

Contents

Contents .. i

1 Introduction.. 1
1.1 What can image processing be used for? ..1
1.2 Back to basics ...2
1.3 The basic components of image processing systems ...4
1.4 Image Acquisition ...6

1.4.1 A short review...7
1.4.2 The 4 steps towards an improvement..8
1.4.3 The next steps with DirectX®.. 12

1.5 Digital images ... 13
1.6 Getting started with AdOculos.. 18
1.7 Remarks on the example procedures ... 22
1.8 Exercises ... 23
References .. 26

2 Point Operations .. 29
2.1 Foundations .. 29
2.2 AdOculos Experiments ... 41
2.3 Source Code.. 47
2.4 Supplement... 48
2.5 Exercises ... 48
References .. 51

3 Local Operations .. 52
3.1 Foundations .. 52

3.1.1 Graylevel Smoothing... 53
3.1.2 Emphasizing Graylevel Differences ..55
3.1.3 Sharpening Graylevel Steps.. 58

3.2 AdOculos Experiments ... 60
3.2.1 Graylevel Smoothing... 60
3.2.2 Emphasizing Graylevel Differences ..62
3.2.3 Sharpening Graylevel Steps.. 63

3.3 Source Code.. 64
3.4 Supplement... 68
3.5 Exercises ... 69
References .. 71

4 Global Operations .. 72
4.1 Foundations .. 72
4.2 AdOculos Experiments ... 91

Contents

Ad Oculos ii

4.3 Source Code.. 97
4.4 Supplement... 99
4.5 Exercises ... 101
References .. 108

5 Region-Oriented Segmentation .. 109
5.1 Foundations .. 109

5.1.1 Thresholding... 110
5.1.2 Connectivity Analysis.. 113
5.1.3 Feature Extraction... 114

5.2 AdOculos Experiments ... 115
5.2.1 Thresholding... 116
5.2.2 Connectivity Analysis.. 117
5.2.3 Feature Extraction... 118

5.3 Source Code.. 119
5.3.1 Thresholding... 119
5.3.2 Connectivity Analysis.. 125
5.3.3 Feature Extraction... 133

5.4 Supplement... 137
5.4.1 Thresholding... 137
5.4.2 Connectivity Analysis.. 138
5.4.3 Feature Extraction... 138

5.5 Exercises ... 139
References .. 141

6 Contour-Oriented Segmentation... 143
6.1 Foundations .. 143

6.1.1 Detection of Contour Points ... 144
6.1.2 Contour Enhancement.. 146
6.1.3 Linking Contour Points ... 154
6.1.4 Contour Approximation .. 156

6.2 AdOculos Experiments ... 157
6.2.1 Detection of Contour Points ... 158
6.2.2 Contour Enhancement.. 158
6.2.3 Linking Contour Points ... 159
6.2.4 Contour Approximation .. 159

6.3 Source Code.. 159
6.3.1 Detection of Contour Points ... 159
6.3.2 Contour Enhancement.. 162
6.3.3 Linking Contour Points ... 166
6.3.4 Contour Approximation .. 167

6.4 Supplement... 170
6.4.1 Detection of Contour Points ... 170
6.4.2 Contour Enhancement.. 172
6.4.3 Linking Contour Points ... 172

Contents

Ad Oculos iii

6.4.4 Contour Approximation .. 173
6.4.5 Other Contour Procedures.. 173

6.5 Exercises ... 174
References .. 177

7 Hough Transform ... 179
7.1 Foundations .. 179
7.2 AdOculos Experiments ... 182
7.3 Source Code.. 184
7.4 Supplement... 192
7.5 Exercises ... 194
References .. 196

8 Morphological Image Processing ... 197
8.1 Foundations .. 197

8.1.1 Binary Morphological Procedures .. 197
8.1.2 Morphological Processing of Graylevel Images ... 202

8.2 AdOculos Experiments ... 204
8.2.1 Binary Morphological Procedures .. 204

8.3 Source Code.. 205
8.3.1 Binary Morphological Procedures .. 205
8.3.2 Binary Morphological Processing of Graylevel Images .. 207

8.4 Supplement... 209
8.4.1 Binary Morphological Procedures .. 209
8.4.2 Binary Morphological Processing of Graylevel Images .. 212

8.5 Exercises ... 213
References .. 215

9 Texture Analysis ... 216
9.1 Foundations .. 216
9.2 AdOculos Experiments ... 219
9.3 Source Code.. 220
9.4 Supplement... 225
9.5 Exercises ... 225
References .. 228

10 Pattern Recognition.. 229
10.1 Foundations... 229
10.2 AdOculos Experiments.. 233
10.3 Source Code.. 236
10.4 Supplement... 241
10.5 Exercises ... 251
References .. 253

11 Image Sequence Analysis .. 254
11.1 Foundations... 254

Contents

Ad Oculos iv

11.2 AdOculos Experiments.. 258
11.3 Source Code.. 260
11.4 Supplement... 263
11.5 Exercises ... 265
References .. 268

A General Purpose Procedures ... 269
A.1 Definitions... 269
A.2 Memory management .. 271
A.3 The procedures MaxAbs and MinAbs .. 271
A.4 The discrete inverse tangent .. 271
A.5 Generation of a Digital Segment... 273

B Calculus of Variations... 275
References .. 280

C Rules for Integration .. 281

D Taylor Series Expansion/Total Differential .. 282

E Gauss-Seidel Iteration .. 284
References .. 285

F Multivariate Normal Distribution... 286
References .. 287

G Solutions to Exercises ... 288
Chapter 1 Introduction ... 288
Chapter 2 Point Operations.. 291
Chapter 3 Local Operations ... 306
Chapter 4 Global Operations.. 309
Chapter 5 Region-Oriented Segmentation... 321
Chapter 6 Contour-Oriented Segmentation ... 323
Chapter 7 Hough Transform... 328
Chapter 8 Morphological Image Processing.. 330
Chapter 9 Texture analysis ... 334
Chapter 10 Pattern recognition .. 338
Chapter 11 Image sequence analysis .. 340

Index ... 342

1 Introduction

1.1 What can image processing be used for?

The first step in answering this question is to structure the subject of digital image processing into its
applications. Five typical areas of application are (Fig. 1.1):

Defect!

Item

(a)

(b)

(d)

(e)

(c)

Fig. 1.1:

Typical application areas of digital image
processing are (a) computer graphics, (b)
image transmission (c) image manipulation,
(d) image analysis and (e) scene analysis.

Computer Graphics deals with the generation of images in such domains as desktop publishing,

electronic media and video games.

Image Transmission describes the transportation of images via cable, satellite or any kind of data
highway. One important topic of image transmission is image compression to reduce the
enormous amount of data required for digital images.

1 Introduction - 1.2 Back to basics

Ad Oculos 2

Image Manipulation performs such tasks as the enhancement of noisy images, the enhancement of
blurred images (e.g. caused by bad focussing or jumping), geometrical correction (especially of
satellite images), the improvement of contrast, and changes for artistic purposes.

Image Analysis is used for such tasks as identifying printed or handwritten characters, for checking
the measurements of workpieces, for checking the accuracy of PCB manufacture, for
classifying wooden panels with respect to surface failures, for inspecting the garnishment of
cookies, for analyzing cellular substances (e.g. biopsies) and for detecting environmental
pollution from aerial photographs.

Scene Analysis is one of the most fascinating facets of image processing. A typical application is the
„electronic eye“ of autonomous vehicles (i.e. exploratory robot space craft). Scene analysis is
however particulary difficult to implement and is one of the topics the scientific community
must continue to work hard on to obtain useful systems.

Inevitably these areas of application are not clear cut and tend to overlap. Nevertheless, this book is
devoted to the subjects image manipulation and image analysis. The examples of these subjects
mentioned above are only a few typical areas of application. In principle, image analysis procedures
are applicable in those tasks where human beings have to perform monotonous visual inspection
duties or where accurate measurements at a glance are required. Moreover these procedures offer
new functionalities for visual inspection. For instance they allow inspection problems to be solved with
extreme speed.

In contrast to the theoretical possibilities, many serious obstacles arise when practical implementation
is called for. To estimate these requires adequate expert knowledge which can only be acquired from
long standing experience. However, there are many books which introduce digital image processing.
The reference list ([1.1] to [1.28]) is a selection of some recent books.

1.2 Back to basics

The aim of this section is to illustrate the special aspects of image analysis which (in contrast to image
manipulation) tries to extract information from an image. This illustration is based on the roots of
image analysis, namely the camera. Fig.1.2 (a) shows a light sensitive device as a very simple form of
camera. This sensor only responds to “light” or “no light”. It provides a binary output.

Fig. 1.2 (b) shows a more sophisticated light meter which measures the degree of brightness or
intensity (which is called a graylevel in the context of image processing) of a light source. Simple
animals (like snails) use such a light meter as a protective indicator of excessively sunlight which
would dry them up. Thus biological as well as engineering systems are able to use such simple
sensors in order to analyse their world.

1 Introduction - 1.2 Back to basics

Ad Oculos 3

(a)

(c)

(b)

Light

435.32

Light-Barrier

Clear

n

=

Fig. 1.2:

Different forms of light sensors: A light sensitive device (a), a light meter (b) and a
camera (c).

Bundling a lot of light meters together as shown in Fig. 1.2 (c) produces a camera or referring to
biology, a retina. It is very important to understand that the measurements which this sensor provides
is only the individual light intensities measured by each of the light meters together with their relative
positions. Based on these measurements computers and brains have to extract useful information
about the environment in which they are located.

Humans easily derive and express information in symbolic qualitative statements such as “the tree in
front of the cabriolet is an oak”. They do not easily produce precise numeric statements of the form
“the rod at position (x,y) measures the light intensity z”. However, the latter form of statement is
precisely that derived from artificial sensor systems.

To get a feeling for the problems faced by specialists consider Fig. 1.3. It shows a satellite image of
Cologne. Asking a geologist, a hydrologist and a botanist to deliver an interpretation of the satellite
image would produce 3 fairly different results since the image has different meanings to each of these
experts. But what does an image mean for a PC? Nothing! The image is only an array of numbers.

Fig. 1.3:

A satellite image of Cologne. Asking a geologist, a hydrologist and a botanist to deliver
a line drawing of the image would yield 3 fairly different results since the image has
different meanings to each of the experts.

This problem is well-known in the technical community and it leads to the developement of so-called
knowledge-based systems. The knowledge is entered (or better: is forced) into the system with the aid
of a knowledge engineer, i.e. a person, who tries to put as much human knowledge and
understanding into the computer as is necessary for the task (e.g. analyzing a scene).

1 Introduction - 1.3 The basic components of image processing systems

Ad Oculos 4

Although such systems are sophisticated, they are not very successful comparison to biological
systems. They suffer from what is known as the frame problem, i.e. they are engineered for a very
specific set of circumstances and are not able to autonomously adapt themselves to other situations.
They need to have explicit knowledge concerning an environment as well as their own possible
behaviour (e.g. for obstacle avoidance).Their learning strategy is predetermined and externally
controlled. Their understanding of the world is not their own, but only a small fraction of the
knowledge engineer’s.

To overcome these problems of this classic artificial intelligence approach, scientists have suggested
new ones with names like Instinct-Based Systems, Motivational-Based Systems, Artificial Life and
Animates (which is the short form of Animal-automate, see [1.17]).

Summary:

• Processing images with computers when precise measurements are needed (e.g. in the context of
industrial image processing) is a good choice. Computers execute their tasks fast and precisely if
the tasks are fully defined. This book has been written from this point of view, focussing on
realizable systems.

• Processing images with computers when these images are to be used to enable autonomous
robots to „see“ has been much less succesful. Investigations to improve this situation often try to
use autonomous biological systems (animals) as models. Autonomous in this sense is used to mean
that the system is only controlled by internal parameters (ultimately pleasure and distress).

1.3 The basic components of image processing systems

Fig. 1.4 shows a typical scenario for an industrial image processing system the task of which is to
inspect components and to classify them as complete or defective.

Camera

Rejecter

Image

analysis

reject item!

Fig. 1.4:

Typical scenario for an industrial image processing system.

Illumination: The success of most existing industrial image processing systems is fundamentally

based on adequate illumination. There are several standard alternatives for illumination (Fig.
1.5):

(a) Uncontrolled light is a particular challenge.

(b) The object is positioned between camera and light so that the camera yields a silhouette of
the object.

1 Introduction - 1.3 The basic components of image processing systems

Ad Oculos 5

(c) The relative positions of object, light and camera play an important role: imagine inspecting
a surface in order to check it for scratches (for instance a disc). Typically one orientates the
object so that the scratches have a high contrast relative to their background.

(d) Surfaces may be illuminated homogeneously or with with special patterns of light
(structured light).

(e) In the case of moving scenes flashing strobe light is used to “freeze” the image.

(b)

(c)

(d)

(a)

(e)

Fig. 1.5:

These are examples of typical forms of illumination:
(a) Uncontrolled light (typical for outdoor scenes), (b)
analysis of an object’s silhouette, (c) checking a disc
for scratches, (d) 3D analysis with the aid of light
strips, structured light (e) freezing movement by a
flashing strobe.

Besides visible light other types of radiation such as X-rays, infra-red light and ultrasonic sound
sources may be used.

Acquisition: As we have seen in the previous section, it all starts with rays of light. They are reflected
by the object, go through the lens and finally encounter the CCD. And it is there, on the chip,
that the image is created. From a programmer's point of view this image is already digital.
Section 1.4 describes how to transfer this image into the computer.

1 Introduction - 1.4 Image Acquisition

Ad Oculos 6

Processing: The task for the computer is to acquire and process images and, should the occasion
arise, to control any kind of actuator. In a simple case, the computer is a PC with interfaces to a
camera and to an actuator. However, special image processing computers are often used.
These computers need not be expensive, because it is often possible to realize a sophisticated
configuration with the aid of standard components (hardware and software). Alternatively,
using components which have to be custom developed for special applications (e.g. in the
context of real-time image processing) leads to drastic cost increase.

In the context of a complex production process, the image processing computer is usually part
of a large computer network and its integration may require considerable effort.

In an industrial environment “turn-key” systems which lack a keyboard and a monitor are often
found. However, use of video monitors is advisable for diagnostic purposes such as checking
the system’s image acquisition capability.

A typical software development system for image processing algorithms consists of a library of
standard procedures, tools for realizing new algorithms (high-level language, debugger, etc.)
and a comfortable user interface.

Action: The type of actuator is highly dependent on the type of application. Actuators range from
simple systems which control valves to complex robots. In any case, the image processing
computer must be able to control the actuator(s) efficiently.

The description of these four components illustrate, that “pure” image processing plays only a minor
role in the context of visual inspection in an industrial environment. This is a fact which is often
ignored or underestimated.

This book focuses on the algorithms of image processing. Thus, one only needs a PC running
AdOculos (Section 1.6) to become familiar with this subject. For further experiments it is advisable to
use a frame grabber supported by AdOculos in order to obtain images from a standard video source.

1.4 Image Acquisition

Let us imagine you would like to buy a piece of image processing software and take a look at the
minimum system requirements on its box. In the system requirements list, you would expect to see
the minimal processor speed, minimal RAM etc. Now imagine, that in that very same list was
specified that only a mouse from manufacturer XYZ may be used with the software.

Would you buy the software? Obviously, if you had no other choice because no other solution existed,
you would. However, you would be breaking one of the golden rules of professional programmers:
You would be making yourself dependant on a software manufacturer that does not respect the
standards.

Professional programmers never access a driver or even hardware directly, but they use APIs
(Application Programming Interface) provided by the operating system. In our case, that would be the
so-called "mouse API".

In line with such standardization, mouse manufacturers offer an interface that does not fit specific
application software, but the operating system. Thus, one of the main tasks of a modern operating
system is to strictly separate application software and hardware. As long as we consider the humble
mouse, every programmer of image processing software follows this golden rule.

Going back to the system requirement list on the software box, we would never find the specification
of a mouse, however, we would encounter a list of frame grabbers and more recently FireWire
cameras that are supported by the software. The existence of such a list means nothing else than the
violation of the golden rule.

This situation of unacceptable incompatibility leads to complicated setups for the most basic part of
image processing – the "image acquisition" step.

Let us look for a solution to this problem, by starting right at the very beginning.

1 Introduction - 1.4 Image Acquisition

Ad Oculos 7

1.4.1 A short review

The pioneers of image processing started their first attempts with the help of tube-based cameras
("Vidicons"), video monitors and so-called "mini computers" – such as the famous PDP-11. With these
components, however, our pioneers had two typical problems:

The first problem was the video standard-based (for instance CCIR) output signal of these cameras.
These analog signals, coming from the world of television, had to be connected somehow to a digital
computer.

The second problem was quite simply the enormous amount of data that makes us a video stream.
Let us take a CCIR signal as an example. With a resolution of 768 x 576 pixels and 25 images per
second, we have to deal with 10 MByte of data per second. Even by today’s standards, this is not a
trivial data rate. In the old days, this went beyond the resources of a common computer.

The solution to both problems was the development of a so-called "image memory" which consisted
of 3 parts:

• an A/D converter to digitize the video signal,

• the memory itself and

• a D/A converter to visualize the memory's content on an (analog) video monitor.

Such image memory was located outside the computer and was connected to the computer via - from
the today's point of view – a slow digital interface.

Obviously, such products were extremely expensive and therefore only used by a few specialists. This
situation changed with the spread of the famous IBM PC and thus the PCI bus. With this new
infrastructure, the external image memory became an ISA card (called a "frame grabber"). This resulted
in price cuts and the base for an enormous spread of image processing.

Today, we naturally work with PCI frame grabbers, while the image memory is usually part of the
computers memory. The PCs graphics system replaces the "old" video monitor.

From the point of view of the interfaces, things have not changed very much. This is especially true for
software, as every grabber manufacturer develops their proprietary method of accessing the grabber.
Therefore, any piece of application software that is to become widespread has to be adapted to
various different grabbers. This situation results in long lists of "supported grabbers" which we find in
the system requirements of image processing software.

The birth of CCD cameras

In parallel to the development of frame grabbers, camera manufacturers have substituted tubes with
CCD chips. The idea of a CCD is simple. We can imagine it as a memory chip without a "top". Thus, the
memory cells can be reached by rays of light. Due to the so called "photo effect", these rays of light
create negative charge (electrons) in these cells.

After exposure, this charge may be accessed to be used for further processing steps. In the eyes of a
programmer, that image is already digital (Fig. 1.6). Therefore, the programmer may think that s/he is
able to access the memory (called "CCD") directly.

CCD

PROGRAMM Image_acquisition
.

Image : ARRAY [Row] [Col] OF BYTE
.

BEGIN
.

Image <- get_ccd_content
.

END

Fig. 1.6:

Following the abstract view of a
programmer the content of a
CCD chip is already a digital
image.

1 Introduction - 1.4 Image Acquisition

Ad Oculos 8

But actually the majority of CCD cameras are not produced for programmers, but for the world of
television and video. Therefore, instead of its digital nature, at its output, a CCD camera has to behave
like an old tube-based camera. Thus, almost all CCD cameras in the world are based on an analog
video standard such as CCIR for instance.

So also here things have not really changed since the old times of the pioneers - at least concerning
the interfaces. However, regarding the prices today, the cameras are by no means devices that are
used by a few specialists only.

1.4.2 The 4 steps towards an improvement

Fig. 1.7 depicts the consequences of the situation described in the section above. At the beginning of
the chain, we have a camera which is based on a digital sensor (the CCD) but yields an analog video
signal. Therefore, we need a frame grabber to digitize (or better re-digitize) the analog signal. The
grabber manufacturer also provides a proprietary driver and an SDK (Software Development Kit). Using
these tools, programmers can develop their application software. In this way, the application software
and the frame grabber are more or less one unit. If this application software is to run with frame
grabbers from other manufacturers, it has to be adapted to this frame grabber using the SDK of its
manufacturer.

Cable: coax Analog

grabber

Application software

Driver: proprietary

SDK: proprietary

Analog

camera

A

D
D

A

Fig. 1.7:

The status quo of proprietary in-
terfaces.

First step

The first improvement is the use of a camera with a digital output which thereby yields the CCDs
content directly (Fig. 1.8). The improvement is due to avoidance of any interference caused by the D/A
conversion (in the camera), the analog transmission and the A/D conversion (in the frame grabber). But
although we now have a digital camera, we still need a grabber - a so-called "digital frame grabber".

1 Introduction - 1.4 Image Acquisition

Ad Oculos 9

Cable:
proprietary
CameraLink

Digital

grabber

Application software

Driver: proprietary

SDK: proprietary

Analog

camera

or

Fig. 1.8:

Digital systems do not neces-
sarily solve the problem of
prorietary interfaces.

We need such a grabber, since when the first digital cameras have been developed there was no
standard for digital interfaces that met the requirements of measurement oriented image processing.

Therefore, at the hardware level - as well as at the SDKs level - all problems of proprietary interfaces
remain.

Second step

The second improvement is the use of the FireWire bus (alias "IEEE 1394", Fig. 1.9). Contrary to
popular opinion, the IEEE 1394 standard describes a "real" bus which has been developed among
others by Apple to overcome certain problems of the SCSI bus.

Protocol:
proprietary

Bus:FireWire

FireWire
card

Application software

Driver: proprietary

SDK:proprietary

Fig. 1.9:

Even the use of FireWire cameras
is often based on proprietary In-
terfaces.

1 Introduction - 1.4 Image Acquisition

Ad Oculos 10

Thus the camera, as well as the computer, requires an IEEE 1394 interface. Due to the widespread
nature of this standard, very reasonable chips implementing the interfaces are available. Therefore
today several motherboards are already equipped with an IEEE 1394 interface. If, however, an upgrade
should be necessary, a 1394 PCI card costs only about 50 Euro.

The improvement is due to the avoidance of any special and therefore expensive frame grabber. On
the other hand, all problems of proprietary drivers and SDKs remain. At this point we have to discuss a
severe misunderstanding concerning the term "FireWire". At first glance, it seems to be easy to
replace one FireWire camera by another. But actually - since we have to deal with a bus - two devices
connected to this bus are only able to exchange data, if they use the same protocol. Such protocols
are usually not part of a bus specification.

Third step

Therefore, the third improvement is the standardization of protocols which define the exchange of
data between FireWire devices (Fig. 1.10). In case of an uncompressed transfer of image streams, this
protocol is "DCAM". It was initiated by Sony and Hamamatsu and is supported by the international
organization IIDC today.

Protocol:
DCAM / IIDC

Bus: FireWire

FireWire
card

Application software

Driver:DCAM

SDK:proprietary

Fig. 1.10:

Using FireWire cameras which
exchange data based on the
DCAM protocol is the first step
towards a consitent use of
standardized interfaces.

In this way, we do no longer have a proprietary driver, but a DCAM driver. Typical examples for this are
the DCAM driver for Linux which can be download for free from the Internet and the DCAM driver
from The Imaging Source which is based on the Windows Driver Modell. As a result, we finally have
reached our goal of interchangeability between cameras of different manufacturers. The one and only
remaining issue is the proprietary SDK.

Fourth step

Therefore, the fourth and last improvement serves to overcome proprietary SDKs. We reach this goal
by applying the golden rule already mentioned in the introduction. According to this rule, application
software is not to directly access any hardware, but should access the APIs (Application Programming
Interface) provided by the operating system.

1 Introduction - 1.4 Image Acquisition

Ad Oculos 11

Application software

API:

DirectX/DirectShow

Driver:

WDM Stream Class

Protocol:

DCAM / IIDC

Bus:FireWire

FireWire
card

Windows
2000

XP

Fig. 1.11:

The last step towards a
standardization is the inte-
gration of the DCAM proto-
col in an operating system
interface (API). In case of
Windows this API is
DirectX®.

