other
over channels and read from or write to storages [35]. 45, 47, 76

gcc is the acronym for "GNU C Compiler", which belongs to the GNU Compiler Col-
lection (GCC), a compiler system produced by the GNU Project for various pro-
gramming languages. [36]. 44, 51, 83, 85

GDB is the GNU Project debugger, that allows it to analyze the behaviour of a pro-
gram, while it is executed, or its state at the moment it crashed [37]. 5, 86

Immediate value is a value utilized by an instruction, that is directly present in the
bytes that encode the instruction. Thus, it has not to be loaded from a register
or from memory, but is immediatly available, hence the name. 10–12, 18, 19, 21,
28

Interrupt is a asynchronous signal, that is triggered by the hardware to communicate
some kind of event to the software. In MMIX, interrupts raise a dynamic trap. 7,
8, 12, 36–38, 42, 43, 50, 56, 59, 60, 70, 71, 76, 83

Paging is a memory-management mechanism, that provides a virtual space, addition-
ally to the physical space, divides both into pages and allows a mapping from
virtual pages to physical pages. This way, processes can be separated from each
other and the physical memory used by a process has not to be contiguous. 7, 8,
22, 23, 82, 83

PC is the acronym for "program counter", also called "instruction pointer", and in
GIMMIX it denotes the location in memory, from which the next instruction will
be fetched. 10, 12, 19, 32, 48, 50, 52, 60–62, 73–75, 79

PHP is the recursive acronym for "PHP: Hypertext Preprocessor" and "a widely-used
general-purpose scripting language that is especially suited for Web development"
[38]. 82

Pipelining is a concept used in the design of computers to allow an overlapping execu-
tion of multiple instructions and thus to increase the number of instructions, that
can be executed in a unit of time. That is, the execution is divided into stages,
whereas each stage processes one instruction at a time [39]. 7, 8, 43

RISC is the acronym for "reduced instruction set computer", which aims – in contrast
to CISC – to provide rather simple instructions, that can be executed very fast
[40]. 7, 9, 71, 89

Ruby is "a dynamic, open source programming language with a focus on simplicity
and productivity. It has an elegant syntax that is natural to read and easy to
write" [41]. 82, 83
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Subroutine linkage is a term used to denote the mechanism for calling subroutines
(or functions; both words are used interchangeably in this thesis) and returning
from them. 19, 31, 32

TEX is a typesetting system written by Donald Knuth, intended for the creation of
beautiful books [42]. 7, 89

The Art of Computer Programming or short TAOCP is the famous book series,
written by Donald Knuth, that covers many kinds of programming algorithms
and their analysis. The examples in the book are written in the MIX assembly
language, but might be expressed in MMIX assembly language in the near future,
because currently, MIX is replaced by MMIX [43]. 7, 86, 89

Unit testing is a test method by which individual units of source code are tested in
an automatic way. [44] Typically, a unit test framework is used to simplify the
process of writing and running the tests. 81, 83
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