Satz von Green, Flußintegrale

Aufgabe 1.

Die geschlossene Kurve C verlaufe jeweils geradlinig von (0,0) nach (3,0), von dort nach (3,1), von dort nach (0,1) und schließlich zurück nach (0,0). Ferner sei \vec{F} das Vektorfeld mit

 $\vec{F} = \left(\begin{array}{c} x + y^2 \\ 4x^2y - 2y^3 \end{array}\right).$

Berechnen Sie das Linienintegral $\oint_C \vec{F} \, d\vec{r}$ mit zwei verschiedenen Methoden, a) direkt und b) mit Hilfe des Satzes von Green.

Aufgabe 2.

Berechnen Sie das Integral $\oint_C \vec{F} d\vec{r}$ mit dem Satz von Green.

- (a) Es sei $\vec{F}=M\vec{e}_x+N\vec{e}_y$ mit $M(x,y)=x^2+4y$ und $N(x,y)=7x+2y^2$. Ferner sei die Kurve C gleich dem Einheitskreis, durchlaufen entgegen dem Uhrzeigersinn.
- (b) Es sei $\vec{F} = M\vec{e}_x + N\vec{e}_y$ mit $M(x,y) = y + e^x$ und $N(x,y) = 2x^2 + \cos y$. Außerdem sei C der Rand des Dreiecks mit den Ecken (0,0), (1,1) und (2,0), durchlaufen entgegen dem Uhrzeigersinn.

Aufgabe 3.

Berechnen Sie die Flußintegrale $\int_C \vec{F} \, \vec{n} \, ds$ mit den folgenden Vektorfeldern \vec{F} und Kurven C.

(a)
$$\vec{F} = \begin{pmatrix} -y \\ x \end{pmatrix}$$
, C : geradlinig von $(0,0)$ nach $(3,3)$.

(b)
$$\vec{F} = \begin{pmatrix} 5x^2 - y \\ 2x - 9y \end{pmatrix}$$
, C : der Teil der Parabel $y = x^2$ von $(0,0)$ nach $(1,1)$.

Aufgabe 4.

Berechnen Sie das Integral $\oint_C \vec{F} \, \vec{n} \, ds$ mit dem Satz von Green.

- (a) Es sei $\vec{F} = M\vec{e}_x + N\vec{e}_y$ mit $M(x,y) = x^2 + 3y^2$ und N(x,y) = 5y 2xy. Ferner sei C gleich dem Rand des Quadrats mit den Ecken $(\pm 1, \pm 1)$, durchlaufen entgegen dem Uhrzeigersinn.
- (b) Es sei $\vec{F} = M\vec{e}_x + N\vec{e}_y$ mit $M(x,y) = 3x y^3$ und $N(x,y) = xy^2$. Die Kurve C sei der entgegen dem Uhrzeigersinn durchlaufene Rand der ebenen Fläche, die von der x-Achse und der Parabel $y = 4 x^2$ eingeschlossen wird.