But what is the API in case of image streams? In case of the widest spread operating system -
Windows - this API is "DirectX®" (Fig. 1.11). If any video source is to be compatible to DirectX®, it has
to provide a so-called "WDM Stream Class" driver driver (WDM means "Windows Driver Model"). In our
case of a FireWire camera, this driver obviously has to "talk" DCAM (see "Third step"). In this way the
camera becomes an "entire" operating system device (Fig. 7).

1 Introduction - 1.4 Image Acquisition

Ad Oculos 12

W
in

2
0
0
0

/
X

P

W
in

2
0
0
0

/
X

P

Application software

IC Imaging Control

API

DirectX
®

Driver

IC WDM

SDK

Fig. 1.12:

The simplest and fastest way of developing
software that is compatible to DirectX® is the use
of the SDK IC Imaging Control.

1.4.3 The next steps with DirectX®

Up to now, we have just looked at boring theory. However, before we jump into a real life example,
we should ask ourselves three questions:

• Why will the standard DirectX® be successful?

• Does this standard meet our requirements?

• How are such software applications developed?

Standards only lead to the desired success (i.e. cost reduction) when there is a wide spectrum of
applications. Two great examples are the video standard CCIR and EIA. They were developed half a
century ago for the mass market of consumer electronics. Today, we are still successfully working
with them in the field of metrology orientated digital image processing.

When we are looking at the standardization of image acquisition, we should therefore not only look at
our niche of industrial and metrology orientated digital image processing, but also cast our glance a
little further a field into the modern consumer electronics market. In doing so, we end up with the
DirectX® standard as we discussed in the previous section (at least, as long as we are dealing with
Windows based PCs, that is).

So, why will this standard be successful? Because it has already been introduced and is being used in
a wide spectrum of applications. How would it otherwise be possible to get such good image quality
from a USB camera, costing only 50 Euro in the multimedia department of most shopping malls?

1 Introduction - 1.5 Digital images

Ad Oculos 13

Does the standard meet our requirements?

Of course we cannot perform metrology orientated digital image processing with a low cost USB
camera. This, however, does not have anything to do with DirectX®, rather with the camera's optics,
the quality of the CCD chip and the compression of image data.

Industrial cameras, on the other hand, excel with their high resolution, progressive scan sensors.
Furthermore, it must be possible to commence image acquisition from a remote trigger and of course,
the resulting image data must be transferred uncompressed.

All of these properties are available in the DirectX® standard. We must not confuse nor compare
DirectX® with other interfaces such as "Video for Windows" or "TWAIN". To put it bluntly, you could say
that the latter two are interfaces that have been added to the operating system as an afterthought,
where as DirectX® represents the operating system itself.

Everyday work with DirectX®

So far we have been just discussing boring theory. For use in our daily work, three questions come to
mind:

• Are there already DirectX® conform image sources that can be used for industrial image processing
applications?

• Is there any application software available which accesses DirectX®?

• Is it possible to develop our own application software under DirectX®?

Indeed the answer to all of these three questions is "Yes" (see Fig. 7):

Image sources: For image processing applications, FireWire cameras are the preferred choice. They
are easy to handle and transfer video data digitally. However, currently not all FireWire cameras
offer the standard protocol DCAM, nor are shipped with a WDM Stream Class driver. Therefore,
they are not "visible" to DirectX®. The positive example in this regard are the DCAM-based
FireWire cameras from The Imaging Source.

Application software: Whereas in the multimedia world, just about all software acquires its images
using WDM, in the field of image processing the choice is somewhat limited. For image
acquisition purposes, The Imaging Source offers the program "IC Capture". It mainly addresses
users of DCAM-based FireWire cameras.

Development tools: For developers of professional multimedia software, the direct access that
DirectX® offers is parts of their daily work. However, for a system engineer who does not use
DirectX® every day, the way of getting accustomed to the direct access is not acceptable. The
acquisition SDK "IC Imaging Control" from The Imaging Source covers this complexity,
suggesting that DirectX® is a frame grabber which the developer accesses via a .NET
component, an ActiveX and a C++ Class Library. In this way, the system engineer is able to
develop software which conforms to the operating system without being forced to get used to
the new environment.

1.5 Digital images

Fig. 1.13 shows a typical digital image. It is represented by an array of N rows and M columns.
Usually, the row index and the column index are labeled with y and x, or r and c.In many (but not all)
cases the image array is square i.e. N=M. Typical values for N and M are 128, 256, 512 or 1024.

1 Introduction - 1.5 Digital images

Ad Oculos 14

0 1 2 3 4 5

0

1

2

3

4

5

6

Columns

M-1

R
o

w
s

N-1

Pixel

Fig. 1.13:

Basic structure of a digital image.

The elements of the image array are called pixels (picture elements). In the simplest case the pixels
merely take either the value 0 or 1. Such pixels constitute a binary image. Usually, the values 1 and 0
represent light and dark regions or object and background, respectively. In order to obtain a finer
quantization of the video image’s light intensity, it is usual to use one byte per pixel leading to integer
values ranging from 0 (black) to 255 (white). Between these limits the values are gray and therefore,
the integer value associated with a pixel is called its graylevel.

Clearly it is also possible to process color images. In this case, an image requires a N*M array for each
of the primary colors red, green and blue. Thus, the “graylevels” of each of the arrays determine the
“strength” of the red, green and blue components of the image at the position of the pixel in question.

Processing real colors must not be confused with the pseudo-color visualization of images which were
originally gray. Pseudo-color representation is sometimes useful to emphasize graylevels or graylevel
ranges of interest, in order to facilitate image analysis by a human observer.

Digital image processing usually requires large resources of computing power and memory. A typical
graylevel image of 512 * 512 pixels and 256 graylevels (8 bits) per pixel needs 256K bytes of memory.
This is approximately equivalent to 100 typewriten pages. Suppose that one has to deal with real-time
processing of 10 images per second. Then the amount of data to cope with exceeds 150M bytes or
60,000 typed pages per minute. This corresponds to a heap of paper 3 meters (10 feet) high.

Fig. 1.14 shows a graylevel image of 128*128 pixels, each with 256 graylevels. It represents the image
of simple geometrical objects cut out of cardboard. A black piece of cardboard serves as the
background, while the objects are gray or white. A human observer is able to identify the objects and
their position in the image without any problems (Section 1.2) but the computer only “sees” an array,
the elements of which are integers within the range 0 to 255. This fact is illustrated by a section of the
source image shown in Fig. 1.15. Algorithms which enable a computer to identify the contents of an
image are the main subject of this book.

Fig. 1.14:

Example of a graylevel image.

1 Introduction - 1.5 Digital images

Ad Oculos 15

Fig. 1.15:

Hexadecimal representation of a section of the graylevel image shown in Fig. 1.14.

This example image (Fig. 1.14) highlights two other fundamental problems which occur in the context
of digital images:

• The elliptic object in the middle of the image was originally a circular area. Its distortion is due to the
geometry of the pixels. Usually a pixel has the form of a rectangle. In a standard video system the
ratio of the size of the pixel edges is four to three. This leads to the distortion shown in Fig. 1.14.

• The edges of the objects are not smooth, but have “digital teeth”. This problem decreases with
higher image resolution. However, in the example shown the ratio of pixel size to the size of the
objects are such that problems may arise with some applications such as measuring the size of the
object.

Fig. 1.13 shows the pixels as an arrangement of tiles. This common representation of an image is
inconvenient from the point of view of signal processing. Thinking in terms of signal processing a
digital image is a rectangular array of sampling points. Fig. 1.16 shows a circle in an “analogue” image
with an overlay of a 4*4 sampling grid. If the circle and the background are uniform (e.g. the
background may be black while the circle is white or vice-versa). Then the corresponding 4*4 digital
image is shown in Fig. 1.17. Note that in practice the sampling grid of a CCD-camera consists neither
of infinitly fine “needles” nor of tiles with infinitly fine joints but of tiles and joints processing similar
dimensions.

x

y

Fig. 1.16:

This is a circle in an “analogue” image (an image not yet sampled). To get
a 4*4 digital image the image has to be sampled at the marked points.

1 Introduction - 1.5 Digital images

Ad Oculos 16

The previous example dealt with the arrangement of the samples of a digital image. But what about
the “behavior” of the individual samples? Fig. 1.18 (a) depicts a cut through an image the intensity of
which varies as a sinusoidal signale. Fig. 1.18 (b) shows 8 samples taken at the individual position.
Extending this sample over the whole sample space leads to the “tile representation” in Fig. 1.18 (c).

c

r

Fig. 1.17:

Digitized circle image (Fig. 1.16) with a resolution of 4*4 pixels.

The subject of “digital images” has already been fully discussed more fully by many authors. E.g.,
Ballard and Brown [1.1], Jähne [1.12], Jain [1.13], Netravali/Haskell [1.19], and Schalkoff [1.24] deal with
many of the detailed problems presented by digital images. These problems range from the geometry
of a single pixel to Moiré effects.

1 Introduction - 1.5 Digital images

Ad Oculos 17

(c)

(b)

(a)

x

Intensity

x

x

Fig. 1.18:

This is a cut through an image the intensity of which varies as a sinusoidal signal (a). (b)
shows 8 samples at an infinitely small width. Extending this sample over the whole
sample space leads to the ‘tile representation’.

1 Introduction - 1.6 Getting started with AdOculos

Ad Oculos 18

1.6 Getting started with AdOculos

Please start AdOclus...

...the following screenshot shows the AdOculos startup screen:

Toolbar

Setup window

Create a new image window...

...by selecting the "New Picture" icon in the toolbar.

Image window

Image icon

1 Introduction - 1.6 Getting started with AdOculos

Ad Oculos 19

Now double click the image window...

...and select the image file Pliers.128.

After pressing Enter or clicking the
open button, the file will be
displayed in the image window.

Please now open another image window...

...in the way desribed earlier.

Your desktop will now
display a second image
window.

1 Introduction - 1.6 Getting started with AdOculos

Ad Oculos 20

Create a new function...

...by selecting the "New Function" icon in the toolbar.

The setup window will now
display a new function icon

Double click the function icon...

...to open a pop-up window where
you can choose the desired function.

Please choose the function "Median Operator"...

...by scrolling with the vertical scrollbar
to the desired position.

Select the image windows...

...which are associated with the
input and the output image.

1. Click into the "Input" textfield

2. Select the image icon "Pliers"

3. Repeat the procedure 1 & 2 with the
"Output" textfield and the image
icon "0".

1 Introduction - 1.6 Getting started with AdOculos

Ad Oculos 21

Either press "Enter" or click OK to confirm.

The image icons are
automatically connected
via lines.

You may rearrange the image icons...

...to create a more organized
view of the setup window.

Start the function chain...

...by selecting the "Start all functions" icon in the toolbar.

The symbol window "0"
will now show the resulting
image of the selected
function chain

1 Introduction - 1.7 Remarks on the example procedures

Ad Oculos 22

1.7 Remarks on the example procedures

Each of the succeeding chapters contains a section with example procedures. Concerning these
procedures, the following remarks are appropriate:

• The example procedures are intended to be a means of knowledge transfer. They may only be used
as a core for applications if they are “wrapped up” well. Usually this “wrapping up” is the most
expensive part of programming. The authors disclaim any responsibility for the use of the example
procedures used in any of the applications.

• The example shown in Fig. 1.19 uses function prototypes. For the sake of simplicity they are omitted
in all succeeding examples.

• In Appendix A “service procedures” which are often used, as well as some special data types are
defined.

• The example procedures are independent of any hardware or operating system.

Usually the development of image processing algorithms is based on high-level programming
languages. Fig. 1.19 shows a simple C program which may serve as a frame for further developments.
For the sake of simplicity the input image INFILE and the output image OUTFILE are predefined.
Furthermore, they are assummed to be squares of size IMSIZE. The main procedure main merely
consists of a sequence of subroutines. The procedures ImAlloc and ImFree organize the memory
management required for the images. They are described in Appendix A. GetImage reads an image
file from the disk, while PutImage writes an image to the disk. ShowImage is a procedure which
manages the presentation of an image. The realization of the last three procedures depends on the
respective host machines. Therefore, they have not been described in this book.

ProcessImage serves as an example to demonstrate the basic elements of an image processing
procedure. Such a procedure starts with the initialization of the output image (here OutIm). Actually,
this would not be necessary in the current example since the following operation only works on single
pixels. However it is a good working habit to always initialize any variable. The operation already
mentioned above scales the graylevel down by 50%. Since this is a pixel operation, the output could
be written directly to the input. However, this is a rare exception: usually the result of an image
processing procedure must not be rewritten into the input image. To do so would destroy data which
are required in their original form. Surprisingly this error is made by many beginners in the image
processing field, even when they have been previously warned. An obvious explanation for the
phenomenon might be the early experience of “image processing” with pencil and eraser, which
actually takes place in one and the same image.

1 Introduction - 1.8 Exercises

Ad Oculos 23

#define INFILE “c:\\image\\in.128”
#define OUTFILE “c:\\image\\out.128”
#define IMSIZE 128

void ** ImAlloc (int,int,int);
void ImFree (void **, int);
void GetImage (int, char[], BYTE **);
void ProcessImage (int, BYTE **, BYTE **);
void ShowImage (int, BYTE **);
void PutImage (int, char[], BYTE **);

/************************ MAIN *****************************/
void main (void)
{
 BYTE ** InIm;
 BYTE ** OutIm;

 InIm = ImAlloc (IMSIZE, IMSIZE, sizeof(BYTE));
 OutIm = ImAlloc (IMSIZE, IMSIZE, sizeof(BYTE));

 GetImage (IMSIZE, INFILE, InIm);
 ProcessImage (IMSIZE, InIm, OutIm);
 ShowImage (IMSIZE, OutIm);
 PutImage (IMSIZE, OUTFILE, OutIm);

 ImFree (InIm, IMSIZE);
 ImFree (OutIm, IMSIZE);
}

/********************** ProcessImage **************************/
void ProcessImage (ImSize, InIm, OutIm)
int ImSize;
BYTE ** InIm;
BYTE ** OutIm;
{
 int r,c;

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++)
 OutIm [r][c] = 0;

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++)
 OutIm [r][c] = InIm [r][c] / 2;

}

Fig. 1.19:

Frame of a simple image processing program. The procedures ImAlloc, ImFree and the data
type BYTE are defined in Appendix A. The realization of the procedures GetImage, ShowImage
and PutImage depend on the computer used.

1.8 Exercises

Exercise 1.1:

A 512*512 satellite image shows an area of 10*10 km (6*6 miles). How large is the area represented
by a pixel?

Exercise 1.2:

A typical transmission rate of a serial link between two computers is 9600 baud. How long would it
take to transmit a 512*512 image with 256 graylevels?

1 Introduction - 1.8 Exercises

Ad Oculos 24

Exercise 1.3:

Assuming 24 bit, 1280*1024 pixel color images, what baud rate is required to transmit a stream of 25
images/sec over a serial link?

Exercise 1.4:

Fig. 1.16 and Fig. 1.17 show an example of the application of a 4*4 sampling grid to an “analog”’
image. Repeat the sampling with a 8*8 and a 16*16 grid.

Exercise 1.5:

In contrast to the solid circle used in Exercise 1.4 a finer structure is now to be digitized. Fig. 1.20
shows two rings. Digitize this image based on a 8*8 sampling grid.

x

y

Fig. 1.20:

What happens if a structure which is finer than the sampling grid is to be
digitized?

Exercise 1.6:

Fig. 1.21 depicts a cut through an image the intensity of which varies like a nosiy sinusoidal. Apply the
same quantization process shown in Fig. 1.18 to this curve.

Intensity

x

Fig. 1.21:

This is a cut through an image the
intensity of which varies like a
noisy sinusoidal.

Exercise 1.7:

Explore the following AdOculos functions for image handling: Change Size, Cut, Hex Image and Noise.

Exercise 1.8:

Explore the AdOculos View Menu.

1 Introduction - 1.8 Exercises

Ad Oculos 25

Exercise 1.9:

Load a *.128 image from the AdOculos images subdirectory. Save this image using the TIFF option.
Activate any DTP tool and try to import the saved image.

Exercise 1.10:

Implement the program depicted in Fig. 1.19. Create a development environment which makes it easy
to realize your own image processing procedures the results of which may be evaluated with the aid
of AdOculos. Use the sample images from the AdOculos images subdirectory.

Exercise 1.11:

Write a program which transforms an 8-bit graylevel image into a binary image and outputs it to a file.
Minimize the file size by grouping 8 pixels to a byte.

Exercise 1.12:

To save more disk space write a program which compresses the binary images generated in Exercise
1.11 without loosing information. Write a second program to decompress the compressed images.

Exercise 1.13:

Write a program which decreases the resolution of a 128*128 graylevel image, to a size of: 64*64;
32*32 etc.

Exercise 1.14:

Write a program which decreases the number of graylevels from 256 to 128, to 64 etc.

1 Introduction - References

Ad Oculos 26

References

[1.1] Ballard, D.H.; Brown, C.M.:
Computer vision.
Englewood Cliffs: Prentice-Hall 1982

[1.2] Boyle, R.D.; Thomas, R.C.:
Computer vision—a first course.
Oxford: Blackwell Scientific Publications 1988

[1.3] Braggins, D; Hollingum, J.:
The machine vision sourcebook.
Berlin, Heidelberg, New York, Tokyo: Springer 1986

[1.4] Freeman, H.:
Machine vision—algorithms, architectures and systems.
New York: Academic Press 1988

[1.5] Freeman, H.:
Machine vision for inspection and measurement.
New York: Academic Press 1989

[1.6] Gonzalez, R.C.; Wintz, P.:
Digital image processing, 2nd ed.
Reading MA, London: Addison-Wesley 1987

[1.7] Gonzalez, R.C.; Woods, R.E.:
Digital image processing.
Reading MA: Addison-Wesley 1992

[1.8] Grimson W.E.L.:
Object recognition by Computers.
Cambridge, Massachusetts: The MIT Press 1990

[1.9] Hall, E.L.:
Computer image processing and recognition
New York: Academic Press 1979

[1.10] Haralick, R.M.; Shapiro, L.G.:
Computer and Robot Vision, Vol. 1 & 2.
Reading MA: Addison-Wesley 1992

[1.11] Horn, B.K.P.:
Robot vision.
Cambridge, London: MIT Press 1986

1 Introduction - References

Ad Oculos 27

[1.12] Jähne, B.:
Digital Image Processing. Concepts, Algorithms, and Scientific
Applications.
Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1991

[1.13] Jain, A.K.:
Fundamentals of digital image processing.
Englewood Cliffs: Prentice-Hall 1989

[1.14] Levine, M.D.:
Vision in man and machine
London: McGraw-Hill 1985

[1.15] Low, A.:
Introductory computer vision and image processing.
London: McGraw-Hill 1991

[1.16] Marion, A.:
An introduction to image processing.
London: Chapman and Hall 1991

[1.17] Meyer, J.A. and Wilson, S.W. (eds.):
From animals to animates.
Cambridge, Mass.: MIT-Press 1991

[1.18] Morrision, M.:
The magic of image processing.
Carmel: Sams Publishing 1993

[1.19] Netravali, A.N.; Haskell, B.G.:
Digital pictures.
New York, London: Plenum Press 1988

[1.20] Niblack, W.:
An introduction to digital image processing.
Englewood Cliffs: Prentice-Hall 1986

[1.21] Pavlidis, Th.:
Graphics and image processing.
Rockville: Computer Science Press 1982

[1.22] Pugh, A. (Ed.):
Robot vision.
Berlin, Heidelberg, New York, Tokyo: Springer 1984

[1.23] Rosenfeld, A.; Kak, A.C.:
Digital picture processing, Vol.1 & 2.
New York: Academic Press 1982

1 Introduction - References

Ad Oculos 28

[1.24] Schalkoff, R.J.:
Digital image processing and computer vision.
New York, Chichester, Brisbane, Toronto, Singapore: Wiley 1989

[1.25] Shirai, Y.:
Three-dimensional computer vision.
Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1987.

[1.26] Torras, C. (Ed.):
Computer Vision: Theory and Industrial Application
Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1992.

[1.27] Young, T.Y.; Fu, K.S. (Eds.):
Handbook of pattern recognition and image processing.
New York: Academic Press 1986

[1.28] Zuech, N.; Miller, R.K.:
Machine vision.
Englewood Cliffs: Prentice-Hall 1987

2 Point Operations

2.1 Foundations

The requirements of understanding this chapter are

• to be familiar with basic mathematics

• to have read Chapter 1.

In point operations a new graylevel for each of the pixels in an image is calculated exclusively from its
original graylevel.Some authors therefore use the term pixel value mapping [2.4], whilst others talk of
gray scale modification [2.5]. Point operations are mainly used for image manipulation (Chapter 1),
such as contrast enhancement of an image.

Fig. 2.1 shows an image which will be used as the source image during the first part of this section.
The graylevels of this image are supposed to lie between 0 and 250. A graylevel histogram which
reflects the distribution of graylevels in the source image is depicted in Fig. 2.2. Such a histogram
helps to evaluate the image from a global point of view. For instance, the low contrast of the image is
obvious since the highest graylevel is 160 instead of 250.

20 20 20 20 20 20 20 40

40

40

40

40

40

40

120120120120120120120160

160

160

160

160

160

160

60 60 60 60 60 60

60

60

60

60

60 60 60 60 60 60

60

60

60

6070 70 70 70

70 70 70 70

70 70 70 70

70 70 70 70

Fig. 2.1:

This image will be used as the source image during the
first part of this section. The graylevels of the image lie
between the values 0 and 250.

2 Point Operations - 2.1 Foundations

Ad Oculos 30

5

10

15

20

50 100 150 200 250

Graylevel
Occurrence

Graylevel

Fig. 2.2:

A graylevel histogram reflects the distribution of graylevels in an image. This is the histogram
of the source image shown in Fig. 2.1. Among other things it high-lights the low contrast of
the source image since its highest graylevel is 160 instead of the potential 250.

Another representation of the graylevel histogram is the so-called cumulative histogram shown in Fig.
2.3. Here the number of graylevels is summed up resulting in a staircase curve. Sometimes this form
of histogram is more convenient for evalutation than the conventional histogram.

There are several methods of enhancing the source image with the aid of point operations. The actual
choice depends on the desired application. In the next part of this section four interactive and one
automatic method of image enhancement are introduced.

5

10

15

20

50 100 150 200 250

Graylevel
Occurrence

Graylevel

25

30

35

40

45

50

55

60

65
Cumulative

50

7

14

34

46

57

64

Fig. 2.3:

This is an alternative representation of the graylevel histogram depicted in Fig. 2.2. Here the
number of graylevels are summed up yielding a new insight into the source image.

2 Point Operations - 2.1 Foundations

Ad Oculos 31

The first method “amplifies” the original graylevels GVin using

GV GAIN *GV BIASout in= + (2.1)

GAIN is directly defined by the user while BIAS may be determined by the mean graylevel of the
original image (MEANin) and the mean desired by the user (MEANout):

out inBIAS MEAN GAIN * MEAN= −

For the example shown in Fig. 2.1 MEANin is 74. Assuming MEANout = 125 and GAIN = 1.5 the

relation between the input and the output graylevel is:

out inBIAS MEAN GAIN * MEAN= −

50 100 150 200 250

50

100

150

200

250

GV

GV
in

out

Fig. 2.4;

This is the mapping of the original graylevels from the image shown in Fig. 2.1
(GVin) to the new graylevels GVout. The resulting image is shown in Fig. 2.6.

