Vektoren: Grundbegriffe, Einheitsvektoren

Aufgabe 1.

Bestimmen Sie zeichnerisch und rechnerisch die Summe der Vektoren $\vec{v}_1 = (3; 1)$, $\vec{v}_2 = (-2; 1)$, $\vec{v}_3 = (-4; -3)$, $\vec{v}_4 = (0; 5)$, $\vec{v}_5 = (3; -7)$ und $\vec{v}_6 = (4; 0)$, also die Summe

$$\vec{v} = \sum_{n=1}^{6} \vec{v}_n.$$

Aufgabe 2.

Es sei $\vec{a} = (4; -7; 5)$ und $\vec{b} = (3; 2; -6)$. Berechnen Sie $\vec{v} = 7\vec{a} - 4\vec{b}$ sowie die Beträge $|\vec{a}|, |\vec{b}|, \text{ und } |\vec{v}|.$

Aufgabe 3.

Auf einen Massenpunkt wirken drei Kräfte $\vec{F_1}$, $\vec{F_2}$ und $\vec{F_3}$. Es sei bekannt, daß $\vec{F_1}$ in Richtung der positiven z-Achse wirkt und die Größe $F_1 = 7$ N hat. Ferner sei $\vec{F_2} = (6; -5; -4)$ N gegeben. Für welche Kraft $\vec{F_3}$ ist der Massenpunkt kräftefrei? Welchen Betrag hat $\vec{F_3}$?

Aufgabe 4.

Berechnen Sie den Einheitsvektor in Richtung von \overrightarrow{AB} mit A(-3,5|2) und B(1,5|-3). (Beachten Sie, daß wir hier Punkte in der Ebene haben! Sie können deshalb auch eine Skizze zur Aufgabenstellung zeichnen.)

Aufgabe 5.

Wie lautet der Einheitsvektor \vec{e} , der die zum Vektor $\vec{a} = (1; -4; 3)$ entgegengesetzte Richtung hat?