Rauminhalte und Mantelflächen von Rotationskörpern; Bogenlängen von Funktionskurven

Aufgabe 1.

Ein Drehkörper kommt dadurch zustande, daß die Fläche unter der Kurve mit $y = e^{-x}$ zwischen a = 0 und b = 1/2 um die x-Achse rotiert. Wie groß ist sein Volumen?

Aufgabe 2.

Betrachtet wird die Fläche unter der Kurve der Funktion f(x) = 2/x zwischen x = 1 und x = 4. Ein Drehkörper entsteht dadurch, daß die Fläche um die x-Achse rotiert. Ein anderer kommt durch Rotation der Fläche um die y-Achse zustande. Bestimmen Sie die Rauminhalte der beiden Drehkörper.

Aufgabe 3.

Die Fläche unter der Kurve von $f(x) = \sqrt{x}$ soll im Bereich von x = 0 bis x = 2 um die x-Achse rotieren. Berechnen Sie die Mantelfläche des Rotationskörpers.

Bei der Oberfläche kommt zur Mantelfläche noch der Flächeninhalt der Seitenfläche hinzu. Wie groß ist die Oberfläche des Rotationskörpers?

Aufgabe 4.

Berechnen Sie zur Funktion $f(x) = \sqrt{x^3}$ die Bogenlänge der Kurve auf dem Intervall von x = 1 bis x = 4.