Fig. 2.4 shows the mapping of the graylevels according to this formula. Usually this mapping is
performed with the aid of a so-called look-up table (LUT) like that depicted in Fig. 2.5. In practice such
an LUT is realized by an array the index of which is equivalent to the graylevels to be changed (GVin)

while the contents of the array is equivalent to the new graylevels GVout.

Applying the LUT to the source image the result shown in Fig. 2.6 is obtained. The histograms of the
resulting image are depicted in Fig. 2.7 and Fig. 2.8. Comparing them with the original histograms (Fig.
2.3 and Fig. 2.2) the stretching of the graylevels is obvious. The result is a higher contrast in the new
image.

2 Point Operations - 2.1 Foundations

Ad Oculos 32

160 250

159

158

157

156

250

250

250

248

120

80

70

60

40

20

0

194

134

119

104

74

44

0

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

GVGV outin

GV

GV

out

out
= 250

= 1.5 * GV + 1.4
in

Fig. 2.5:

The mapping shown in Fig. 2.4 is performed
with the aid of this look-up table.

44 44 44 44 44 44 44 74

74

74

74

74

74

74

194 194 194 194 194 194 194250

250

250

250

250

250

250 104 104 104 104 104 104

104

104

104

104

104104104104104104

104

104

104

104 119 119 119 119

119

119

119119119119

119

119 134

134

134

134

Fig. 2.6:

Mapping the graylevels of the original image (Fig. 2.1) to new ones according to
the function shown in Fig. 2.4 leads to this new image. When compared to the
original the contrast can be seen to have improved.

2 Point Operations - 2.1 Foundations

Ad Oculos 33

5

10

15

20

50 100 150 200 250

Graylevel
Occurrence

Graylevel

Fig. 2.7:

This is the histogram of the processed image shown in Fig. 2.6. The comparison of contrast
between this histogram and the original one (Fig. 2.2) is much easier than the comparison
between the images. See also the cumulative histogram in Fig. 2.8.

5

10

15

20

50 100 150 200 250

Graylevel
Occurrence

Graylevel

25

30

35

40

45

50

55

60

65
Cumulative

Fig. 2.8:

This is the cumulative version of the histogram shown in Fig. 2.7. The counterpart of the original
image is shown in Fig. 2.3.

Automatic graylevel mapping

This part of the section begins with a new source image that is shown in Fig. 2.9. For the sake of
simplicity the graylevels of this image only range from 0 to 15. Relating to the histogram of the new
source image (Fig. 2.10) it is useful to emphasize the separation between the graylevels 7 and 8. This
can be done by replacing the original graylevels by the frequency of their occurrence which is taken
from the cumulative histogram (Fig. 2.11):

2 Point Operations - 2.1 Foundations

Ad Oculos 34

0 28

7 48

8 60

15 64

→
→
→
→

Since only graylevels ranging from 0 to 15 are valid the mapping is re-scaled so that values fall within
these limits:

28 0

48 8

60 13

64 15

→
→
→
→

0 0 0 0 0 0 0 0

0

0

0

0

0

0

00000000

0

0

0

0

0

0 7 7 7 7 7 7

7

7

7

7

777777

7

7

7

7 8 8 8 8

8

8

8888

8

8 15 15

1515

Fig. 2.9:

This is a new source image comprised graylevels which only range from 0 to 15.
According to its histogram (Fig. 2.10) it is useful to emphasize the separation
between graylevels 7 and 8.

The resulting image is shown in Fig. 2.12. The histograms depicted in Fig. 2.13 and Fig. 2.14 show the
new graylevel distribution.

Since there was no need for user definitions during the whole process of graylevel mapping it is
possible to realize it as an automatic process. This is known as histogram equalization. Note that the
classical definition of equalization refers to a re-mapping of the input image graylevels so that the
output image has an equal number of pixels at each graylevel.

2 Point Operations - 2.1 Foundations

Ad Oculos 35

5

10

15

20

Graylevel
Occurrence

Graylevel

30

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2.10:

The graylevel histogram of the new source image (Fig. 2.9) shows that it is useful in emphasizing the
separation between graylevels 7 and 8.

5

10

15

20

Graylevel
Occurrence

Graylevel

25

30

35

40

45

50

55

60

65
Cumulative

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

28

48

60

64

Fig. 2.11:

The cumulative histogram taken from the new source image (Fig. 2.9) has its steepest rise between the
graylevels of interest, 7 and 8.

2 Point Operations - 2.1 Foundations

Ad Oculos 36

0 0 0 0 0 0 0 0

0

0

0

0

0

0

00000000

0

0

0

0

0

0 8 8 8 8 8

8

8

8

8 8

8

8

15 15

1515

8888

8

8

8

8 13 13 13 13

13

13

13131313

13

13

Fig. 2.12:

Result of re-mapping the graylevels according to the cumulative histogram.

5

10

15

20

Graylevel
Occurrence

Graylevel

30

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2.13:

This is the histogram of the resulting image shown in Fig. 2.12.

2 Point Operations - 2.1 Foundations

Ad Oculos 37

5

10

15

20

Graylevel
Occurrence

Graylevel

25

30

35

40

45

50

55

60

65
Cumulative

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

28

48

60

64

Fig. 2.14:

This is the cumulative histogram of the resulting image shown in Fig. 2.12.

Binarization

The binarization of graylevel images is the most popular method of segmentation. This applies
especially to industrial image processing. This subject is discussed in detail in Chapter 5. The
following paragraphs are for the sake of completeness since binarization is a subject of “Point
Operations” too.

The simplest form of binarization is achieved by applying a threshold to a graylevel image thereby
mapping graylevels below this threshold to 0 and the remaining graylevels to 1. Applying a threshold
of 65 to the source image shown in Fig. 2.1 leads to the binary image shown in Fig. 2.15.

An alternative binarization procedure is the so-called bit-plane slicing which offers a special view into
the “interior” of an image. Fig. 2.16 shows a new source image (the graylevels of which range from 0
to 15) and additionally row 3 of the image with its graylevels in binary representation. If the graylevel
image is thought of as a stack of bit-planes (slices) then the current example has 4 of them. The
“membership” of a pixel within a slice depends on the highest bit of its graylevel (circled in Fig. 2.16).
So pixel (3,0) belongs to no slice, pixel (3,1) belongs to slice 2 and so on.

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

1

1

1

1

1

1

1 1 1 1 1 1 1

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Fig. 2.15:

This binary image is obtained by applying a threshold of 65 to the source image
shown in Fig. 2.1.

2 Point Operations - 2.1 Foundations

Ad Oculos 38

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0 00 0 0 0

1

0

0

1 1 1 1 1

23

4

5

6

78910

11 12 13

1415

3 3 3 3

2

2

2

2

4

4

4 5 5 5

610

0

1

10

2

2

3

3

4

4

5

5

6

6

7

7

0

1

0 0 0 0

00

0

00000000

0

0 0

0

1

111

1

1 1

1

111

1

Slice 3

2

1

0

Slice

Slice

Slice

Fig. 2.16:

The graylevels of this image range from 0 to 15. Thus it consists of 4
bit-planes (slices). The “membership” of a pixel in a slice depends on
the highest bit of its graylevel (circled). Hence pixel (3,0) belongs to
no slice, pixel (3,1) belongs to slice 2 etc.

Varying graylevel mapping

So far graylevel mapping has been applied homogeneously to the whole image. In this sub-section the
necessity of having different graylevel mappings depending on the position of the pixels to be
processed is considered.

Fig. 2.17 shows a very simple line scan camera consisting of only 8 pixels. Suppose this camera is
used in an application with inhomogeneous illumination. To keep things simple the example is
somewhat extreme: At the position of pixel 7 the original luminosity is only 50% of the luminosity at
pixel 0.

A frequent cause of inhomogeneous illumination is shadows. It has therefore become customary to
talk about shading instead of inhomogeneous illumination. Consequently a shading correction has to
be performed.

2 Point Operations - 2.1 Foundations

Ad Oculos 39

10 2 3 4 5 6 7Index

100% 90% 80% 70% 60% 50%100% 100%

Fig. 2.17:

This is a very simple line scan camera consisting of only 8 pixels. This
camera is used in an application with an illumination decreasing from left to
right. To compensate for this effect different graylevel mappings for pixels
3 to 7 are required.

Arithmetic operations on two images

Until now, point operations have been applied to single images only. The next step is to combine two
or more images pixel by pixel.

Fig. 2.18 (left) shows two images consisting of 2 regions the graylevels of which are almost
homogeneous (graylevels 1 and 10) except for a few disturbed or “noisy” pixels. Taking the mean of
the graylevels of equivalent pixels diminishes the impact of the disturbance (Fig. 2.18).

This remedy works if the original (“clean”) graylevel pattern is consistentwe re from image to image
and the noisy pixels change from image to image. The cleaning effect of the additions increases with
the number of images.

The complementary operation to addition is subtraction. Subtracting two images leads to an emphasis
of the differences. Fig. 2.19 (left) shows two images the graylevel patterns of which differ in a
triangular small area. In the difference image this small area becomes more prominent or „pops out“.

2 Point Operations - 2.1 Foundations

Ad Oculos 40

1

10

101010

10

10 10

10 10 10

10

1010

10

10

1010

10

1 1 1 1 1 1 1

1

1

1

11

1

1

11

1

1

1

11

11

1

1

1

11

11

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1

1

6

10

1 1 1 1 1

111

1

1

1

1

1 1 1 1 1 1

1

1

1

1

111

11111

1 1 1 1

10 10

1010

10

10 10 10

10

6

66

66

6 6 6

6

6

6

6

66

66

6

61 10111111

1

1

1

1

1

1

1 1 1 1 1 1 1 1

1

1

1

1

1

111

1

1

1

1

1

1

1

1

11

1

1

111

1

1

10101010

10

10

10

10

10 10

10

10

1010

1010

+ /2

1

Fig. 2.18:

On the left are two images consisting of 2 regions the graylevels of which
are almost homogeneous (graylevels 1 and 10) except for a few disturbed
“noisy” pixels. The image on the right hand side shows that the averaging
of both images diminishes the noise. (+) means: sum two graylevels. (/2)
means: divide the sum by two.

2 Point Operations - 2.2 AdOculos Experiments

Ad Oculos 41

1010

10

10

10

10

1010

10

1 1 1 1 1 1 1

1

1

1

11

1

1

11

1

1

11

1

1

1

1

1

1

11

1

1

1

1

1

1

1

1 111111

1

1

1

1

1

1

1 1 1 1 1 1 1 1

1

1

1

1

1

111

1

1

1

1

1

1

1

1

1

1

1

1010

10

10

10

10 10

10

10

10

10 10 10

10101010

1010

11

111 1

1

1

11

11

0

9

9

999

9

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

11

1

1 1

1111

1

10 10

1

- I II I

1

Fig. 2.19:

The subtraction of two images yields the differences between the graylevel
patterns. (-) means: subtract two graylevels. (||) means: use the absolute
value.

2.2 AdOculos Experiments

The aim of the first experiment is to become familiar with the Invert, Stretch and Mark functions. As
described in Section 1.6 realize the New Setup shown in Fig. 2.20. The source image (which has to be
loaded into image (1)) used in this experiment originates from a medical application of image
processing. Fig. 2.21 (TUMSRC.128) shows a tomographic reconstruction of a skull. The ear-like
objects in the lower part of the image are supports for the patients head. Image (2) shows the result of
Invert. This image does not disclose any new information which is useful for medical analysis.
However, stretching the original graylevels emphasizes the details of the brain structure (Image (3)).
More importantly, a pathological disorder appears which was not previously visible. A tumor which
contrasts with the healthy brain structure becomes clearly visible. The parameters of Stretch were:

min. graylevel: 100

max. graylevel: 105.

These parameters may be varied by clicking the right mouse button on the function symbol Stretch.

2 Point Operations - 2.2 AdOculos Experiments

Ad Oculos 42

Fig. 2.20:

The aim of the first experiment is to become familiar with the
Invert, Stretch and Mark function. This New Setup is realized
according to the steps described in Section 1.6. The results are
shown in Fig. 2.21.

Image (4) shows the result of Mark in which the graylevel range of interest is marked white and
superimposed on the original image. In practice such marking is performed by pseudo-color, i.e. the
original gray levels within the range of interest are colored.

The parameters of Mark were:

min. graylevel: 105

max. graylevel: 107

mark value: 255.

These parameters may be varied by clicking the right mouse button on the function symbol Mark.

The second experiment deals with histogram manipulation and analysis with the aid of Histogram
Equalization and Gray -> Bilevel. The New Setup is shown in Fig. 2.22. The source image
(TUMSRC.128) needs to be loaded into image (1).

After having started Histogram Equalization the dialog box depicted in Fig. 2.23 appears. The
histogram of the input image (TUMSRC.128) is shown on the left while the right histogram is that of
the output image. Between them the cumulative histogram controlling the equalization process is
located (Fig. 2.11). After clicking on OK the output image appears (Fig. 2.25 (2)).

2 Point Operations - 2.2 AdOculos Experiments

Ad Oculos 43

Fig. 2.21:

The source image (TUMSRC.128) shows a tomographic recon-
struction of a skull. (2) is the result of Invert. (3) is the result of
Stretch with the parameters min. graylevel: 100 and max.
graylevel: 105. (4) is the result of Mark with the parameters min.
graylevel: 105, max. graylevel: 107 and mark value: 255. These
parameters may be varied with by clicking the right mouse button
on the corresponding function symbol.

Fig. 2.22:

This is the New Setup of the second experiment involving
histogram manipulation and analysis with the aid of
Histogram Equalization and Gray -> Bilevel. The results are
shown in Fig. 2.25.

2 Point Operations - 2.2 AdOculos Experiments

Ad Oculos 44

Fig. 2.23:

This dialog box appears after Histogram Equalization has been started. On
the left the histogram of the input image (TUMSRC.128) is shown whilst
on the right the histogram of the output image is illustrated. Between
them the cumulative histogram which controls the equalization process
is located. After clicking on OK the output image appears (Fig. 2.25 (2)).

Fig. 2.24 shows the dialog box which appears on the start of Gray -> Bilevel. The small bar in the
middle of the input image histogram (TUMSRC.128) represents the current threshold which may be
varied by entering another value for Threshold. After clicking on OK the output image appears (Fig.
2.25 (3)).

The last experiment demonstrates the Slice function. The New Setup is shown in Fig. 2.26. The source
image (TUMSRC.128) should be loaded into image (1). The results are collected in Fig. 2.27. The slice
to be extracted may be defined by clicking the right mouse button on the function symbol Slice. The
slices and the resulting images correspond as follows:

Slice 7: Image (2)

Slice 6: Image (3)

Slice 5: Image (4)

Slice 4: Image (5)

Slice 3: Image (6).

2 Point Operations - 2.2 AdOculos Experiments

Ad Oculos 45

Fig. 2.24:

This is the dialog box appearing at the start of Gray -> Bilevel. The small bar in the
middle of the histogram of the input image (TUMSRC.128) represents the current
threshold which may be varied by entering another value for Threshold. After clicking
on OK the output image appears (Fig. 2.25 (3)).

Fig. 2.25:

The source image (TUMSRC.128) is again the tomographic
image. (2) is the result of Histogram Equalization with the
parameters shown in Fig. 2.23. (3) is the result of Gray ->
Bilevel with the parameters shown in Fig. 2.24.

2 Point Operations - 2.2 AdOculos Experiments

Ad Oculos 46

Fig. 2.26:

This is the New Setup of the last experiment demon-
strating the Slice function. The results are shown in Fig.
2.27.

Fig. 2.27:

Here the results of Slice are collected. The slices and
the resulting images correspond as follows: Slice 7:
Image (2), Slice 6: Image (3), Slice 5: Image (4), Slice 4:
Image (5) and Slice 3: Image (6). The slice to be
extracted may be defined by clicking the right mouse
button on the function symbol Slice.

2 Point Operations - 2.3 Source Code

Ad Oculos 47

2.3 Source Code

Fig. 2.28 presents four C procedures useful for executing point operations. The base for all these
operations is the look-up table. It is generated by the procedures Invert, Stretch and Mark. The
procedure LutOp performs the actual image manipulation. Formal parameters are:

ImSize: image size

Lut: current look-up table

Image:image to be manipulated.

Like the following procedures LutOp is very simple and self-explanatory.

The procedure Invert inverts the graylevels of an image. Formal parameters are:

MaxGV: maximum graylevel to be inverted

Lut: current look-up table.

The procedure Stretch enhances the contrast of an image within a user-defined graylevel range.
Formal parameters are:

LoGV: lower limit of the graylevel range

HiGV: upper limit of the graylevel range

MaxGV: maximum graylevel permitted

Lut: current look-up table.

The purpose of the procedure Mark is to color those pixels whose graylevels fall into a user-defined
graylevel range. Formal parameters are:

LoGV: lower limit of the graylevel range

HiGV: upper limit of the graylevel range

MaxGV: maximum graylevel permitted

Color: color as desired

Lut: current look-up table.

2 Point Operations - 2.4 Supplement

Ad Oculos 48

void LutOp (ImSize, Lut, Image)
int ImSize;
BYTE *Lut;
BYTE **Image;
{
 int r,c;
 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) Image[r][c] = Lut [Image[r][c]];
}
void Invert (MaxGV, Lut)
int MaxGV;
BYTE *Lut;
{
 int r,c, gv;
 for (gv=0; gv<MaxGV; gv++) Lut [gv] = (BYTE) (MaxGV-gv-1);
}
void Stretch (LoGV, HiGV, MaxGV, Lut)
int LoGV, HiGV, MaxGV;
BYTE *Lut;
{
 int r,c, gv;
 long gvn;
 for (gv=0; gv<MaxGV; gv++) {
 if (LoGV<=gv && gv<HiGV) {
 gvn = gv - LoGV;
 gvn = (gvn * (MaxGV-1)) / (HiGV-LoGV);
 Lut [gv] = (BYTE) gvn;
 }else
 Lut [gv] = (BYTE) ((gv<LoGV) ? 0 : (MaxGV-1));
} }
void Mark (LoGV, HiGV, MaxGV, Color, Lut)
int LoGV, HiGV, MaxGV, Color;
BYTE *Lut;
{
 int r,c, gv;
 for (gv=0; gv<MaxGV; gv++)
 if (LoGV<=gv && gv<HiGV) Lut [gv] = (BYTE) Color;
 else Lut [gv] = (BYTE) gv;

}

Fig. 2.28:

C realization of point operations.

2.4 Supplement

Further applications of point operations as well as theoretical reflections are described by Jähne [2.1],
Jain [2.2], Marion [2.3], Niblack [2.4] and Rosenfeld and Kak [2.5].

2.5 Exercises

Exercise 2.1:

Suppose the graylevels of interest in Fig. 2.1 only range from 60 to 80. This range should be mapped
from 0 to 250 forcing the lower graylevels to zero and the higher ones to 250.

Draw the mapping function (similar to that shown in Fig. 2.4), the look-up table that realizes the
mapping function (similar to that shown in Fig. 2.5), the resulting image (similar to that shown in Fig.
2.6), and the two histograms (similar to those shown in Fig. 2.7 and Fig. 2.8) for this transformation.

2 Point Operations - 2.5 Exercises

Ad Oculos 49

Exercise 2.2:

Rather than completely suppress the lower and higher graylevels as shown in Exercise 2.1, the
contrast of these graylevel ranges may be diminished and the contrast of the range of interest
between 60 and 80 may be increased. The advantage of this approach is that the graylevel range of
interest is emphasized without losing the impression of the complete image.

Compress the original graylevels between 0 and 60 to a range between 0 and 30, stretch the original
graylevels between 60 and 80 to the new range between 30 and 230, and compress the upper range
from 80 to 160 to the new range between 230 and 250. Draw the mapping function, the look-up table
realizing the mapping function, the resulting image and the two histograms.

Exercise 2.3:

In some applications (i.e. manipulation of medical images) it is useful to mark a certain graylevel range.
Mark the graylevels of the source image which range from 70 to 80 as shown in Fig. 2.1, by mapping
them to 250 (white) while mapping the remaining graylevels to half of their original value. Draw the
mapping function, the look-up table realizing the mapping function, the resulting image and the two
histograms.

Exercise 2.4:

Apply histogram equalization to the source image shown in Fig. 2.1. Draw the resulting image and the
two histograms.

Exercise 2.5:

Draw the complete bit-planes (slices) of the source image shown in Fig. 2.16.

Exercise 2.6:

Fig. 2.29 shows an image taken with a line scan camera operating under the bad illumination
conditions shown in Fig. 2.17. For a shading correction, 5 different graylevel mappings are required.
Draw them together with the corrected image.

10 9 8

7

6

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

100

100

10

10

9

9

9

9

9

9

9

9

9

9

9

7

7

7

7

7

7

7

7

7

7

6

6

6

8

8

8

8

8

8

8

8

8

8

5

50

90 80 6070

5

5

5

50

50

50

50

50

50

50

50

50

50

50

60

60

60

60

60

60

60

60

60

60

60

70

70

70

70

80

80

80

80

90

90

90

Fig. 2.29:

This image taken with the line scan camera shown in Fig. 2.17 under bad
illumination conditions has to be corrected.

2 Point Operations - 2.5 Exercises

Ad Oculos 50

Exercise 2.7:

Average the images shown in Fig. 2.30, Fig. 2.31 and the resulting image shown in Fig. 2.18.

1 111111

1

1

1

1

1

1

1 1 1 1 1 1 1

1

1

1

1

111

1

1

1

1

1

1

1

1

1

1010

10

10

10

11

1

1

10 10

1010

1010

10

10

1

1 1 1

11

1

10 10 1010

Fig. 2.30:

Average this image, the one shown in Fig. 2.31 and the resulting image shown in
Fig. 2.18.

1 111111

1

1

1

1

1

1

1 1 1 1 1 1

1

1

1

111

1

1

1

1

1

1

1

1

1

1010

10

10

10

1

1

1

10 10

1010

1010

10

1

1 1 1

1 1

1

10 10 10

1

1

10

1010

Fig. 2.31:

See Fig. 2.30.

Exercise 2.8:

Write a program which applies Equation 2.1 to an input image.

Exercise 2.9:

Write a program which applies a mapping function (Fig. 2.4) to an input image. The mapping function
should be user-definable by entering the breaks of the curve.

Exercise 2.10:

Write a program which makes it possible to experiment with graylevel mappings which are dependent
on pixel locations in the image. Try a contrast diminishing mapping, the influence of which increases
near the border of the image.

Exercise 2.11:

Acquire images showing objects on an inhomogeneous background and acquire the background
images without the objects. Write a program which is able to isolate the objects from their
inhomogeneous background.

Exercise 2.12:

Acquire an image with an ensemble of objects. Write a program which is able to detect a missing
object after it has “seen” the complete ensemble.

Exercise 2.13:

Become familiar with every point operation offered by AdOculos (AdOculos Help).

2 Point Operations - References

Ad Oculos 51

References

[2.1] Jähne, B.:
Digital Image Processing. Concepts, Algorithms, and Scientific Applications.
Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1991

[2.2] Jain, A.K.:
Fundamentals of digital image processing.
Englewood Cliffs: Prentice-Hall 1989

[2.3] Marion, A.:
An introduction to image processing.
London: Chapman and Hall 1991

[2.4] Niblack, W.:
An introduction to digital image processing.
Englewood Cliffs: Prentice-Hall 1989

[2.5] Rosenfeld, A.; Kak, A.C.:
Digital picture processing, Vol.1 & 2.
New York: Academic Press 1982.

3 Local Operations

3.1 Foundations

The requirements of understanding this chapter are

• to be familiar with terms like derivative, gradient and convolution

• to have read Chapter 1

The global aim of local operations is to emphasize or to suppress graylevel patterns of neighboring
pixels. Fig. 3.1 (left hand side) illustrates the idea: the graylevels of an input image in an arbitarily
defined neighborhood around a central pixel (also called the current pixel) are processed by a given
algorithm. The result of this procedure is a new graylevel which is assigned to the current pixel in the
output image. The position of the current pixel in both images is identical. The neighborhood is called
a mask or a window.

In order to process the whole image it has to be “scanned” by shifting the mask step by step. Usually
this procedure starts in the top left hand corner of the image (Fig. 3.1, right hand side). After the new
graylevel has been calculated the mask must be shifted one pixel to the right followed by a new
calculation, and so on. When the end of the current row is encountered, the whole procedure must be
started again at the beginning of the next row. Note that masks are not placed side by side like tiles.

Operator window

Current Pixel Operator window START

STOP

Fig. 3.1:

Left: The graylevels in the mask are processed by a given algorithm. The result of this procedure is a new
graylevel which is assigned to the current pixel in the output image. Right: To process the whole image
the mask (centered around the current pixel) skips from pixel to pixel. Usually this procedure starts in the
top left corner of the image.

3 Local Operations - 3.1 Foundations

Ad Oculos 53

1111

1

1

1

1

1

1

1 1 1 1

1

1010

1

10 10

10

1

1

10

10 10

10

10

10

10

10101010

11

1

1 1

1

12

4

8

3

6

7

92

2

8

8

10

10 10 10

210

10 10

10

2

9

9

Fig. 3.2:

This is the input image used by the examples and exercises of Section 3.1.1
(Graylevel Smoothing).

Clearly, the current pixel never reaches the border of the image. Thus the image “shrinks” as a result
of a local operation. Usually this shrinking is not important, but it must be ensured that the border
pixels are not given an accidental graylevel. To simplify matters the whole output image should be
initialized to 0.

Two important rules of image processing have now been high-lighted:

• Separate the output image from the input image.

• Initialize the whole output image to 0, before starting an operation.

It is said that „there are exceptions to every rule“ and this applies to image processing as well as to
life in general (Section 3.4).

So far the algorithms for processing the local graylevel patterns have not been discussed. The
following section will demonstrate three classical applications of local operations namely graylevel
smoothing, emphasizing graylevel differences and sharpening graylevel steps. Further applications are
discussed in Section 3.4.

The following sections discuss various well-known local operations. Note that these are only the
“mainstream” in a wide spectrum of possible local operations.

3.1.1 Graylevel Smoothing

The examples in this section employ the image shown in Fig. 3.2 as input image. This image mainly
consists of two graylevel regions, a “dark” one (graylevel 1) and a “light” one (graylevel 10).
Interpreting the other graylevels as noise one obvious task is to remove it, or in other words to obtain
two smooth regions. A very simple smoothing method is the mean operation. Fig. 3.3 shows the
output image resulting from a mean operation applied to the input image (Fig. 3.2). The mask size was
3 * 3. The graylevels of the pixels in the mask were summed up and divided by 9. Obviously the
graylevels of the noisy pixels have been brought closer to the desired graylevel. On the other hand the
formerly steep graylevel step between the two regions in the input image has been flattened. The
assessment of this as a positive or negative effect depends on the application. Some of the following
examples will demonstrate smoothing methods which preserve the graylevel steps.

1

1

1

1

4 8

6

72

8

10

9

0 0 0 0 0 00 0

0 0 0 0 0 00 0

0

0

0

0

0

0 0

0

0

0

0

02

2

2

2

2

4

4

4

5

5

2

1 7

7

8 9

9

9

9

9

9

8

9

9

Fig. 3.3:

Result of the application of a 3 * 3 mean operator to the input image shown in
Fig. 3.2.

3 Local Operations - 3.1 Foundations

Ad Oculos 54

An alternative to the normal mean operator is the weighted mean. In this case the graylevels in the
mask are multiplied by certain weights (also known as coefficients). Fig. 3.4 (right hand side) shows
the weights of the so-called Gaussian low-pass. On the left hand side the weights of the normal mean
(also known as box filter) are set against the Gaussian low-pass.

1

2

4

1 1

1 1 1

1 1 1

2

2

2

1 1

11

Fig. 3.4:

Left: In the case of a normal mean operation (3 * 3 mask) the
graylevels in the mask are equally weighted with 1. Due to the
shape of this mask a filter using it is called a box filter. Right: This
mask represents a Gaussian low-pass. Since (in comparison to the
box filter) the weights realize a smoother filter characteristic the
resulting image has fewer harmonics.

The smoothing effect of the Gaussian low-pass is only slightly better than that of the box filter.
Furthermore the problems of flattened graylevel steps remain.

A very simple smoothing operator which preserves graylevel steps is the min operator. As the name
suggests the min operator yields the minimum graylevel within the mask as the new graylevel. Fig. 3.5
shows the result of a 3 * 3 mean applied to the input image (Fig. 3.2). Now the dark image region
(graylevel 1) is clean but on the other hand the former light region is destroyed. The complementary
max operator cleans light regions but destroys dark regions.

1

8 7

2

0 0 0 0 0 00 0

0 0 0 0 0 00 0

0

0

0

0

0

0 0

0

0

0

0

01 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

2

22

2 2

22

2 2

Fig. 3.5:

The 3 * 3 min operator cleans the dark region of the input image (Fig. 3.2) but
unfortunatly also corrupts the former light region.

Thus an operator is required which combines the functions of the min and max operators and avoids
their disadvantages. Fig. 3.6 shows the solution: The idea of the median operator is to sort all
graylevels within the mask according to their values. The one in the middle of the list is used for the
current pixel of the output image. This strategy removes peaks of both high and low graylevels,
without flattening graylevel steps separating graylevel regions. The disadvantage of the median:
Computing time is high since the graylevels of the neighboring pixels must be sorted.

3 Local Operations - 3.1 Foundations

Ad Oculos 55

5

5 5

54

4 5

10

3

5 5 5 5 54 410 3

555 5 54 4 103

Sort

Median

Fig. 3.6:

The median operator combines the functions of the min and max operators but
avoids their disadvantages. The idea is to sort all graylevels within the mask,
according to their values. The one in the middle of the list is the resulting
graylevel.

Another edge preserving smoothing method is the k nearest neighbor approach. This is a normal
mean operation (box filter) which does not work on all pixels of the mask but only on those k pixels
whose graylevels are closest to the graylevel of the current pixel. Fig. 3.7 shows the result of a 3 * 3
nearest neighbor operator with k=3 (including the current pixel) applied to the input image (Fig. 3.2).
Since only 3 graylevels were used to compute the mean, the smoothing effect is less than that of the
median. Usually k should be greater than half of the number of pixels in the mask.

1

7

2

0 0 0 0 0 00 0

0 0 0 0 0 00 0

0

0

0

0

0

0 0

0

0

0

0

010 6

9

3

1

1

1 1

1

1

1

1

2

1

1

1

1

1

9

9

9 9

910

1010

10

10 10

10

10

10

10

Fig. 3.7:

This is the result of a 3 * 3 nearest neighbor operator with k=3 (including the
current pixel) applied to the input image shown in Fig. 3.2. The nearest neighbor
operator performs a normal mean operation on those k pixels of the mask; the
graylevels of which are closest to the graylevel of the current pixel.

3.1.2 Emphasizing Graylevel Differences

Emphasizing graylevel differences is the classical first step of contour-oriented segmentation [3.2].
This subject is discussed in detail in Chapter 6. What follows has been included for the sake of
completeness since emphasizing graylevel differences is often achieved by a “Local Operation” too.

For the examples of this section a new input image is to be used, and is shown in Fig. 3.8. Like the
input image before, this image consists mainly of two graylevel regions, a “dark” one (graylevel 1) and
a “light” one (graylevel 10). In contrast to the former image this is not a noisy image which is to be
smoothed. Now the aim is to emphasize the graylevel step between the dark and the light region. A
classic method is based on the Laplacian operator. Fig. 3.9 (left hand side) shows the weights of this
local operator. Applying a Laplacian operator to the input image shown in Fig. 3.8 leads to the output
image shown in Fig. 3.10. Omitting the sign of the resulting graylevel differences yields the desired
emphasizing.

One disadvantage of the Laplacian operator (which is an approximation of the second derivative) is
that even graylevel differences caused by small peaks are emphasized. If these peaks are a result of
undesirable noise then the Laplacian operator makes the noise problem worse. To avoid this problem
an operator based on the first derivative should be used. Fig. 3.9 (right hand side) shows the weights

3 Local Operations - 3.1 Foundations

Ad Oculos 56

of the Prewitt operator. Applying the top mask (in which vertical graylevel transitions are emphasized)
first, results in the output image shown in Fig. 3.11. Apart from the absolute magnitudes it is similar to
the image achieved by the Laplacian operator. However a closer look reveals that it is smoother than
the output of the Laplacian. This is the effect which is intended when applying an operator based on
the first derivative.

2 6

3

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

3

2

2

3

3

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

5

7

8

9

5

5

8

8

8

9

8

Fig. 3.8:

This is the input image used by the examples and exercises of Section 3.1.2
(Emphasizing Graylevel Differences).

0 -1

4

1-1

-1-1

0

00

1

1

1

-1

-1

-1

0

0

0

00 0

11

-1 -1 -1

Fig. 3.9:

In contrast to the weights shown in Fig. 3.4, which give rise
to smooth out graylevel differences, the weights in this
figure realize masks which emphasize graylevel differences.
Left: The Laplacian operator emphasizes graylevel
differences by using only one mask. Right: In contrast the
Prewitt operator utilizes two masks. The top mask
emphasizes vertical graylevel transitions while the bottom
mask emphasizes horizontal ones.

1 2

0 0 0 0 0 00 0

0 0 0 0 0 00 0

0

0

0

0

0

0 0

0

0

0

0

0 0

0

0

0

0

0

0

1

1

1 1

1

2

-2

-4

-9-8

-3

-6

3

109

-2

-2

-2

-3

-3

-1

-1

410-2

3

8

Fig. 3.10:

Result of the application of a 3 * 3 Laplacian operator to the input image shown
in Fig. 3.8.

2

0 0 0 0 0 00 0

0 0 0 0 0 00 0

0

0

0

0

0

0 0

0

0

0

0

00

1

2

3

3

1

1

1

11

12

1314

1517

18

19

20

4

5

7

9

7

617

17

20

20

2014

9

5

1

0

1 9

Fig. 3.11:

Result of the application of the Prewitt mask emphasizing vertical graylevel
transitions (Fig. 3.9, top right) to the input image shown in Fig. 3.8.

3 Local Operations - 3.1 Foundations

Ad Oculos 57

1

2

0 0 0 0 0 00 0

0 0 0 0 0 00 0

0

0

0

0

0

0 0

0

0

0

0

0

3

2

0 0 0 0 0 00 0

0 0 0 0 0 00 0

0

0

0

0

0

0 0

0

0

0

0

0

1

1

1

1

1

02

3

11

12

1314

1517

18

19

20

6

4

7

9

5

9

5

14

0

20

20

7

9

17

20

17

0

1

6

4

5 7

1

-1 -2

-3

-4

-7 -8-9

-1 0 0

0

0

0

-1-2

-1

-4 -3

-4

-4

-3 0

1

-1

52 78

1

2

0 0 0 0 0 00 0

0 0 0 0 0 00 0

0

0

0

0

0

0 0

0

0

0

0

0

1

1

1

1

1

02

12

1314

17

18

19

20

6

4

5

50

20

7

9

20

17

10

2018

10

5144

8

2216

Mag

Fig. 3.12:

This is the result of the complete Prewitt operation. Top left: The result of the
first Prewitt mask has already been computed (Fig. 3.11). Bottom left: This is
the result of the second Prewitt mask. Since the main graylevel transition in the
input image (Fig. 3.8) is horizontal there are only fragmented vertical graylevel
steps in it. Consequently the output of the second Prewitt mask is consistently
small. Right: The magnitude image yields the maximum graylevel change at
every pixel.

The Prewitt operation is not yet complete. The second mask has to be applied to obtain the horizontal
graylevel transitions. Having the results of both masks it is obvious that the Prewitt operator
approximates a gradient operation. That is, it will yield for each pixel of the input image (apart from the
border pixels) the direction of the maximum graylevel change and the magnitude of this change. To
achieve this information explicitly the Cartesian representation of the gradient has to be changed into
a polar representation. Fig. 3.12 shows the result of the complete Prewitt operator. The gradient

magnitude is computed using 2 2(x) (y)∆ + ∆ where ∆x is the horizontal graylevel difference and ∆y is

the vertical graylevel difference. The direction of the maximum graylevel change is an important
subject in the context of contour-oriented segmentation and (like further aspects of gradient
operators) is discussed in detail in Chapter 6.

As Section 3.1.1 has shown, min and max operations (which are very attractive due to their simplicity)
yield interesting smoothing results. They are also suitable for emphasizing graylevel differences as
demonstrated by the example shown in Fig. 3.13 which shows the results of a min (top left) and a max
operation (bottom left) applied to the source image (Fig. 3.8). The absolute difference between the min
and the max values yields the emphasized graylevel transition between the dark and the light region.

3 Local Operations - 3.1 Foundations

Ad Oculos 58

2

3

0

1

7

5 9

6

8

10

10

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

2

2

2

3

5

5

55

8

8

10

10

10

10

1010

10

10

10

10

1010

10

10

10

10

1010

10

10

10

8

8

3

3

3

3

1

2

2

7

7

8

8

9

9

9

9

9

9

9

2

2

2

8

8

2

2

1

1

1

1

1

05

5

5

5

2

7

7

8

7

7

6

6

61

2

5

7

1

Fig. 3.13:

Left: Results of a min (top) and a max (bottom) operation applied to the
source image (Fig. 3.8). Right: The absolute difference between the min and
the max values yields the emphasized graylevel step between the dark and
the light regions.

3.1.3 Sharpening Graylevel Steps

The transition from the dark to the light region of the input image shown in Fig. 3.8 is flat. The aim of
this section is to demonstrate approaches which change the flat graylevel transition into a steeper
step. The first task is to add one of the output images from Section 3.1.2, which emphasizes the
graylevel transition, to its input image. As an example, Fig. 3.14 shows the result of adding the input
image shown in Fig. 3.8 to its output image obtained by a Laplacian operation (Fig. 3.10).

2

0 0 0 0 0 00 0

0 0 0 0 0 00 0

0

0

0

0

0

0 0

0

0

0

0

0

1

1

11

13

1418

4

7

9

9

200 11

11

11

1

1

0

-1

-2

-3

-4-6

10

-1

-1

-1 10

10

10

10

-2

10

-2 16

Fig. 3.14:

This is the result of adding the input image shown in Fig. 3.8 to the output
image obtained by a Laplacian operation (shown in Fig. 3.10).

In principle this idea works. However, the negative values and the very high graylevels are far from
ideal. They may be diminished by adding the Laplacian image with reduced difference values. An
alternative is to clip the extreme low and high graylevels.

Another approach is again a variation of the well-known min and max operators. The result of the
closest of min and max operation is either the minimum or the maximum graylevel in the current mask.

3 Local Operations - 3.1 Foundations

Ad Oculos 59

The decision depends on the difference between the graylevel of the current pixel and the minimum
and maximum graylevel in the mask. If the difference from the minimum is less than that from the
maximum, the operator outputs the minimum graylevel, and vice-versa. Fig. 3.15 shows the result of a
3 * 3 closest of min and max operator applied to the input image (Fig. 3.8). The result is obviously
better than that demonstrated in Fig. 3.14.

2

1 3 10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10 10

10

10

21

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

Fig. 3.15:

This is the result of a 3 * 3 closest of min and max operator applied to the input
image (Fig. 3.8). This operator returns the minimum (maximum) graylevel in the
mask if the difference between the graylevel of the current pixel and the
minimum (maximum) graylevel is less than that to the maximum (minimum).

So far the min and max operators have performed well. The idea of this operator is based on the
observation that a transistion from a dark to a light region is formed by graylevels lying between the
low and the high graylevels representing the dark and the light regions. But what happens if the
graylevel transition from dark to light is very wide and gradual so that it consists of areas with identical
graylevels, and the low (min) and high (max) graylevels do not lie within the spatial scope of the
operator?

1 3 10

10

10

10

10

10

10

10

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

10

10

10

10

10

10

10

10

10

10

10

10

1010

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

1

1

1

1

1

11 1

Fig. 3.16:

To learn about further aspects of the closest of min and max operator this
image is used as a source for new experiments.

To find an answer to this question a new input image (shown in Fig. 3.16) is used for an example. Fig.
3.17 shows the result of a 3 * 3 closest of min and max operator applied to the new input image. The
aim of obtaining a step between the dark and the light region has not been achieved.

1

3

10

10

10

10

10

10

10

10

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

10

10

10

10

10

10

10

10

10

10

10

10

10

3

3

3

3

3

3

33

3

3

1 1

1

1

1

1

1 1 1 1 1

111

1

10

Fig. 3.17:

This is the result of a 3 * 3 closest of min and max operator applied to
the new input image (Fig. 3.16). The aim of obtaining a step between
the dark and the light regions has not been achieved.

3 Local Operations - 3.2 AdOculos Experiments

Ad Oculos 60

Applying two iterations of the 3 * 3 closest of min and max operator to the output image resulting
from the first iteration (Fig. 3.17) yields the images shown in Fig. 3.18 and Fig. 3.19. Step by step a
“channel has been dug” by the operator to separate the disturbed region (graylevel 3) and the light
region. Further iterations would have no effect. Obviously the alternative to the iteration approach is
the enlargement of the operator mask.

1 10

10

10

10

10

10

10

10

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

10

10

10

10

10

10

10

10

10

10

10

10

10

3

3

3

3

33

3

3

1 1

1

1

1

1

1 1 1 1 1

111

1

10

1

1

1

Fig. 3.18:

The result of the second iteration of the 3 * 3 closest of min and max operator,
applied to the result of the first iteration shown in Fig. 3.17.

1 10

10

10

10

10

10

10

10

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

10

10

10

10

10

10

10

10

10

10

10

10

103

3

3

33

3

3

1 1

1

1

1

1

1 1 1 1 1

111

1

10

1

1

1

1

Fig. 3.19:

The result of the third iteration of the 3 * 3 closest of min and max operator,
applied to the result of the second iteration shown in Fig. 3.18.

3.2 AdOculos Experiments

3.2.1 Graylevel Smoothing

The first experiment deals with the local Mean Operator, Min Operator, Max Operator and Median
Operator which are aimed at removing noise. Realize the New Setup as shown in Fig. 3.20.

3 Local Operations - 3.2 AdOculos Experiments

Ad Oculos 61

Fig. 3.20:

The first experiment deals with the local Mean Operator, the Min Operator,
the Max Operator and the Median Operator which are aimed at removing
noise. This New Setup is realized according to the steps described in
Section 1.6. The results are shown in Fig. 3.21.

Fig. 3.21 (PLIERSRC.128) shows the source image for the current experiment. It needs to be loaded
into image (1). In order to demonstrate noise suppressing operators we need a noisy version of the
original image (1). For this purpose salt-and-pepper noise is applied to the source image with the aid of
the Noise function: the graylevels of randomly selected pixels were assigned either as black or as
white.

The parameters of Noise were

No. of Random Pixel: 1000

Salt & Pepper: on.

These parameters may be varied with a click of the right mouse button on the function symbol Noise.
Similarly the parameters of the four local operators should be determined. Each of these operators is
controlled by the parameter Window Size:. It should be 3 to obtain

the results shown in Fig. 3.21.

A straightforward solution to the noise problem can be achieved by employing an averaging operator.
Using a 3 * 3 mask output image (3) (Fig. 3.21) is obtained. Obviously the disturbance is not entirely
removed. Furthermore, the image is blurred which is usually an undesirable side effect.

3 Local Operations - 3.2 AdOculos Experiments

Ad Oculos 62

Fig. 3.21:

In the first step the Noise function adds salt-and-pepper noise
to the input image (PLIERSRC.128). Image (2) shows the result.
The parameters of Noise were No of Random Pixels: 1000 and
Salt & Pepper: on. These parameters may be varied by clicking
the right mouse button on the function symbol of noise.
Similarly the parameters of the four local operators can be
specified. Each of these operators is controlled by a parameter
Window Size:. It should be 3 to obtain the results shown here:
(3) is the result of the Mean Operator (4) is the result of the
Min Operator (5) is the result of the Max Operator and (6) is
the result of the Median Operator.

Min and max operators avoid blurred output images and they consume little computing time.
However, inspection of the resulting images (4) and (5) reveals their obvious disadvantages. Since the
min operator yields the minimum graylevel of the current mask, it completely removes white peaks
whilst on the other hand enlarging black peaks. The result is achieved by using a 3 * 3 mask.
Assuming the disturbance has been caused by only one black pixel, the min operator generates 8
additional black pixels around the original one. The max operator behaves in a complementary way.

For the removal of these point-like disturbances the median operator performs really well. Image (6)
shows the result of a 3 * 3 median applied to the noisy image. The salt-and-pepper noise is completely
suppressed. The blurring effect of the median is negligible. Unfortunately, a high price is paid for this
performance: the sorting procedure requires a lot of computing time.

3.2.2 Emphasizing Graylevel Differences

Section 3.1.2 described the Laplacian operator and the Prewitt operator as representatives of gradient
operators. Experiments with the Laplacian will be demonstrated in Section 3.2.3. Chapter 6 (Contour-
oriented Segmentation) is based on gradient operators, so that experiments with these operators are
discussed there.

3 Local Operations - 3.2 AdOculos Experiments

Ad Oculos 63

3.2.3 Sharpening Graylevel Steps

The aim of the second experiment is familiarization with the Laplace function. As described in Section
1.6 the New Setup shown in Fig. 3.22 is used.

Fig. 3.22:

The aim of the second experiment is familiarization with the Laplace function. This
New Setup is realized according to the steps described in Section 1.6. The results are
shown in Fig. 3.23.

The Laplacian operator performance is complementary to the averaging operator. Image (2) in Fig.
3.23 shows the emphasis of the graylevel differences of the input image (DIGIM.128; loaded into
image (1)). The resulting graylevels of a Laplacian may be negative. The dark regions of the output
image represent negative “graylevels” while the light regions are assigned positive graylevels. Their
maximum magnitudes are colored black and white, respectively. If the Laplacian operator yields zero
the pixel in question is represented by a medium gray.

For further processing the resulting image (2) which is an integer type has to be converted to a byte
image with the aid of the Int -> Byte function. As image (3) shows (Fig. 3.23), the region’s borders are
emphasized by positive graylevels. Adding this result to the original image (DIGIM.128) yields a
resulting image with sharpened graylevel steps. Note that the Add function divides the graylevel sum
by 2 to avoid any overflow. Thus the mean graylevel of the resulting image (4) is lower than that of the
input image. For the current case this effect is compensated with the aid of the Image Attributes
option (Section 1.6 and Fig. 1.Fehler! Textmarke nicht definiert.).

3 Local Operations - 3.3 Source Code

Ad Oculos 64

Fig. 3.23:

Image (2) shows the emphasis of the graylevel
differences of the input image (DIGIM.128) by a
Laplacian. The dark regions of the output image
represent negative “graylevels” whilst the light regions
are assigned positive graylevels. Their maximum
magnitudes are colored black and white, respectively. If
the Laplacian operator yields zero the pixel in question
is represented by a medium gray. Image (3) is the “byte
version” of image (2). Image (4) is the sum of the input
image and image (3). Note that the Add function divides
the graylevel sum by 2 to avoid any overflow. Thus the
mean graylevel of the resulting image (4) is lower than
that of the input image. For the current case this effect
is compensated for with the aid of the Image Attributes
option (Section 1.6 and Fig. 1.Fehler! Textmarke nicht
definiert.).

3.3 Source Code

Fig. 3.24 shows a procedure which realizes an averaging operation. Formal parameters are:

ImSize: image size

WinSize: size of the mask

InIm: input image

OutIm: output image.

In the first step of the procedure, an initialization of the parameters n and Area and the

output image OutIm takes place. n represents half the mask size WinSize, while the number of
pixels in the mask is assigned to Area. r and c are the coordinates of the current pixel.

The averaging that follows is simple. The graylevels in the neighborhood of the current pixel
InIm[r][c] are summed up in Sum. The value of Sum is then normalized by the number of mask
pixels Area and assigned to the current pixel of the output image OutIm[r][c].

3 Local Operations - 3.3 Source Code

Ad Oculos 65

void Average (ImSize, WinSize, InIm, OutIm)
int ImSize, WinSize;
BYTE ** InIm;
BYTE ** OutIm;
{
 int r,c, y,x, n, Area;
 long Sum;

 n = (WinSize-1) >> 1;
 Area = (2*n+1) * (2*n+1);

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) OutIm [r][c] = 0;

 for (r=n; r<ImSize-n; r++) {
 for (c=n; c<ImSize-n; c++) {
 Sum = 0;
 for (y=-n; y<=n; y++)
 for (x=-n; x<=n; x++)
 Sum += InIm [r+y] [c+x];
 OutIm [r][c] = (BYTE) (Sum/Area);

} } }

Fig. 3.24:

C realization of the averaging operator.

Fig. 3.25 shows the procedure for the Laplacian operator. Formal parameters are:

ImSize: image size

InIm: input image

OutIm: output image.

void Laplace (ImSize, InIm, OutIm)
int ImSize;
BYTE ** InIm;
int ** OutIm;
{
 int r,c, y,x, Sum;

 static int Mask [3][3] = { { 0, 1, 0},
 { 1, -4, 1},
 { 0, 1, 0} };

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) OutIm [r][c] = 0;

 for (r=1; r<ImSize-1; r++) {
 for (c=1; c<ImSize-1; c++) {
 Sum = 0;
 for (y=-1; y<=1; y++)
 for (x=-1; x<=1; x++)
 Sum += InIm [r+y] [c+x] * Mask [y+1] [x+1];
 OutIm [r][c] = Sum/9;

} } }

Fig. 3.25:

C realization of the Laplacian operator.

The procedure starts by initializing of Mask with the coefficients of the Laplacian operator, and with
the output image OutIm set to 0.

The frame of the procedure is similar to the one used for averaging. However, in the case of a
Laplacian operator Sum stores the products of the graylevels InIm[r+y][c+x] and of the
coefficients Mask[y+1][x+1]. This operation realizes the local convolution (Section 3.4). Another

3 Local Operations - 3.3 Source Code

Ad Oculos 66

difference from the averaging operation concerns the data type of the output image OutIm. Since the
results may be negative, signed data is required, i.e. an int image.

Fig. 3.26 and Fig. 3.27 show procedures realizing the min and the max operator, respectively. Formal
parameters and initialization correspond to those of the averaging procedure. The procedures
themselves are also similar. However, the core of the algorithm consists of a procedure which
searches for the minimum or maximum graylevels within the mask, i.e. a non-linear operation which
cannot be reversed.

The realization of the median operator is shown in Fig. 3.28. Formal parameters and initialization are
the same as before. The array Lst serves for the sorting procedure. It needs the allocation of memory
to be appropriate to the mask size. The core of the algorithm starts by loading Lst with the graylevels
of the current mask. The next step sorts the graylevels in Lst based on a standard algorithm (bubble
sort). Finally the median value is assigned to the current pixel of the output image OutIm[r][c].

void MinOp (ImSize, WinSize, InIm, OutIm)
int ImSize, WinSize;
BYTE ** InIm;
BYTE ** OutIm;
{
 int r,c, y,x, n, Area;
 BYTE Min;

 n = (WinSize-1) >> 1;
 Area = (2*n+1) * (2*n+1);

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) OutIm [r][c] = 0;

 for (r=n; r<ImSize-n; r++) {
 for (c=n; c<ImSize-n; c++) {
 Min = InIm[r][c];
 for (y=-n; y<=n; y++)
 for (x=-n; x<=n; x++)
 if (InIm[r+y][c+x] < Min) Min = InIm [r+y] [c+x];
 OutIm [r][c] = Min;
} } }

Fig. 3.26:

C realization of the min operator.

3 Local Operations - 3.3 Source Code

Ad Oculos 67

void MaxOp (ImSize, WinSize, InIm, OutIm)
int ImSize, WinSize;
BYTE ** InIm;
BYTE ** OutIm;
{
 int r,c, y,x, n, Area;
 BYTE Max;

 n = (WinSize-1) >> 1;
 Area = (2*n+1) * (2*n+1);

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) OutIm [r][c] = 0;

 for (r=n; r<ImSize-n; r++) {
 for (c=n; c<ImSize-n; c++) {
 Max = InIm[r][c];
 for (y=-n; y<=n; y++)
 for (x=-n; x<=n; x++)
 if (InIm[r+y][c+x] > Max) Max = InIm [r+y] [c+x];
 OutIm [r][c] = Max;

} } }

Fig. 3.27:

C realization of the max operator.

The procedures shown in Fig. 3.24 and Fig. 3.25 are based on local convolution (Section 3.4). In the
case of the averaging operator an explicit mask is not necessary because all the coefficients are 1. The
realization of the Laplacian operator is based on a static definition of the mask in the procedure.

It is obvious that both operations can be performed by a single procedure which realizes a local
convolution. In this case the mask must be a formal parameter. Note that the convolution procedure
should be able to work with any mask size and any coefficients.

3 Local Operations - 3.4 Supplement

Ad Oculos 68

void Median (ImSize, WinSize, InIm, OutIm)
int ImSize, WinSize;
BYTE ** InIm;
BYTE ** OutIm;
{
 int r,c, y,x, i,j, n, Area;
 BYTE Buf;
 BYTE *Lst;

 n = (WinSize-1) >> 1;
 Area = (2*n+1) * (2*n+1);
 Lst = (BYTE *) malloc (Area*sizeof(BYTE));

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) OutIm [r][c] = 0;

 for (r=n; r<ImSize-n; r++) {
 for (c=n; c<ImSize-n; c++) {
 i=0;
 for (y=-n; y<=n; y++) {
 for (x=-n; x<=n; x++) {
 Lst [i] = InIm [r+y] [c+x];
 i++;
 } }

 for (i=0; i<Area-1; i++) /**** bubble sort ****/
 for (j=Area-1; i<j; j--)
 if (Lst[j-1] > Lst[j]) {
 Buf = Lst[j-1];
 Lst[j-1] = Lst[j];
 Lst[j] = Buf;
 }
 OutIm [r][c] = Lst [Area/2];

} } }

Fig. 3.28:

C realization of the median operator.

3.4 Supplement

Human beings try to extract something meaningful from an image. For them an image has a
“content”. To give only one example, consider the constellation in the night sky. People talk about the
Big Dipper (the Great Bear in England, the Great Wagon in Germany) even though there is clearly only
an accidental alignment of some stars. They have no meaningful relationship other than to human
observers on earth.

It is extremly important to understand that a local operator merely processes (two-dimensional,
discrete, spatial) signals which are meaningless to it. Thus one should be cautious in choosing words
to describe an image or the processing of an image. For instance, local operators which emphasize
graylevel differences (Section 3.1.2) are sometimes called “edge detectors”. This is misleading since
the correspondence of these differences to the edges of the objects in the image is generally not
guaranteed (Chapter 6).

The classical local operation is based on the well-known convolution of two signals h(m) and f(n):

h * f h(m)f (n m)dm= −∫

In practising image processing a small “image” containing the weights (of the processing mask) is
convolved with the input or source image. Let w(i,j) be weight at position (i,j) related to the origin of
the mask and f(x,y) the graylevel at position (x,y) related to the origin of the source image. Then

i j
w * f w(i, j)f (x i, y j)= − −∑∑

is the local convolution of the image f with the mask w. Although it is incorrect from a formal point of
view, it is useful to talk about a cross-correlation between the image f and the mask w. w*f yields a

3 Local Operations - 3.5 Exercises

Ad Oculos 69

measure for the similarity between the weight pattern of the mask and the graylevel pattern of the
image part which is currently overlaid by the mask.

Local operations which are not based on convolution are often more interesting. In Section 3.1 these
included the min, max and median operations. They are typical representatives of the so-called rank
filters. The general idea of rank filters (Fig. 3.29) is to sort out the graylevels overlaid by the mask, to
put them into a list, to weight the list entries and to sum up the weighted entries. This sum is the new
graylevel. That is, for the median operator all weights except the medium one (which is 1) are 0. In the
case of the min (max) operation only the weight corresponding to the lowest (highest) graylevel is 1.

Other interesting alternatives to the convolution approach are the so-called morphological image
processing operations (morphology = science of shape) which are discussed in detail in Chapter 8.
The basic idea here is to exploit knowledge regarding the shape of those graylevel regions of interest.

The large amount of literature concerning local operations reflects the broad spectrum of applications
and the corresponding problems. A few examples are: Ballard and Brown [3.1], Horn [3.4], Jähne [3.5],
Niblack [3.7], Rosenfeld and Kak [3.8] and Schalkoff [3.9]. Since local operations are an important tool
of image manipulation (Chapter 1), literature from the desktop publishing domain can be of interest for
further reading. Morrison [3.6] offers a magical gateway to image processing.

Sort

Graylevels
covered by
the mask

Sorted list
of graylevels

x

List of
weighted
graylevels

Resulting
graylevel

Fig. 3.29:

The general idea of rank filters is to sort the graylevels covered by the mask, to put them into a
list, to weight the list entries and to sum up those weighted entries.

3.5 Exercises

Exercise 3.1:

Apply the Gaussian low-pass operator depicted in Fig. 3.4 to the input image (Fig. 3.2).

Exercise 3.2:

It is not hard to guess that the complement to the min operator is the max operator. Apply a 3 * 3 max
operator to the input image (Fig. 3.2).

Exercise 3.3:

Apply a 3 * 3 median operator to the input image (Fig. 3.2).

3 Local Operations - 3.5 Exercises

Ad Oculos 70

Exercise 3.4:

Apply a 3 * 3 nearest neighbor operator with k=6 (including the current pixel) to the input image (Fig.
3.2).

Exercise 3.5:

In Section 3.1.2 the min and max operations were used to emphasize graylevel transitions. Apply the
second lowest and second highest graylevels to obtain a similar result.

Exercise 3.6:

Apply a 3 * 3 closest of min and max operator to the output image resulting from the first iteration of
the example shown in Fig. 3.15.

Exercise 3.7:

Apply a 5 * 5 closest of min and max operator to the source image shown in Fig. 3.16.

Exercise 3.8:

Let B be a blurred version of image I. Implement an image sharpening filter by subtracting B from I,
scaling that result, and adding it back to I. Show that this is equivalent to adding the output of a high
pass filter (see also Section 4.1) back to the original. Explain how this serves to sharpen the image.

Exercise 3.9:

Write a program which realizes k nearest neighbor operators of various sizes.

Exercise 3.10:

Write a program which realizes closest of min and max operators of various sizes.

Exercise 3.11:

Write a program which realizes a general rank filter.

Exercise 3.12:

Ignore the rule of separating output images from source images and experiment with local operators
which work on the source image itself.

Exercise 3.13:

Try to find local operators which yield aesthetically interesting outputs. For instance, realize an
operator which mimics looking through rippled glass.

Exercise 3.14:

Become familiar with every local operation offered by AdOculos (AdOculos Help).

3 Local Operations - References

Ad Oculos 71

References

[3.1] Ballard, D.H.; Brown, C.M.:
Computer vision.
Englewood Cliffs: Prentice-Hall 1982

[3.2] Bässmann, H.; Besslich, Ph.W.:
Konturorientierte Verfahren in der digitalen Bildverarbeitung.
Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1989

[3.3] Haralick, R.M.; Shapiro, L.G.:
Computer and robot vision.
Reading, Massachusetts: Addison-Wesley 1992

[3.4] Horn, B.K.P.:
Robot vision.
Cambridge, London: MIT Press 1986

[3.5] Jähne, B.:
Digital image processing. Concepts, algorithms, and scientific
applications.
Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1991

[3.6] Morrision, M.:
The magic of image processing.
Carmel: Sams Publishing 1993

[3.7] Niblack, W.:
An introduction to digital image processing.
Englewood Cliffs: Prentice-Hall 1986

[3.8] Rosenfeld, A.; Kak, A.C.:
Digital picture processing, Vol.1 & 2.
New York: Academic Press 1982

[3.9] Schalkoff, R.J.:
Digital image processing and computer vision.
New York, Chichester, Brisbane, Toronto, Singapore: Wiley 1989.

4 Global Operations

4.1 Foundations

The requirements of understanding this chapter are:

• to be familiar with complex arithmetic/numbers

• to have a basic understanding of Fourier analysis (this chapter is intended to refresh that knowledge)

• to have read Chapter 1.

Global operations require all the pixels of the input image to calculate the graylevel of one output pixel.
A typical global operator is the Fourier transform. This transformation is well-known in the context of
one-dimensional continuous and discrete time signals. Digital images are two-dimensional discrete
spatial signals. The formal roots of the corresponding two-dimensional Discrete Fourier Transform
(DFT) do not differ from the one-dimensional case and are described in many books dealing with
digital signal processing or image processing. Thus the following sections offer the opportunity of
brushing up basic understanding with the aid of a few examples.

Fig. 4.1 depicts the basic idea of the Fourier transform: by summing sinusoidal signals a non-
sinusoidal waveform can be synthesized and vice-versa; by applying Fourier analysis to a waveform
information concerning the individual sinusoidal signals comprising the non-sinusoidal waveform is
obtained. Fig. 4.2 shows the non-sinusoidal waveform synthesized in Fig. 4.1 and its representation in
the spatial frequency domain which has been generated by Fourier Analysis. The spatial frequency
domain reveals the sinusoidal “components” (Fig. 4.1) f0, 2f0 and 4f0 of the non-sinusoidal signal.

4 Global Operations - 4.1 Foundations

Ad Oculos 73

x

x

x

a(x)

a(x)

a(x)

0.5

0.25

1

-2

-1

1

a(x)

x

Fig. 4.1:

Example for the synthesis of a non-sinusoidal signal by summing three sinusoidal signals. Usually this
representation is known as time domain and the x-axis is therefore labelled with a t. Image processing deals with
spatial signals. Thus we talk about a spatial domain and label the x-axis as x. a(x) means the amplitude of the spatial
signal at position x.

The example depicted in Fig. 4.2 and Fig. 4.1 is based on continuous signals. In the case of discrete
signals (like digital images) Fourier Analysis is performed by the Discrete Fourier Transform (DFT). An
application-oriented discussion of its formal foundation is given in Section 4.4. Fig. 4.3 outlines the
application of a DFT which has been simplified by using only a period of eight samples a0, a1, ... a7 of

a real input signal (i.e. the signal has no imaginary component).

The DFT yields a Cartesian representation of the spectrum. The real part consists of the coefficients
A0, A1, ... A7 whilst B0, B1, ... B7 form the imaginary components. The Cartesian representation is

useful for computers but not very illustrative. Changing the Cartesian representation to a polar
representation clarifies the spectrum: α0, α1, ... α7 are the magnitudes, whilst Θ0, Θ1, ... Θ7 are the

phases of the sinusoidal signals revealed by the DFT. The sign of the phase is defined in Fig. 4.4.
Accordingly a positive real component A and a positive imaginary component B yields a phase angle
between 0º and 90º, a positive real and negative imaginary component a phase angle between -0º and
-90º. A negative real component leads to a phase angle between ±90º and ±180º (depending on the
sign of the imaginary component).

4 Global Operations - 4.1 Foundations

Ad Oculos 74

1

ff
0

f
0

2 4f
0

f

f
0

f
0

2 4f
0

(f)

180

90

-90

-180

(f)

=

>

-2

-1

1

a(x)

x

Fig. 4.2:

The non-sinusoidal signal synthesized in Fig. 4.1, represented in both the spatial domain and
the spatial frequency domain, as yielded by Fourier Analysis. The spatial frequency domain
reveals the magnitude α(f) (which corresponds to the amplitude of sinusoidal signals in the
spatial domain) and the phases Θ(f) of the sinusoidal “components” f0, 2f0 and 4f0 of the

non-sinusoidal signal. f0 is the fundamental (spatial) frequency.

4 Global Operations - 4.1 Foundations

Ad Oculos 75

B
0 2 3 4 5 6 71

2

4
Ak = 1

-
8

Bk = 1
-
8

-

7

m=0

mcos

sin

a

m=0

ma

m=0..7

k=0..7

m k

A 0 1 2 3 4 5 6 7
B B B B B B BA A A A A A A

Ak Bk+
2 2

Bk

Aktan
-1

k

k =

=

0 2 3 4 5 6 70 1 2 3 4 5 6 7 1

DFT

CART

POL

4
m k

Fig. 4.3:

A simple DFT algorithm based on eight samples a0, a1, ... a7 of a real input signal yielding a

Cartesian representation of the spectrum. Its real component consists of the coefficients A0,

A1, ... A7. The imaginary coefficients are B0, B1, ... B7. The polar representation yields the

magnitudes (α0, α1, ... α7) and the phases (Θ0, Θ1, ... Θ7) of the sinusoidal signals revealed by

the DFT. The sign of the phase Θk is defined in Fig. 4.4.

Fig. 4.5 demonstrates the application of the DFT on eight samples taken from a sinusoidal signal.
Computing by hand is easy using the expanded DFT sums shown in Fig. 4.6 and Fig. 4.7 (see Fig. 4.3
too).

According to Fig. 4.2 a spectrum is to be expected which consists of only one peak the magnitude of
which is 1 since the signal is a pure sinusoidal. However the actual spectrum shows two peaks (Fig.
4.5) each with a magnitude of 0.5. Fig. 4.8 shows the structure of the spectrum of the simplified DFT.
Except for the restriction to 8 samples this structure is valid for the general DFT.

4 Global Operations - 4.1 Foundations

Ad Oculos 76

0..180

0..-180
o

o A

B

Fig. 4.4:

Definition of the phase: A positive real component A and a
positive imaginary component B yielding a phase angle
between 0º and 90º, a positive real and negative imaginary
component yielding a phase angle between -0º and -90º. A
negative real component leads to a phase angle between
±90º and ±180º (depending on the sign of the imaginary
component).

At first glance the coefficients generated by the DFT are ordered in an unusual way (e.g.: why are the
coefficients divided into positive and negative parts? what is a negative frequency?). This ordering has
no special significance, it is only due to the definition of the DFT and a question of getting used to it.
The DC coefficient indicates the average value of the sample period a0, a1 ... a7. The fundamental

frequency is the reciprocal of the period (f0 = 1/T) and therefore the lowest frequency that the DFT

reveals. The Nyquist frequency is the highest frequency the DFT is able to handle (in the current case
4f0). The remaining coefficients are integer multiples of f0, the so-called harmonics.

4 Global Operations - 4.1 Foundations

Ad Oculos 77

x

a(x)

1

-1

0
2

1
0 6 751

-1-
a 2a

2

a aa aa a
3
-

2

2 0
4

-
2

2
- -

2

2
-

DFT

0
20 6 751

A
3 4A A A A A A A

0 0 0 0 0 0 0 0
20 6 751

B 3 41
0 0 0 0 0

B B B B B B B

-
2

- 1-
2

0
20 6 751 3 4

0.5 0 0 0 0 0 0.5 0
0 6 751 3

0 0 0 0 0-90
o o

90

CART

POL

2 4

Fig. 4.5:

A simple example applying the algorithm shown in Fig. 4.3. The expanded sums in Fig. 4.6 and
Fig. 4.7 support the computing of the DFT algorithm by hand.

4 Global Operations - 4.1 Foundations

Ad Oculos 78

= α + α + α + α + α + α + α + α

= α + α + − α − α − α − + α

= α + − α + + α + − α +

= α − α + + α − α + α + − α

= α − α + α − α + α − α + α − α

= α − α + + α − α + α + − α

=

1
0 0 1 2 3 4 5 6 78

1 2 2 2 2
1 0 1 3 4 5 78 2 2 2 2

1
2 0 2 4 68

1 2 2 2 2
3 0 1 3 4 5 78 2 2 2 2

1
4 0 1 2 3 4 5 6 78

1 2 2 2 2
5 0 1 3 4 5 78 2 2 2 2

1
6 8

A ()

A (0 0)

A (0 0 0 0)

A (0 0)

A ()

A (0 0)

A (α + − α + + α + − α +

= α + α + − α − α − α + + α
0 2 4 6

1 2 2 2 2
7 0 1 3 4 5 78 2 2 2 2

0 0 0 0)

A (0 0)

Fig. 4.6:

Expansion of the DFT sums yielding the real
component of the spectrum (Fig. 4.3).

= − + + + + + + +

= − + α + α + α + − α − α − α

= − + α + − α + + α + + α

= − + α − α + α + − α + α − α

= − + + + + + + +

= − − α + α − α + + α − α + α

= − − α + + α

1
0 8

1 2 2 2 2
1 1 2 3 5 6 78 2 2 2 2

1
2 1 3 5 78

1 2 2 2 2
3 1 2 3 5 6 78 2 2 2 2

1
4 8

1 2 2 2 2
5 1 2 3 5 6 78 2 2 2 2

1
6 1 38

B (0 0 0 0 0 0 0 0)

B (0 0)

B (0 0 0 0)

B (0 0)

B (0 0 0 0 0 0 0 0)

B (0 0)

B (0 0 + − α + + α

= − − α − α − α + + α + α + α
5 7

1 2 2 2 2
5 1 2 3 5 6 78 2 2 2 2

0 0)

B (0 0)

Fig. 4.7:

Expansion of the DFT sums yielding the imaginary
component of the spectrum (Fig. 4.3).

DC 0 2f 3f 4f -3f -2f -ff

0

0 0 0 0 0

1 2 3 4 5 6 7

Fundamental
Frequency

Nyquist
Frequency

0

Fig. 4.8:

One needs to get accustomed to the order of the DFT coefficients. The
coefficient DC indicates the average value of the sample period a0, a1, ... a7. The

fundamental frequency is the reciprocal of the period whilst the Nyquist
frequency is the highest frequency the DFT is able to handle. The remaining
coefficients (harmonics) are integer multiples of f0.

4 Global Operations - 4.1 Foundations

Ad Oculos 79

x

a(x)

1

-1

0
20 6 751

a a a aa aa a
3

0
4

DFT

0
20 6 751

A
3 4A A A A A A A

0 0 0 0 0 0 0 0
20 6 751

B
3 41

0 0 0 0 0
B B B B B B B

-
2

- 1-
2

0
20 6 751 3 4

0.50 0 0 0 00.5 0
20 6 751 3 4

0 0 0 0 0-90
o o

90

CART

POL

1 0 -1 1 0 -1

Fig. 4.9:

This example shows the DFT analysing the first harmonic.

4 Global Operations - 4.1 Foundations

Ad Oculos 80

x

a(x)

1

-1

0
23 6 751

a a a aa aa a
3

0
4

DFT

0
20 6 751

A
3 4A A A A A A A

0 0 0 0 0 0 0 0
20 6 751

B
3 4

0 0 0 0 0
B B B B B B B

0
20 6 751 3 4

0 0 0 0 0 0
20 6 751 3 4

0 0 0 0 0

CART

POL

0 00 0 0 0

00

0 00 0

Fig. 4.10:

A sample rate which is lower than or equal to double the Nyquist frequency leads to errors.

4 Global Operations - 4.1 Foundations

Ad Oculos 81

x

a(x)

1

-1

0
20 6 751

a a a aa aa a
3 4

DFT

0.108
20 6 751

A
3 4A A A A A A A

20 6 751
B

3 4B B B B B B B

20 6 751 3 4 20 6 751 3

CART

POL

00-
3

2
-

3

2
-

3

2
- -

3

2
- -

3

2
-

0.338 -0.217 -0.121 -0.108 -0.121 -0.217 0.338 -0.3380 0.108 0.032 0 -0.032 -0.108 0.185

0.108 0.385 0.242 0.125 0.108 0.125 0.242 0.385 -116
4

-105180105116-290 29
Fig. 4.11:

At first glance this DFT example is similar to that shown in Fig. 4.5. However, although the input
signal is a “pure” sinusoidal signal the spectrum indicates various harmonics. It can be said that
the spectrum “leaks”.

4 Global Operations - 4.1 Foundations

Ad Oculos 82

a(x)

x

Fig. 4.12:

For the DFT the sinusoidal signal shown in Fig. 4.11 looks like this.

a(x)

a(x)

x

x

a(x)

x

Fig. 4.13:

The best remedy for leakage is windowing. The multiplication of the original signal (top
left) and a roof function (bottom left) yields a signal with flattened edges.

Fig. 4.9 shows the first harmonic to be treated by the simple DFT (remember the support of Fig. 4.6
and Fig. 4.7). As expected, coefficients 2 and 6 indicate this harmonic with a magnitude of 1 and a
phase angle of ±90º.

Trying to transform the third harmonic as shown in Fig. 4.10 leads to problems: The signal is sampled
at the zero-crossing points so that the digitized signal is always 0. The problem is due to the violation
of the rule of using sample rates which are greater (and not equal to) than double the Nyquist
frequency (Fig. 4.8).

A more difficult everyday problem of DFT applications is the so-called leakage effect: At first glance
the DFT example shown in Fig. 4.11 is similar to that depicted in Fig. 4.5. However, although the input
signal is a “pure” sinusoidal signal the spectrum indicates various harmonics. The spectrum can be
said to “leak”. The answer to this apparent contradiction is that the actual sinusoidal signal is not
“clean”. One of the most important properties of the DFT is that it assumes periodic signals. From this

4 Global Operations - 4.1 Foundations

Ad Oculos 83

point of view the sinusoidal signal looks like that in Fig. 4.12. It is the step which causes the
harmonics.

One way of reducing leakage is to try to choose the sample period so that the height of the steps is
minimal. Unfortunately in practice the repositioning of the sample period is difficult (if not impossible)
to implement.

The practical solution is windowing. The principle is demonstarted in Fig. 4.13 where the
multiplication of the original signal (top left) and a roof function (bottom left) yields a signal with
flattened edges. The roof function used in this example may be replaced by other windowing
functions (e.g. bell-shaped) which are able to flatten the original signal.

So far the DFT has been executed by hand. Obviously it is a fairly time-consuming process even for
computers (floating point matrix operations). The so-called Fast Fourier Transform (FFT) is the most
efficient algorithm for performing the Discrete Fourier Transform. Compared to the straight-forward
implementation of the DFT the FFT saves time and memory since it performs the transformation on
the input vector, hence needing no extra output vector. Fig. 4.28 shows the source code of the FFT.

The 2-dimensional case

Usually anyone who is interested in signal processing is familiar with the 1-dimensional DFT. However
this is not so for the 2-dimensional case. The first hurdle is the idea of a 2-dimensional sinusoidal
signal. The example shown in Fig. 4.14 demonstrates its generation. The two 1-dimensional
cosinusoidal signals depicted in the top illustration are repeated in every row and column. The mean
of these two images (superposition) yields a 2-dimensional cosinusoidal signal. It looks a little bit like
the underside of an egg box. The spectrum of this “pure” cosinusoidal signal consists of 4 peaks.

Fortunately the computing of a 2-dimensional DFT is simply realized with the standard 1-dimensional
DFT by transforming the single rows first and then transforming the single columns of the resulting
image (or vice-versa). This algorithm is shown in Fig. 4.29.

4 Global Operations - 4.1 Foundations

Ad Oculos 84

2
2

-2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

- 2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

2
2

2
2

2
2

2
2

2
2

2
2

1

1

1

1

1

1

1

1

-1

0

0

0

0

00

0

0

2
2

0 0

0

0

0

0

0

0

0

-1

-1

-1

-1

-1

-1

-1

-1

1 1 1 1 1 1 1 1

000 0000 0

-1 -1-1 -1 -1 -1 -1

0 0 0 0 0 0 0 0

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

- 2
2

- 2
2

- 2
2

- 2
2

- 2
2

- 2
2

-

2
2

-2
2

-2
2

-2
2

-2
2

-2
2

-2
2

-2
2

-

0.25 0.25

0.25

0.25

0
o

0
o

0
o

0
o

1 0

0

0

0

0

0

00

0

0

0

0

0

-1

22+

4
22+

4
22 -

4

22+

4

22+

4

22 -

4

22 -

4

22 -

4

2 -

4

-

22 -

4
-

22 -

4
-

22 -

4
-

22+

4
-

22+

4
- 22+

4
-

1
2/

1
2/

11
2/

2

-

2
4/

-2
4/

-

2
4/ 2

4/ 2
2/2

2/ 0
2

4/

2

2/

1
2/

1
2/-

1

2/ 2
4/ 2

4/ 2
2/

2
4/2

4/

- 2
4/

-- 2
4/2

4/

2
2/

1-

4/
- 2

4/

- 2
4/

- 2
4/

- 2
2/ 2/2-

2/

22+

4
- 2/

- 2- 2
2/

MEAN

DTF

mag

pha

Fig. 4.14:

We obtain a 2-dimensional cosine signal by superposing two 1-dimensional cosine signals.
The 2-dimensional signal looks like the underside of an egg box. The spectrum consists of 4
peaks, a pair for each 1-dimensional signal.

Spectral Experiments

The upper part of Fig. 4.15 depicts a typical application scheme of the Discrete Fourier Transform: The
spectrum generated by the DFT is manipulated (HP) and then transformed back by an inverse DFT

(DFT-1). In Fig. 4.15 the example manipulator is a high-pass (HP) filter which suppresses the low
frequencies residing in the corners of the spectrum. Since the high frequencies are responsible for
graylevel steps these steps are emphasized in the resulting image.

4 Global Operations - 4.1 Foundations

Ad Oculos 85

Source

Real

ImagImag

Mag Phase

Mag Phase

DFT HP DFT
-1

CART

POL

Remap

Real

Result

Fig. 4.15:

The upper part of this figure depicts a typical application scheme of the Discrete
Fourier Transform: The spectrum generated by the DFT is manipulated (HP) and

transformed backward by an inverse DFT (DFT-1; Fig. 4.28). Here the
manipulation is a high-pass (HP) filter operation which suppresses the low
frequencies. The lower part depicts two procedures supporting the presentation
of the spectrum to a human observer. The first procedure changes the Cartesian
to a polar representation (Fig. 4.3) while the second procedure swaps the
positions of the low and high frequencies so that the low frequencies are in the
middle of the frame. Note that the source image is supposed to consist of a real
part only. The imaginary input vector for the the DFT is set to 0. In practice
images are always real.

The lower part of Fig. 4.15 depicts two procedures making the presentation of the spectrum more
useful for a human observer. The first procedure changes the Cartesian to a polar representation (Fig.
4.3) while the second procedure replaces the positions of the low and high frequencies so that the
low frequencies are now in the middle of the frame. This is the most commonly used representation
of the spectrum.

Fig. 4.16 shows the spectrum of a square image region. The five small grids arranged in Fig. 4.17
illustrate the manipulation of this spectrum: The shaded squares indicate the frequencies to be set to
0. Below the grids the result of the inverse transform of the manipulated spectrum is shown.
Obviously the graylevel steps are emphasized by these high-pass operations. That is, a high rate of

4 Global Operations - 4.1 Foundations

Ad Oculos 86

higher harmonics indicates steep graylevel steps in the source image. The influence of a low-pass
filter is complementary. Since higher harmonics are suppressed then graylevel transitions become flat
resulting in a blurred image.

1 1 1 1
1111

1 1 1 1
1111

0.250

0
0
0

0
0

0
0 0

0
0
0

0
0

0
0 0

0 0
00 0

0 0
0 0 0

00
0 0

00
0 0

00
0 0

000
00

00
00

0

0.163 0.063 0.068 0.163

0.1070.0440.0440.1070.163

0.0440.0440.1070.163

0.0440.068 0.018 0.018 0.044

0.107

0.0440.0180.0180.0440.068

0 0 0

0

0000

0

00

0

00

0 0

0

0 0

0

0 0

00

0 0

00

0

00

00

000

0

0

0 0

0 0 0 0

0000

0 0 0 0 0 0 0 0

0000

0 0 0 0 0 0 0 0

0000

0 0 0 0 0 0 0 0

0000

-112.5 67.5 -67.5 112.5

-112.5 45 -90 135

-135135-9062.5

-135 90135-67.5

112.5 -135 90 -45

0

DFT

phamag

Fig. 4.16:

This is the spectrum of a square image region. It is the basis for high-pass and low-
pass filter experiments according to the application scheme shown in Fig. 4.15.

4 Global Operations - 4.1 Foundations

Ad Oculos 87

0.25 0.25 0.25 0.250.25 0.25 0.25 0.25

0.250.250.250.250.250.250.250.25

0.25

0.25

0.25

0.25

0.25

0.25 0.25 0.25 0.25 0.25 0.25 0.25

0.25

0.25

0.25

0.25

0.25

0.250.25

0.25

0.25

0.25

0.250.250.250.25 0.250.25

0.25

0.25

0.25

0.25 0.75 0.75 0.75 0.75

0.750.750.750.75

0.75 0.75 0.75 0.75

0.750.750.750.75

.354 .177 .073 .250 .250 .073 .177 .354

.177 .250.0 .0.427 .427 .250 .177

.073 .250 .500 .323 .323 .500 .250 .073

.250 .250

.250.250

.427 .323 .146 .146 .323 .427

.427 .323 .146 .146 .323 .427

.073 .250 .500 .323 .323 .500 .250 .073

.177 .250.0 .0.427 .427 .250 .177

.354 .177 .073 .250 .250 .073 .177 .354

.114 .099 .114 .114.114.099 .099 .099

.099.099.099.099 .188 .188 .188 .188

.099.099.099.099 .188 .188 .188 .188

.099.099.099.099 .188 .188 .188 .188

.099.099.099.099 .188 .188 .188 .188

.114 .099 .114 .114.114.099 .099 .099

.114 .099 .114 .114.114.099 .099 .099

.114 .099 .114 .114.114.099 .099 .099

.011 .026 .026 .026 .026.011 .011.011

.026 .026 .026 .026.063 .063 .063 .063

.026 .026 .026 .026.063 .063 .063 .063

.026 .026 .026 .026.063 .063 .063 .063

.026 .026 .026 .026.063 .063 .063 .063

.011 .026 .026 .026 .026.011 .011.011

.011 .026 .026 .026 .026.011 .011.011

.011 .026 .026 .026 .026.011 .011.011

.011 .026 .114.078 .114 .078 .026 .011

.026 .063 .188 .276 .276 .188 .063 .026

.078 .188 .438 .438 .188 .078.172 .172

.114 .114.276 .276.172 .172.218 .218

.114 .114.276 .276.172 .172.218 .218

.078 .188 .438 .438 .188 .078.172 .172

.026 .063 .188 .276 .276 .188 .063 .026

.026 .114.078 .114 .078 .026 .011.011

Fig. 4.17:

This example demonstrates the influence of the high frequencies.

While high-pass and low-pass filters influence the “borders” of the spectrum, another interesting
application is the suppression of specific frequencies which are known to be the result of global
interference in the source image. Fig. 4.18 shows a 2-dimensional cosinusoidal signal which is similar
to that already depicted in Fig. 4.14 except for interference. This interference leads to the 0.063 entries
in the magnitude spectrum. It is possible to reconstruct the original 2-dimensional cosinusoidal signal
exactly, since the frequencies in the spectrum which result from the interference and the frequencies
representing the cosinusoidal signal have no intersection.

4 Global Operations - 4.1 Foundations

Ad Oculos 88

1 0

0

1

0

0

1

00

1

0

0

0

1

-1

22+

4
22+

4
22 -

4

22+

4

22+

4

22 -

4

22 -

4

22 -

4

2 -

4

-

22 -

4
-

22 -

4
-

22 -

4
-

22+

4
-

22+

4
- 22+

4
-

1
2/

1
2/

11
2/

2

-

2
4/

-2
4/

-

2
4/ 2

4/ 2
2/2

2/ 0
2

4/

2

2/

1
2/

1
2/-

1

2/ 2
4/ 2

4/ 2
2/

2
4/2

4/

- 2
4/

-- 2
4/2

4/

2
2/

1-

4/
- 2

4/

- 2
4/

- 2
4/

- 2
2/ 2/2-

2/

22+

4
- 2/

- 2- 2
2/

DTF

0.063

0.063 0.063 0.063 0.063

0.0630.0630.063

0.063 0.063 0.063 0.063

0.0630.0630.0630.063

0.25

0.25 0.25

0.25

0

0

0 0 0

0

0 0

0

0

0180

180 180

180

180 180

180180

0

mag ang

-

Fig. 4.18:

This is a 2-dimensional cosine signal which is similar (except for an
interference) to that already depicted in Fig. 4.14.

A completely different example stems from pattern recognition. Suppose the aim is to find a certain
graylevel pattern in an image. The problem is that the position of the pattern is not known in advance.
The solution is based on the property that the magnitude spectrum is invariant to shifts of the signal.
That is, the magnitude spectrum of the graylevel pattern is independant of its position in the image.
Therefore the recognition process should be executed on the magnitude spectrum instead of on the
original image. Fig. 4.19 shows a simple string-like graylevel pattern and its spectral representation. In
Fig. 4.20 and Fig. 4.21 the position of the pattern has changed. These changes are reflected in the
phase spectra but not in the magnitude spectra.

4 Global Operations - 4.1 Foundations

Ad Oculos 89

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0000 10101010

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

00.625

0.625

0.625

0.625

0.625

0.625

0.625

0.625

0.408

0.408

0.408

0.408

0.408

0.408

0.408

0.408

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.408

0.408

0.408

0.408

0.408

0.408

0.408

0.408

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

-45

-90

-135

180

135

90

45

157.5

67.5 22.5

-22.5

-67.5

-157.5

-112.5

112.5

-112.5

22.5

157.5

-22.5

-67.5

67.5

157.5

-157

-112.5

112.5

112

67.5 22.5

22.5

-67.5

-157.5

-112.5 112.5

157.5

67.5

22.5 -22.5

-67.5

-157.5

DTF

mag ang

Fig. 4.19:

A simple string-like graylevel pattern and its spectrum. Fig. 4.20 and Fig. 4.21
demonstrate the effect of moving this pattern to different positions.

4 Global Operations - 4.1 Foundations

Ad Oculos 90

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0000 10101010

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

00.625

0.625

0.625

0.625

0.625

0.625

0.625

0.625

0.408

0.408

0.408

0.408

0.408

0.408

0.408

0.408

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.408

0.408

0.408

0.408

0.408

0.408

0.408

0.408

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

-45

-90

-135

180

135

90

45 157.5

67.5

22.5

-22.5

-67.5

-157.5

-112.5

112.5

-112.5

22.5

157.5

-22.5

-67.5 67.5

157.5

-157.5

-112.5

112.5

112.5

67.5

22.5

-22.5

-67.5

-157.5

-112.5

112.5

157.5

67.5

22.5

-22.5

-67.5

-157.5

DTF

mag ang

Fig. 4.20:

The shift of the graylevel pattern shown in Fig. 4.19 has no effect on the magnitude
spectrum.

4 Global Operations - 4.2 AdOculos Experiments

Ad Oculos 91

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0

0 0 0 0

0

0 0 0 0 0 0 0 0

0000

10101010

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

00.625

0.625

0.625

0.625

0.625

0.625

0.625

0.625

0.408

0.408

0.408

0.408

0.408

0.408

0.408

0.408

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.408

0.408

0.408

0.408

0.408

0.408

0.408

0.408

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

-90

180

90

157.567.5

22.5

-22.5

-67.5

-157.5

-112.5

112.5

-112.5

22.5

157.5-22.5

-67.5

157.5

-157.5

-112.5

112.5

112.5

22.5

22.5

67.5

-157.5

-112.5

157.5

62.5

-67.590

180

-90

0 112.5

67.5

-22.5

-157.5

-22.5

-67.5

DTF

mag ang

Fig. 4.21:

The shift of the graylevel pattern shown in Fig. 4.19 has no effect on the magnitude
spectrum.

4.2 AdOculos Experiments

The aim of the first experiment is familiarization with the Fourier Transform function. As described in
Section 1.6 realize the New Setup shown in Fig. 4.22. The source image (BREMSRC.128; Fig. 4.23) to
be loaded into (1) shows a badge lying on the floor of a laboratory.

4 Global Operations - 4.2 AdOculos Experiments

Ad Oculos 92

Fig. 4.22:

The aim of the first experiment is familiarization with the Fourier
Transform function. This New Setup is realized according to the steps
described in Section 1.6. The results are shown in Fig. 4.23.

Image (2) and (3) show the real and the imaginary parts of the result of the Fourier transform.
Changing the current Cartesian representation to a polar representation clarifies the spectrum. Images
(4) and (5) show the magnitude and the phase of the spectrum. To become acquainted with the
Fourier transform trying source images from different scenes is highly recommended.

The second experiment explores the mechanism of spectrum manipulation. As described in Section
1.6 the New Setup shown in Fig. 4.24 is used. The source image (BREMSRC.128; Fig. 4.25) to be
loaded into (1) is again the badge.

In a similar way to the first experiment, images (2) and (3) show the result of the Fourier transform.
This Cartesian representation of the spectrum is to be manipulated by the High-Pass function which
suppresses the low harmonics. The Window Size parameter of the High-Pass function defines the cut
off radius as shown in (4) and (5). For the current experiment this parameter is 80 pixels. It may be
varied by clicking the right mouse button on the function symbol High-Pass.

4 Global Operations - 4.2 AdOculos Experiments

Ad Oculos 93

Fig. 4.23:

In the first step the Fourier Transform function computes the spectrum of the
input image (BREMSRC.128). Images (2) and (3) show the real and the
imaginary part of the result. Changing the current Cartesian representation to
a polar representation clarifies the spectrum. Images (4) and (5) show the
magnitude and the phases of the spectrum.

Fig. 4.24:

The second experiment explores the mechanism of spectrum manipulation. This New Setup is realized
according to the steps described in Section 1.6. The results are shown in Fig. 4.25.

4 Global Operations - 4.2 AdOculos Experiments

Ad Oculos 94

Fig. 4.25:

Similar to Fig. 4.23 Image (2) and (3) show the result of the Fourier transform.
This Cartesian representation of the spectrum is to be manipulated by the
High-Pass function which suppresses the low harmonics. The Window Size
parameter of the High-Pass function defines the cut off radius as shown in (4)
and (5). For the current experiment this parameter is 80 pixels. It may be
varied with by clicking the right mouse button on the function symbol High-
Pass.

4 Global Operations - 4.2 AdOculos Experiments

Ad Oculos 95

Fig. 4.26:

The third experiment replaces the High-Pass function by the Low-Pass function. This New Setup is
realized according to the steps described in Section 1.6. The results are shown in Fig. 4.27.

Fig. 4.27:

The results of the Low-Pass function are complementary to those of the High-
Pass function shown in Fig. 4.25.

Image (6) shows the result of the application of the Inverse Fourier Transform on the manipulated
spectrum. As expected the resulting image (6) shows the emphasized graylevel steps of the source
image (BREMSRC.128).

4 Global Operations - 4.2 AdOculos Experiments

Ad Oculos 96

Replacing the High-Pass function by the Low-Pass function yields the results shown in Fig. 4.26 and
Fig. 4.27.

Note that the realization of the High-Pass and Low-Pass functions serves the purpose of
demonstration only. They violate basic rules of filter design and should not be used in practical
applications [4.5] [4.9].

4 Global Operations - 4.3 Source Code

Ad Oculos 97

4.3 Source Code

void fft (Forward, Size, VecRe, VecIm)
int Forward, Size;
float * VecRe, * VecIm;
{
 int LenHalf, Stage, But, ButHalf, i,j,k, ip, pot2;
 float ArcRe,ArcIm, dArcRe,dArcIm, ReBuf,ImBuf, ArcBuf;
 double Arc;
 pot2 = 0;
 while (Size != (1 << pot2)) pot2++;
 LenHalf = Size >> 1 ;
 j = 1;
 for (i=1; i<Size; i++) {
 if (i<j) {
 ReBuf = VecRe[j-1];
 ImBuf = VecIm[j-1];
 VecRe[j-1] = VecRe[i-1];
 VecIm[j-1] = VecIm[i-1];
 VecRe[i-1] = ReBuf;
 VecIm[i-1] = ImBuf;
 }
 k = LenHalf;
 while (k<j) {
 j -= k; k = k >> 1;
 }
 j += k;
 }
 for (Stage=1; Stage<=pot2; Stage++) {
 But = 1 << Stage;
 ButHalf = But >> 1;
 ArcRe = (float)1;
 ArcIm = (float)0;
 Arc = (double) (PI/ButHalf);
 dArcRe = (float) cos(Arc);
 dArcIm = (float) sin(Arc);
 if (Forward) dArcIm = -dArcIm;
 for (j=1; j<=ButHalf; j++) {
 i = j;
 while (i<=Size) {
 ip = i + ButHalf;
 ReBuf = VecRe[ip-1] * ArcRe - VecIm[ip-1] * ArcIm;
 ImBuf = VecRe[ip-1] * ArcIm + VecIm[ip-1] * ArcRe;
 VecRe[ip-1] = VecRe[i-1] - ReBuf;
 VecIm[ip-1] = VecIm[i-1] - ImBuf;
 VecRe[i-1] = VecRe[i-1] + ReBuf;
 VecIm[i-1] = VecIm[i-1] + ImBuf;
 i += But ;
 }
 ArcBuf = ArcRe;
 ArcRe = ArcRe * dArcRe - ArcIm * dArcIm;
 ArcIm = ArcBuf * dArcIm + ArcIm * dArcRe;
 } }
 if (Forward) {
 for (j=1; j<=Size; j++) {
 VecRe[j-1] /= Size;
 VecIm[j-1] /= Size;

} } }

Fig. 4.28:

C realization of the Fast Fourier Transform. If Forward is 0 the procedure performs the inverse transform.

Fig. 4.28 shows a procedure which realizes the Fast Fourier Transform. Formal parameters are:

Forward: Boolean variable which controls forward or backward transformation

Size: vector size

4 Global Operations - 4.3 Source Code

Ad Oculos 98

VecRe: real part of vector

VecIm: imaginary part of vector.

Note that Size must be to the power of 2 and that the procedure only works on square images.

Since the FFT algorithm works „in-place“ a separation of input and output vector is not required.
Details of the FFT algorithm are described by Burrus [4.2], Elliot et al [4.3] and Ramirez [4.11].

Fig. 4.29 shows a procedure which realizes the Fourier transform of an image. Formal parameters are:

Forward: Boolean variable which controls forward or backward transformation

ImSize: image size

RealIm: real part of image

ImagIm: imaginary part of image (zero in the case of the source image).

void TransIm (Forward, ImSize, RealIm, ImagIm)
int Forward, ImSize;
float ** RealIm;
float ** ImagIm;
{
 int r,c;
 float *VecRe;
 float *VecIm;

 VecRe = (float *) malloc (ImSize*sizeof(float));
 VecIm = (float *) malloc (ImSize*sizeof(float));

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 VecRe[c] = RealIm[r][c];
 VecIm[c] = ImagIm[r][c];
 }
 fft (Forward, ImSize, VecRe, VecIm);
 for (c=0; c<ImSize; c++) {
 RealIm[r][c] = VecRe[c];
 ImagIm[r][c] = VecIm[c];
 } }

 for (c=0; c<ImSize; c++) {
 for (r=0; r<ImSize; r++) {
 VecRe[r] = RealIm[r][c];
 VecIm[r] = ImagIm[r][c];
 }
 fft (Forward, ImSize, VecRe, VecIm);
 for (r=0; r<ImSize; r++) {
 RealIm[r][c] = VecRe[r];
 ImagIm[r][c] = VecIm[r];
 } }
 free (VecRe);
 free (VecIm);

}

Fig. 4.29:

C realization of a two-dimensional, Discrete Fourier Transform. The procedure fft is defined in Fig. 4.28.

The procedure starts by allocating memory for both the arrays VecRe and VecIm. They serve as row
and column buffers. The transformation commences with the image rows. The index of the current
row is r. In preparation, the buffers VecRe and VecIm must be filled with the graylevels of the current
row. After calling fft, the transformation result is kept in the buffers since the FFT calculates in-place.
In the last step the transformation result is rewritten into the input image store. The column
transformation proceeds in a similar way.

Typical manipulations of the spectrum are the suppression of high frequencies (low-pass filter) or low
frequencies (high-pass filter). These operations may be performed using the procedures shown in Fig.

4 Global Operations - 4.4 Supplement

Ad Oculos 99

4.30. The suppression of high spatial frequencies takes place for both the real and the imaginary part
of the spectrum outside a circle around the origin: all spectral values in this area are set to 0. The
suppression of low spatial frequencies is performed in a complementary way. Formal parameters of
the procedures LowPass and HighPass are

Rad: radius of the manipulation section

ImSize: image size

Image: array representing the part of the spectrum (usually real or imaginary part) which
 must be manipulated

void LowPass (Rad, ImSize, Image)
int Rad, ImSize;
float ** Image;
{
 int r,c, Bot,Up;
 long rr,cc;

 Bot = ImSize/2 -1;
 Up = ImSize/2 +1;
 for (r=-Bot; r<Up; r++)
 for (c=-Bot; c<Up; c++)
 if (Rad < (int) sqrt ((double) r*r+c*c))
 Image [r+Bot] [c+Bot] = (float)0;
}

void HighPass (Rad, ImSize, Image)
int Rad, ImSize;
float ** Image;
{
 int r,c, Bot,Up;
 long rr,cc;

 Bot = ImSize/2 -1;
 Up = ImSize/2 +1;
 for (r=-Bot; r<Up; r++)
 for (c=-Bot; c<Up; c++)
 if (Rad > (int) sqrt ((double) r*r+c*c))
 Image [r+Bot] [c+Bot] = (float)0;

}

Fig. 4.30:

C realization of two procedures which manipulate the spectrum of an image.

Both procedures are self-explanatory. Please note that the realizations shown in Fig. 4.30 serve the
purpose of demonstration only. They violate basic rules of filter design and should not be used in
practical applications.

4.4 Supplement

In Section 4.1 a simplified form of the Discrete Fourier Transform (DFT; Fig. 4.3) has been used to
make the examples more illustrative. Now the original form of the DFT will be discussed.

Let xm be a complex element of the samples serving as an input signal for the DFT:

}{m 0 1 M 1x x ,x ,...x −∈

With

k 0...m 1

m 0...m 1

= −
= −

4 Global Operations - 4.4 Supplement

Ad Oculos 100

the DFT yields the individual frequencies of the spectrum {X0, X1, ... XM-1} by computing

2 mkM 1 j
1 M

k mM
m 0

X x e
π− −

=
= ∑

In order to execute this formula with a computer it is more convenient to have a Cartesian
representation of the DFT. With

m m m

j

x a jb

e cos jsin± α

= +

= α ± α

the following is obtained:

M 1
1

k m mM
m 0

2 mk 2 mk
X (a jb)(cos jsin)

M M

−

=

π π= + −∑

Isolating the real Ak and the imaginary part Bk gives

k k kX A jB= +

and

M 1
1

k m mM
m 0

M 1
1

k m mM
m 0

2 mk 2 mk
A a cos b sin

M M

2 mk 2 mk
B b cos a sin

M M

−

=
−

=

π π= +

π π= −

∑

∑

The inverse DFT is defined by the reciprocal

2 mkM 1 j
M

m k
k 0

x X e
π−

=
= ∑

In the Cartesian representation

m m mx a jb= +

with

M 1

m k k
k 0

M 1

m k k
k 0

2 mk 2 mk
a A cos B sin

M M

2 mk 2 mk
b B cos A sin

M M

−

=
−

=

π π= +

π π= −

∑

∑

The only difference between the forward and backward transform is the factor 1/M scaling the sums.
Furthermore, it does not matter whether this factor scales the sums of the forward or the backward
transform.

The theoretical background of the DFT is discussed in all the references given at the end of this
chapter. Of special interest is the book by Ramirez [4.11] which gives a very illustrative and practically-
oriented introduction.

The DFT is an important global operation in digital image processing. But, of course, it is not the only
one. There are many orthogonal, linear or non-linear transformations in which each coefficient
depends on every pixel of the input image. Some examples are the Walsh, the cosine and the sine
transformation. A typical application of these in image processing is for image coding. The non-linear
rapid transforms can be applied in the context of pattern recognition. There are many other
applications of global operators described in the relevant literature: for examples consult the reference
list.

An important application of the Fourier transformation is in the area of image treatment (Chapter 1)
which includes such topics as noise suppression and the enhancement of blurred images. A typical
application in the area of image analysis is the representation of contours by the so-called Fourier
descriptors. In the context of pattern recognition the Fourier transform is used to achieve a shift
invariance of the objects to be detected.

4 Global Operations - 4.5 Exercises

Ad Oculos 101

4.5 Exercises

Exercise 4.1:

Extract the simplified DFT shown in Fig. 4.3 from the original DFT.

Exercise 4.2:

Apply the simple DFT (according to Fig. 4.5) to the sinusoidal signal shown in Fig. 4.31.

x

a(x)

1

-1

20 6 751 3 4

Fig. 4.31:

Exercise 4.2 demonstrates the analysis of the
second harmonic.

Exercise 4.3:

Apply the simple DFT (according to Fig. 4.5) to the cosinusoidal signal shown in Fig. 4.32.

x

a(x)

1

-1

20 6 751 3 4

Fig. 4.32:

Exercise 4.3 returns to the fundamental frequency. It
demonstrates the transformation of a cosinusoidal
signal.

Exercise 4.4:

Apply the simple DFT (according to Fig. 4.5) to the cosinusoidal signal shown in Fig. 4.33.

4 Global Operations - 4.5 Exercises

Ad Oculos 102

x

a(x)

1

-1

20 6 751 3 4

Fig. 4.33:

Exercise 4.4 demonstrates the simplest case, i.e. the
spectrum of a DC signal.

Exercise 4.5:

Apply the simple DFT (according to Fig. 4.5) to the cosinusoidal signal shown in Fig. 4.34.

x

a(x)

1

-1

20 6 751 3 4

Fig. 4.34:

Exercise 4.5 demonstrates the transformation of a
pulse.

Exercise 4.6:

Fig. 4.35 shows horizontal and vertical sinusoidal signals. Superpose them to obtain a 2D sinusoidal
signal and apply the 2-dimensional DFT to it. It is best to use the DFT program discussed in Exercise
4.14.

4 Global Operations - 4.5 Exercises

Ad Oculos 103

1

-1

0

1

1

1

1

1

1

1 1

1

1

1

1

1

1

10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

00

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

0 0 0 0 0 0 0

00000000

0 0 0 0 0 0 0 0

00000000

1 1 1 1 1 1 1

11111111

-1

-1 -1 -1 -1 -1 -1 -1 -1

-1-1-1-1-1-1-1

Fig. 4.35:

Exercise 4.6 demonstrates the analysis of the first 2-dimensional
harmonic.

Exercise 4.7:

Superpose the sinusoidal signals shown in Fig. 4.36 and apply the 2-dimensional DFT to it. It is best to
use the DFT program discussed in Exercise 4.14.

2
2

-2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

2
2

2
2

2
2

2
2

2
2

2
2

1

1

1

1

1

1

1

1

-1

0

0

0

0

00

0

0

2
2

0 0

0

0

0

0

0

0

0

-1

-1

-1

-1

-1

-1

-1

-1

1 1 1 1 1 1 1 1

000 0000 0

-1 -1-1 -1 -1 -1 -1

0 0 0 0 0 0 0 0

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

- 2
2

- 2
2

- 2
2

- 2
2

- 2
2

- 2
2

-

2
2

-2
2

-2
2

-2
2

-2
2

-2
2

-2
2

-2
2

-

Fig. 4.36:

Exercise 4.7 demonstrates the analysis of the second 2-dimensional
harmonic.

Exercise 4.8:

Superpose the sinusoidal signals shown in Fig. 4.37 and apply the 2-dimensional DFT to it. It is best to
use the DFT program discussed in Exercise 4.14.

4 Global Operations - 4.5 Exercises

Ad Oculos 104

2
2

-2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

2
2

2
2

2
2

2
2

2
2

2
2

1

1

1

1

1

1

1

1

-1

0

0

0

0

00

0

0

2
2

0 0

0

0

0

0

0

0

0

-1

-1

-1

-1

-1

-1

-1

-1

1 1 1 1 1 1 1 1

000 0000 0

-1 -1-1 -1 -1 -1 -1

0 0 0 0 0 0 0 0

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

- 2
2

- 2
2

- 2
2

- 2
2

- 2
2

- 2
2

-

2
2

-2
2

-2
2

-2
2

-2
2

-2
2

-2
2

-2
2

-

Fig 4.37:

Exercise 4.8 demonstrates the superposition of a fundamental cosine
and its second harmonic.

Exercise 4.9:

Superpose the sinusoidal signals shown in Fig. 4.38 and apply the 2-dimensional DFT to it. It is best to
use the DFT program discussed in Exercise 4.14.

0 0

0 0

00

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1-1

-1

-1

-1

-1

-1

-1

-1

2
2

2
2

-2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

-

2
2

-

2
2

-

2
2

-

2
2

-

0 0

0 0

00

0

0

0

0

0

0

1

1

1

1

1

1-1

-1

-1

-1

-1

-1

2
2

2
2

-2
2

-

2
2

-

2
2

2
2

-

2
2

-

2
2

-

2
2

-

2
2

2
2

2
2

-

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2

-

2
2

-

2
2

-

2
2

00 1-1

00 1 -1

-

-

-

Fig. 4.38:

Exercise 4.9 demonstrates the superposition of two sinusoidal signals.

Exercise 4.10:

Fig. 4.39 shows 4 empty frames similar to those used in the experiment shown in Fig 4.16 and Fig.
4.17. Fill them with the result of the inverse DFT applied to the spectrum shown in Fig 4.16. The
shaded squares in the small grids indicate the frequencies to be set to 0. It is best to use the DFT
program discussed in Exercise 4.14.

4 Global Operations - 4.5 Exercises

Ad Oculos 105

.011 .026 .026 .026 .026.011 .011.011

.026 .026.026 .026

.026.026

.026 .026.026

.063 .063 .063 .063

.063 .937 1.026 1.026

1.0261.026

.937 .063

.011 .011.989 .989

.011 .026 .026 .026 .026.011 .011.011

.026 .026.026 .026.063 .063 .063 .063

.026.026 .063 .937 1.026 1.026 .937 .063

.026 .0261.0261.026.011 .011.989 .989 ? ?

? ?

Fig. 4.39:

Exercise 4.10 demonstrates the influence of the low frequencies.

Exercise 4.11:

Is the magnitude spectrum invariant to the rotated graylevel pattern shown in Fig. 4.40 (the original
position is shown in Fig. 4.19)? Find the answer by computing the spectra. It is best to use the DFT
program discussed in Exercise 4.14.

0

10

10

10

10

0 0 0 0 0 0 0

00000000

0 0 0 0 0 0 0

0000000

0

0

0

0 0

0

0

0 0

0

0

0

0

0

0

0

0

0

0 0 0

0 00

0 0 0

0 0 0

Fig. 4.40:

The rotation of the graylevel pattern shown in Fig. 4.19 leads to a different
magnitude spectrum.

4 Global Operations - 4.5 Exercises

Ad Oculos 106

Exercise 4.12:

Is the magnitude spectrum invariant to the rotated graylevel pattern shown in Fig. 4.41 (the original
position is shown in Fig. 4.19)? Find the answer by computing the spectra. It is best to use the DFT
program discussed in Exercise 4.14.

0

10

10

10

10

0 0 0 0 0 0 0

00000000

0 0 00 0 0 0

0000000

0

0

0

0 0

0

0

0 0

0

0

0

0

0

0

0

0

0

0 0 0

0 00

0 0 0

0 0 0

Fig. 4.41:

The rotation of the graylevel pattern shown in Fig. 4.19 leads to a different
magnitude spectrum.

Exercise 4.13:

Compute the Fourier transform of the following functions using the procedure shown in Fig. 4.28. Plot
the magnitude and phase spectra.

(a)

0 0 x 127

a(x) 1 x 128

0 129 x 255

≤ ≤
= =
 ≤ ≤

What do your results tell you about the frequency content of an impulse function (refer to the
magnitude spectrum)?

(b)

0 0 x 120

b(x) 1 121 x 136

0 137 x 255

≤ ≤
= ≤ ≤
 ≤ ≤

Note that b(x) is a box filter of width 16 (see also Section 3.1). Verify that the magnitude spectrum of
b(x) is a sinc function.

(c)

0 0 x 112

c(x) 1 113 x 144

0 145 x 255

≤ ≤
= ≤ ≤
 ≤ ≤

Function c(x)=b(x/2). How does scaling the spatial domain affect the frequency domain?

(d)

d(x) 1 0 x 255= ≤ ≤

What is the Fourier transform of a constant signal?

(e)

e(x) b(x) cos(8 x / 256)= + π

How does the Fourier transform of e(x) differ from that of b(x)? Comment on the effects of adding a
cosine signal to b(x).

(f)

g(x) b(x 16)= −

4 Global Operations - 4.5 Exercises

Ad Oculos 107

What are the effects of shifting b(x) to the right by 16 pixels? Refer to the magnitude and phase
spectra.

Exercise 4.14:

Implement the 2-dimensional DFT as shown Fig. 4.29.

Exercise 4.15:

Generate a 128 * 128 spectrum consisting of one harmonic only. Perform the inverse FFT and
describe the resulting image. Try different harmonics.

Exercise 4.16:

The high-pass filter demonstrated in Fig. 4.17 suppresses lower harmonics completely. Write a
program which only decreases the lower harmonics with respect to their position in the spectrum. Try
a complementary low-pass approach.

Exercise 4.17:

Become familiar with all the global operations offered by AdOculos (see AdOculos Help).

4 Global Operations - References

Ad Oculos 108

References

[4.1] Ahmed, N. and Rao, K. R.:
Orthogonal Transforms for Digital Signal Processing.
Berlin, Heidelberg, New York: Springer-Verlag 1975

[4.2] Burrus, C.S. and Parks, T.W.:
DFT/FFT and Convolution Algorithms.
New York: Wiley Sons 1985

[4.3] Elliott, D.F. and Rao, K. R.:
Fast Transforms, Algorithms, Analysis, Applications.
New York, London: Academic Press 1982

[4.4] Gonzalez, R.C.; Woods, R.E.:
Digital image processing.
Reading MA: Addison-Wesley 1992

[4.5] Hall, E.L.:
Computer image processing and recognition
New York: Academic Press 1979

[4.6] Jähne, B.:
Digital Image Processing. Concepts, Algorithms, and Scientific
Applications.
Berlin, Heidelberg, New York: Springer 1991

[4.7] Jain, A.K.:
Fundamentals of digital image processing.
Englewood Cliffs: Prentice-Hall 1989

[4.8] Netravali, A.N.; Haskell, B.G.:
Digital pictures.
New York, London: Plenum Press 1988

[4.9] Oppenheim, A.V. and Willsky, A.S.
Signals and Systems.
Englewood Cliffs: Prentice-Hall 1983

[4.10] Pratt, William K.
Digital Image Processing.
New York: Wiley Sons 1978

[4.11] Ramirez, R.W.:
The FFT, Fundamentals and Concepts.
Englewood Cliffs: Prentice-Hall 1985.

5 Region-Oriented Segmentation

5.1 Foundations

The requirements of understanding this chapter are

• to be familiar with basic mathematics

• to have read Chapter 1.

In the context of human perception segmentation means extracting a object from its background. This
procedure is not limited to visual perception. The “acoustic world” of a railway station yields
interesting examples. A typical “object” in this confusing environment is the announcement of a delay.
All the other sounds are interpreted as background noise.

The object “announcement” has a special meaning for most people in the station. Meaning and
segmentation are usually closely connected. The immediate recognition of a friend in a busy
pedestrian precinct is another example of this. A flashy poster in the pedestrian precinct is another
object (even if only for a short time for most of the people passing) which is easily separable from the
background of moving pedestrians. However, there is an important difference from the object
“friend”: although the contents of the poster may have a special meaning to some people, the poster
itself is a separable object for all, due to the signal “color”.

This “meaningless” form of segmentation is typical for technical image analysis. Common
segmentation procedures are based on graylevel differences. Since color image processing systems
are becoming cheaper, the use of color differences may increase. An approach currently used in
scientific image processing is the so-called knowledge-based segmentation which tries to imitate the
segmentation capability of humans. This approach is still a matter of laboratory experiments and is of
little relevance for current practical applications (Section 1.2).

Fig. 5.1 depicts an example of region-oriented segmentation. The procedure starts by generating and
analysing the graylevel histogram of the source image (Section 2.1). Assume the source image
consists roughly of two graylevels representing the background and the objects. In this case the
histogram is composed of two peaks. The valley between these peaks constitutes the threshold which
is used to obtain a binary image (Section 1.5). Graylevels of the source image which are below this
threshold are set to the label ‘0’, whilst those above it are set to ‘1’.

Thres-
holding

Connec-
tivity

Analysis

Histo-
gram

Analysis

Source image Binary image
Label image/

Mark image

Feature
Extrac-

tion

0 1

Area

COG

Peri

.....

.....

.....

.....

Fig. 5.1:

This is an example of region-oriented segmentation. Its aim is to isolate regions of similar graylevels
and to describe these regions by features like their area, their center of gravity or their perimeter
length. Such features are necessary to classify the image region as any known object or as an
unknown object.

5 Region-Oriented Segmentation - 5.1 Foundations

Ad Oculos 110

The connectivity analysis collects neighboring pixels of the same label assigning marks to them. Thus
marks indicate connected pixels while labels indicate graylevel ranges.

Connected pixels constitute image regions which are now ready for description by features like their
area, their center of gravity or their perimeter length. Such features are necessary in order to classify
the image region as a known object or as an unknown object (Chapter 10).

5.1.1 Thresholding

As mentioned in the introduction, common segmentation procedures are based on graylevel
differences in the source image. A typical example is the image shown in Fig. 5.2 (left hand side). It
consists of two distinguishable graylevel regions: the right area of the image is emphasized by high
graylevels, similar to the poster in the pedestrian precinct which is emphasized by bright colors. Thus
it should be easy to separate the two regions.

Thres-
holding

Histo-
gram

Analysis

1

2

3 6

4

5

7

8

9

10

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

3

3

3

4

4 7

7

8

8

8

10

10

10

10

10

10

10

9

9

9

9

9

9

9

9

9 9

9

9

9

9

9

10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111

5

10

15

Grayelevel
Occurrence

Grayelevel1 2 3 4 5 6 7 8 9 10 11 12

7

16 16

7

4 4
33

11

Source image Binary image/Label image

Fig. 5.2:

This is an example of the application of a histogram analysis for binarizing a graylevel
image. The histogram displays the frequency of the graylevels in the source image. In
this case it reflects the two separate graylevel regions. Placing a threshold between the
two maxima of the histogram and assigning the label ‘0’ to the graylevels below the
threshold and ‘1’ to the graylevels above yields the binary image.

Usually a graylevel histogram is used for this purpose (Fig. 5.2). The histogram displays the frequency
of the graylevels in the input image. The example shown in Fig. 5.2 reflects the two separate graylevel
regions. Placing a threshold into the valley between the two maxima of the histogram and assigning
the label ‘0’ to the graylevels below the threshold and ‘1’ to the graylevels above yields the binary
image shown in Fig. 5.2 (right hand side).

5 Region-Oriented Segmentation - 5.1 Foundations

Ad Oculos 111

1 1 1 1 1 1 1 1 1 1 1 1

111111

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

11 1 1 1 1 1 1 1 1 1 1 1

111111

1

1

1

1

1

1

1

1

1

1

1

1

2 2 2 2

2222222

2

2

2

2

2

2

2

2 21 2

2

2 2 2

2

2

2

2

2

2

3 3 3

3

3

3

3

3

1

3

333333 4 4 4

4

4

5

10 10 10 10 10 10 10

10

10

10

10

10

10

10

10

10

10

10

10

10 10 10 10 10 10

2 10

11 11 1112

12 12 11

9

8

11

8

9

10 10 13 13 13 1314

1310

11

9

9

9

3

10

10

10

10

8

11

10

119 9 9

11

11

11

10

10

11

12

12

1011111111 12 1010

10 10 1012 12 12 1111

131212111111

12

10

10 13 17 19 18 17 14 14

14152122201813

12

11 11 15 19 20 18 17 13

11182020 211110

159 17 19 20 16 12

16

Fig. 5.3:

This is a new source image which is used to demonstrate the handling of more than
one threshold.

At first glance thresholding seems to be a simple job. Nevertheless, suppose for instance that the
perimeter of workpieces has to be measured in the context of industrial quality control. The examples
shown in Fig. 5.1 suggest an ideal graylevel step between the image background and the regions
representing the workpieces. However, in practice such a step is often more gradual than that of the
source image shown in Fig. 5.2. Consequently the precision of the measurement depends strongly on
the correct choice of threshold.

5 Region-Oriented Segmentation - 5.1 Foundations

Ad Oculos 112

Graylevel
Occurrence

Graylevel5 10 15 20 25

20

10

30

40

50

60

70

80

0 21 3

69

32

16

5
1 3

45

9

25

14

9
4 3 122 34 4 5

Fig. 5.4:

The histogram of the source image shown in Fig. 5.3 has valleys at graylevel 6, 16 and 19. Thus
3 thresholds have to be applied.

The rule of thumb for thresholding is: If measurement is the aim ensure excellent (especially stable)
illumination conditions (Section 1.3) and try to use fixed thresholds. If the aim is object recognition
under variable conditions an automatic method of choosing a threshold may be good enough, for
instance with the aid of graylevel histograms.

Fig. 5.3 shows a new source image. Its graylevel histogram is depicted in Fig. 5.4. It has 3 local
minima (valleys) and thus 3 thresholds (at graylevel 6, 16 and 19) have to be applied to the new source
image. The resulting label image is shown in Fig. 5.5.

The example reveals two typical problems of histogram analysis. The graylevel region (with graylevels
of about 20) positioned in the middle of the source image (Fig. 5.3) is clearly separated from the
surrounding graylevel region (graylevels of about 10), but since the number of pixels with graylevels
around 20 is small their influence on the histogram almost vanishes. The solution of this problem,
however, is the logarithmic scaling of the histogram entries.

The second problem is the significance of local minima. In the example the minimum at graylevel 19 is
a “ghost valley”. It produces a superfluous threshold splitting the region which consists of graylevels
of around 20. Averaging the histogram entries fills in the small valleys.

5 Region-Oriented Segmentation - 5.1 Foundations

Ad Oculos 113

1

2

3

0 0 0 0 0 0 0 0 00 00 0 0 000

0 0 0 0 0 0 0 0 0 00 0 0 000

0 0 0 0 0 0 0 0 0 00 0 0 000

0 0 0 0 0 0 0 0 0 00 0 0 000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 1 11 11 1 1 11 1

1 1 1 11 11 1 1 11 1

1 1 1 11 11 1 1 11 1

1 1 1 11 11 1 1 11 1

1 1 1 11 11 1 1 11 1

1 0 00000000 00

1 1 1 11 11 1 1 11 1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

12 22 2

2

2 2 2

2

221

33332

3

333

1

Fig. 5.5:

Applying the thresholds found in Fig. 5.4 to the source image shown in Fig. 5.3 leads
to this image.

5.1.2 Connectivity Analysis

The segmentation is not complete yet. From the point of view of a human observer the label image
shown in Fig. 5.1 already consists of two distinct and connected regions. However, the computer
“sees” only an array of zeros and ones and it does not “know” anything about their neighbors. Thus a
connectivity analysis, which in the case of region-oriented segmentation is known as blob coloring,
component labelling or component marking, is required.

Fig. 5.6 shows a source image which is segemented by two thresholds yielding a label image
consisting of 4 regions but only 3 labels. The pixels of the top left region (label ‘1’) do not know that
they belong together and not to the other label ‘1’ region in the middle of the image. The connectivity
analysis helps here. Suppose the algorithm starts at the top left corner encountering label ‘1’. Now it
gathers all neighboring pixels with label ‘1’ and assigns mark ‘a’ to this collection. Next the procedure
encounters label ‘0’ collects the corresponding pixels and assigns a ‘-‘ which defines this region as
background. Further processing yields labels ‘b’ and ‘c’.

5 Region-Oriented Segmentation - 5.1 Foundations

Ad Oculos 114

5

5 5

5

55

5 5

5555

5 5 5 5

0 0 0 0

0000

10 10 10 10

10 10

10

10

10

10

10

10

1010101010101010

10 10 10 10 10 10 10

10

10

10

10

10

1010 10

10

1010 10

10

10

0 0 0 0

0000

1 1

1 1

11

1

2

2

2

2

2

2

2

22

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2 2 2 2

2 2 2 2

2

2 2 2 2

2 22

2 1111

1 1 1

1

1

a

a

a

a

b b

b b

b

b

b

b

b

bb

b

b

b

b

bbbbb

b b b b

b b

b

b

b

b

b

b b

b b b b

b bb

cc

c c

ccccc

c c c

- - - -

c

Source
image

Label
image

Mark
image

Threshold at graylevel
3 and 7

Connectivity
analysis

Fig. 5.6:

In this example the label image consists of 4 regions but only 3 labels.
The connectivity analysis gathers neighboring pixels of the same label
and assigns a mark to them. The region with label ‘0’ is interpreted as
background.

5.1.3 Feature Extraction

In order to analyze the separated regions information measurements about all their pixels could be
used. However, in practice the realization of the analysis is based on a few typical features of these
regions.

For a human observer it is evident that region ‘a’ shown in Fig. 5.6 consist of four corners, that it is not
tilted and that it is a square whilst region ‘c’ is L-shaped. Unfortunately a computer needs special
algorithms to recognize such information. Typical features in the context of region-oriented
segmentation are:

• area

• perimeter

• compactness = perimeter2 / (4π × area)

• polar distance (also called distance-versus-angle signature) and

• center of gravity (to determine the position of the object).

5 Region-Oriented Segmentation - 5.2 AdOculos Experiments

Ad Oculos 115

In the case of a circle the compactness is 1. It increases if the perimeter of a region becomes longer in
comparison to its area. Please note that this definition does not correspond to the everyday meaning
of “compact”.

The polar distance indicates the distance between the center of gravity of the region and the border of
the region. Again the circle represents a special case: the polar distance is the same for any point on
the border. All other shapes have distances which vary from border point to border point. The form of
variation is characteristic of the shape. Fig. 5.7 shows an equilateral triangle and a diagram which
depicts the variation of the polar distance.

r

1

2

3

4

5

6

40 80 120 160 200 240 320280 360
o o o o o o o o o

r

r=6.0

r=3.9

r=3.2

r=3.0

r=3.2

r=3.9

r=6.0

Fig. 5.7:

The polar distance (also called distance-versus-angle signature) indicates the
distance between the center of gravity and the border of the region. The form of
variation is characteristic of the region shape.

Most of the features depend on the position, rotation and scaling of regions. This may be desirable
but sometimes it is inconvenient. For instance, the center of gravity depends on the position of the
region. This is useful, since the center of gravity determines the position of an object. The
compactness is a ratio measurement and thus independent of position, rotation or scaling. The
compactness is therefore especially useful as a simple shape feature.

5.2 AdOculos Experiments

To become familiar with region-oriented segementation realize the New Setup shown in Fig. 5.8 (see
also Section 1.6). The example image which will be used in the following section depicts part of a
tower block (Fig. 5.10 (MZHSRC.128)). This picture is especially suitable due to its homogeneous
regions of various graylevels.

5 Region-Oriented Segmentation - 5.2 AdOculos Experiments

Ad Oculos 116

Fig. 5.8:

This chain of procedures is the basis for experiments concerning region oriented segmentation. The New Setup is
realized according to the steps described in Section 1.6. The results are shown in Fig. 5.10.

5.2.1 Thresholding

Starting the processing chain with Thresholding we encounter the dialog box shown in Fig. 5.9. The
histogram clearly shows that the source image consists of three easily separable graylevel regions.
Since these regions correspond to meaningful picture regions (the bright background represents the
sky, the windows are dark and the remaining areas belong to the building) a segmentation by
thresholding is practicable. The next step is to smooth the histogram and to start the automatic search
for local minima.

The result of these operations is shown in Fig. 5.10 (2). The local minima serve as thresholds: the
graylevels of the source image which are between zero and the lowest threshold obtain label ‘0’ (the
black regions in (2)). Label ‘1’ is assigned to the graylevels between the two thresholds (gray color in
(2)). Finally the remaining graylevels above the high threshold are labelled with ‘2’ (represented by the
white regions in (2)).

5 Region-Oriented Segmentation - 5.2 AdOculos Experiments

Ad Oculos 117

Fig. 5.9:

Starting the processing chain with Thresholding we encounter this dialog box. The
histogram shows clearly that the source image consists of three easily separable
graylevel regions. Since these regions correspond to meaningful picture regions
(the bright background represents the sky, the windows are dark and the remaining
areas belong to the building) a segmentation by thresholding is practicable. The
next step is to smooth the histogram and to start the automatic search for local
minima.

Since the transitions between the picture regions are not ideal steps, the threshold procedure yields
„noise“ at the borders of these regions. In order to clean them morphological operators (erosion and
dilation) are used (Chapter 8). For this purpose the label image is converted into several binary images:
each label in turn represents the object while the other labels are interpreted as background. Now the
borders of the regions corresponding to the current label are cleaned with the aid of binary erosion
followed by a binary dilation with a structuring element of size 3 * 3 (Chapter 8). The result of the
cleaning step is shown in (4).

5.2.2 Connectivity Analysis

In Fig. 5.10 (4) 16 separate regions have been found. The separation is due to different labels or the
spatial distance between regions with identical labels. Label ‘0’ (black in (4)) represents a large
connected region. Label ‘1’ (gray) is divided into 10 smallish regions. Label ‘2’ (white) comprises one
large and four small regions. The purpose of the connectivity analysis is to mark these 16 areas. The
result is shown in (6). Successful marking is portrayed with the aid of a border. The region represented
by label ‘0’ is an exception. For the sake of clarity it is interpreted as background.

5 Region-Oriented Segmentation - 5.2 AdOculos Experiments

Ad Oculos 118

Fig. 5.10:

The example image (MZHSRC.128) depicts part of a tower block. This picture is especially suitable
for the experiment due to its homogeneous regions of different graylevels. (2) is the result of the
Thresholding step (label image). This procedure obtains its parameters from the dialog box shown in
Fig. 5.9. (3) and (4) show the results of cleaning the label image (2). The operations are discussed in
detail in Chapter 8. (5) is the result of the connectivity analysis while (6) and (7) represent the results
of feature extraction.

5.2.3 Feature Extraction

Fig. 5.10 (7) lists the features of the regions shown in (6). The list entries start with the top left region
which in the current case is the large region to the left of (6). The next one is the small top right region,
and so on.

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 119

5.3 Source Code

5.3.1 Thresholding

Fig. 5.11 shows a procedure which generates a graylevel histogram. Formal parameters are:

ImSize: image size

NofGV: highest graylevel to be processed (usually 255)

MaxAcc: maximum histogram entry; after the generation of the histogram its entry must
 be normalized according to MaxAcc

Sqrt: if Sqrt is not zero, the original histogram entries must be replaced by their square
 root.

Image: image from which the histogram has to be taken

Histo: array representing the histogram.

void Histogram (ImSize, NofGV, MaxAcc, Sqrt, Image, Histo)
int ImSize, NofGV, MaxAcc, Sqrt;
BYTE ** Image;
int * Histo;
{
 int r,c, gv, Max;

 for (gv=0; gv<NofGV; gv++) Histo[gv] = 0;

 Max=0;
 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 gv = Image[r][c];
 Histo[gv] ++;
 if (Histo[gv] > Max) Max = Histo[gv];
 } }

 if (Sqrt) {
 for (gv=0; gv<NofGV; gv++)
 if (Histo[gv])
 Histo[gv] = (int) sqrt ((float)Histo[gv]);
 Max = (int) sqrt ((float)Max);
 }

 for (gv=0; gv<NofGV; gv++)
 Histo[gv] = (int) (((float)Histo[gv] * MaxAcc) / Max);

}

Fig. 5.11:

C realization of histogram generation.

The procedure starts by initializing the histogram array Histo, forcing each graylevel entry gv to zero.
The generation of the histogram requires the graylevels of all the pixels comprising the image. The
graylevel of the current pixel is gv = Image[r][c]. The corresponding histogram entry Histo[gv]
must be incremented. Furthermore it has to be tested whether Histo[gv] is the maximum value.
Max is required by the final normalization step.

If the dynamic range of the histogram entries has to be compressed the Sqrt flag must be set to one.
Now the lower entries are emphasized. Please note that Max is to be dealt with in the same way.

Even in the case of small images rather high histogram entries may occur. This may cause problems in
succeeding procedures due to overflow events. Moreover, a fine resolution of entries is not
necessary, since only obvious histogram valleys are of interest. Therefore, the user should determine

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 120

the maximum entry with the aid of MaxAcc. The final step of the procedure normalizes the histogram
according to MaxAcc.

A robust segmentation via histogram analysis occurs when there are few but distinct peaks and
valleys in the histogram. Thus, smoothing the histogram to remove insignificant local maxima should
precede the actual analysis procedure. Fig. 5.12 shows an appropriate smoothing procedure. Formal
parameters are:

NofGV: highest graylevel to be processed

Width: size of the neighborhood of entries the average value of which is to be taken

Histo: array of the original histogram

Smooth: array of the smoothed histogram.

void SmoothHistogram (NofGV, Width, Histo, Smooth)
int NofGV, Width;
int *Histo;
int *Smooth;
{
 int r,c, i,gv,Cen;
 long h;

 Cen = Width/2;
 for (gv=0; gv<NofGV; gv++) Smooth[gv] = 0;

 for (gv=0; gv<=NofGV-Width; gv++) {
 h=0;
 for (i=gv; i<gv+Width; i++)
 h += (long)Histo[i];
 Smooth[gv+Cen] = (int) (h/Width);

} }

Fig. 5.12:

C realization of histogram smoothing.

The procedure starts by initializing the output array Smooth. The smoothing is realized by an averaging
operation applied to a neighborhood of histogram entries of size Width. The resulting mean value is
assigned to the middle entry Smooth[gv+Cen].

After smoothing another routine is used to search for the histogram valleys can be searched for. This
search is realized by the procedure LocMin which again is based on the procedures NofUp and
NofDown. They detect rising and falling histogram entries respectively. Formal parameters of NofUp}
are (Fig. 5.13):

NofGV: highest graylevel to be processed

Start: graylevel (index of the histogram array), from which the procedure should begin

Histo: histogram array.

At the beginning the procedure checks whether a rise is present. This is the case if the histogram
entry Histo[Start] is less than the entry of its neighbor to the right Histo[Start+1]. Otherwise
the procedure will be left returning zero.

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 121

int NofUp (NofGV, Start, Histo)
int NofGV, Start;
int * Histo;
{
 int i,iStep;

 if (Histo[Start] >= Histo[Start+1]) return (0);
 iStep = Start;
 for (i=Start; i<NofGV-1; i++)
 if (Histo[i] < Histo[i+1])
 iStep = i;
 else
 if (Histo[i] > Histo[i+1]) break;
 return (iStep-Start);
}

Fig. 5.13:

C realization of the detector for rising histogram entries.

If we are able to proceed, we progress through the histogram (from left to right) as long as the left
entry is less than its right neighbor (Histo[i] < Histo[i+1]). This means a rising histogram at
position i which is „remermbered“ by istep. If, on the other hand, the current entry is greater than
its right neighbor (Histo[i] > Histo[i+1]) the histogram is descending and consequently the
procedure stops. But what about the special case of equal histogram entries? We are now moving on
a plateau where no special action is taking place. In particular the “marker” istep must not be
increased, because it indicates the last rising position. However, the return value is equal to the
number of entries between the Start position and the last rising position iStep.

int NofDown (NofGV, Start, Histo)
int NofGV, Start;
int * Histo;
{
 int i,iStep;

 if (Histo[Start] <= Histo[Start+1]) return (0);
 iStep = Start;
 for (i=Start; i<NofGV-1; i++)
 if (Histo[i] > Histo[i+1])
 iStep = i;
 else
 if (Histo[i] < Histo[i+1]) break;
 return (iStep-Start);

}

Fig. 5.14:

C realization of the detector for falling histogram entries.

The procedure NofDown is similar to NofUp, except that it detects falling histogram entries (Fig.
5.14). As already described the above two procedures will be used in LocMin (Fig. 5.15) the formal
parameters of which are:

ImSize: image size

NofGV: highest graylevel to be processed

MinDown: minimum number of falling histogram entries to be regarded as significant of a
 descending histogram

MinUp: minimum number of rising histogram entries to be regarded as significant of a
 rising histogram

Histo: histogram array

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 122

Thres: array which collects the indices of the histogram valleys.

The procedure returns the number of valleys.

The first step of the procedure is allocating memory for the first element of the array Thres. This first
element corresponds to the graylevel 0, which is defined as the lowest threshold. The succeeding
procedure will profit from this arrangement. Index i counts the number of histogram valleys.

The example shown in Fig. 5.16 illustrates the behavior of LocMin. Starting with the current value of
index d, NofDown calculates the number of falling histogram entries Down. If this number is less than
a user-defined minimum MinDown, d will be incremented and the search proceeds. Otherwise NofUp
calculates the number of rising histogram entries Up beginning with d+Down. The search for rising
entries stops if at least MinUp of such entries are found. Thus, we have “walked” through a significant
histogram valley. The indices of the peaks to the left and to the right of this valley are located at the
current values of d and u+Up.

int LocMin (ImSize, NofGV, MinDown, MinUp, Histo, Thres)
int ImSize, NofGV, MinDown, MinUp;
int * Histo;
int * Thres;
{
 int i, r,c, d,u, Down, Up;

 GetMem (Thres);
 Thres[0] = 0;
 i=1;
 for (d=0; d<NofGV; d++) {
 Down = NofDown (NofGV, d, Histo);
 if (Down>=MinDown) {
 for (u=d+Down; u<NofGV; u++) {
 Up = NofUp (NofGV, u, Histo);
 if (Up>=MinUp) {
 GetMem (Thres);
 Thres[i] = d+Down + (u-d-Down)/2;
 i++;
 d = u+Up; /*<<<<<<<<< attention: loop counter */
 break;
 } } } }
 GetMem (Thres);
 Thres[i] = NofGV-1;
 return (i);

}

Fig. 5.15:

C realization of the detection of local minima (valleys) in a histogram. Procedure GetMem is defined in Appendix A.

It seems reasonable to place the threshold exactly in the middle between the two peaks. However, if,
for instance, the left peak slopes gently in the direction of the right peak, then this placement would
be unfavorable. It seems better to place the threshold in the valley between the positions d+Down and
u. Having found this new threshold, index d is forwarded to the right peak u+Up. Here the search for a
new valley starts. The search ends when the right edge NofGV-1 of the histogram is encountered. As
the maximum graylevel, NofGV-1 is defined as being the last and highest threshold and is added to
Thres. The procedure ends by returning the number of thresholds stored in Thres.

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 123

Graylevel
occurrence

Graylevel
d u

Down Up

Fig. 5.16:

Example of the search for local minima.

In order to apply the thresholds to the source image, the procedure ThresIm is used (Fig. 5.17).
Formal parameters are:

ImSize: image size

n: number of thresholds

Thres: array, which contains the thresholds

ThresIm: image the thresholds are applied to. Since this is a pixel operation, input and
 output image are identical.

The threshold operation is fairly simple: for each pixel ThresIm[r][c] we must check between
which thresholds Thres[i] and Thres[i+1] its graylevel lies. The index of the lower threshold is
taken as a new graylevel. In order to distinguish between the original graylevel and this new one, it is
called a label (Section 5.1).

As described in Section 5.2 the “raw” label images may be noisy at the borders between neighboring
label regions. Typically tiny “islands” of “foreign” labels between two desired “principal” regions are
found. Furthermore, the borders of desired regions may be frayed. Morphological image processing
offers appropriate tools to remove these distortions. Chapter 8 is devoted to this subject. In the
context of label images, a binary erosion and a binary dilation are needed. However, one detail must
be added to the original procedures (shown in Fig. 8.12): since there is usually more than background
and one label in the label image (this would be a binary image), the morphological operations must be
applied to each label separately. The variations of the original procedures are shown in Fig. 5.18 and
Fig. 5.19.

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 124

void ThresIm (ImSize, n, Thres, ThresIm)
int ImSize, n;
int * Thres;
BYTE ** ThresIm;
{
 int i,r,c, gv;

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++)
 for (i=0; i<n-1; i++) {
 gv = (int)ThresIm[r][c];
 if (Thres[i]<gv && gv<=Thres[i+1]) {
 ThresIm[r][c] = (BYTE)i;
 break;

} } }

Fig. 5.17:

C realization of a threshold operation.

void EroThres (ImSize, Thres, StrEl, InIm, OutIm)
int ImSize;
int *Thres;
StrTypB *StrEl;
BYTE **InIm;
BYTE **OutIm;
{
 int r,c, y,x, i,j, dummy;
 int NofThres=Thres[0]-1;

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) OutIm [r][c] = 0;

 for (j=1; j<NofThres; j++) {
 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 for (i=1; i<=StrEl[0].r; i++) {
 y = r + StrEl[i].r;
 x = c + StrEl[i].c;
 if (y>=0 && x>=0 && y<ImSize && x<ImSize)
 if (InIm [y][x] != (BYTE)j) goto Failed;
 }
 OutIm [r][c] = (BYTE)j;
Failed: dummy = 0;

} } } }

Fig. 5.18:

C realization of an erosion used to “clean” a label image. Type StrTypB is defined in Appendix A.

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 125

void DilThres (ImSize, Thres, StrEl, InIm, OutIm)
int ImSize;
int *Thres;
StrTypB *StrEl;
BYTE **InIm;
BYTE **OutIm;
{
 int r,c, y,x, i,j, th, dummy;
 int NofThres=Thres[0]-1;

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) OutIm [r][c] = 0;

 for (j=1; j<NofThres[0]; j++) {
 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 for (i=1; i<=StrEl[0].r; i++) {
 y = r - StrEl[i].r;
 x = c - StrEl[i].c;
 if (y>=0 && x>=0 && y<ImSize && x<ImSize) {
 if (InIm [y][x] == (BYTE)j) {
 OutIm [r][c] = (BYTE)j;
 break;

} } } } } } }

Fig. 5.19:

C realization of a dilation used to “clean” a label image. Type StrTypB is defined in Appendix A

5.3.2 Connectivity Analysis

Fig. 5.20 illustrates a simple procedure which realizes the connectivity analysis. It is known as “blob
coloring” [5.1]. The input to this procedure is the label image. The results are represented by a mark
image. The operator is realized by two L-shaped masks which are shown in Fig. 5.20a. We need one
specimen for the label image and another for the mark image. Both masks work always on the same
position in their respective “host images”. The mask elements are named L (Left), U (Up) and C
(Center, the current pixel). The asterisk indicates the corresponding elements in the mark image.

The structure of the procedure is shown in Fig. 5.20b. After initializing the variable Mark each pixel C
of the label image is tested for being part of the background. This scanning routine starts at the top
left corner of the label image and stops at the bottom right corner. If C does not belong to the
background, the procedure has to decide on one of the following four cases (also the example in Fig.
5.20c and the C realization shown in Fig. 5.23):

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 126

U
L C

U
L C

*

**

MarksLabel

T F

C=U & C=L

C=Background?

C=U & C=L

C=U & C=L

C=U & C=L

Mark 0

C* U*

C* U*

L* = U*

F TC* L*C* L*

U* = L*>

Mark Mark+1

C* Mark

Repeat until end of image

1 1

1 1

1 1

1 1

1

1

1

1

11

1 1

2 2

2 2

33

3344

10 10

1010

10

10

10

10

10 10 10 10

10101010

10 10

10

10

10

10

20 20

2020

MarksLabel

(a)

(b)

(c)

Fig. 5.20:

Principle of connectivity analysis.

C=U & C≠L: The label of the current pixel C is identical to that of the pixel above. Thus, the

corresponding mark U* is assigned to the current pixel C*.

C=L & C≠U: The label of the current pixel C is identical to that of the left pixel. Consequently the mark

L* is assigned to the current pixel C*.

C=L & C=U: If all of the three labels are identical any of the two marks U* and L* may be assigned to

the current pixel C*. We use L*. Although the three labels are identical, this may not apply to the

marks U* and L*. An example of this is shown in Fig. 5.20c. The solution of this problem requires a so-

called equivalence list, storing the information that the different marks U* and L* are actually identical.

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 127

C≠L & C≠U: A current pixel C, which is not identical to any of its neighbors, indicates the appearance

of a new region. Thus, the current pixel C* receives a new mark. A new mark is obtained simply by
incrementing the old value of Mark.

The handling of the equivalence list is a little tricky. Some important details must be taken into
account. The data structure of the equivalence list is simple. It is an array the index of which is realized
by one of the equivalent marks. The other mark is the corresponding array entry (Fig. 5.23). But what
about marks which are free of any equivalence? Such a situation may result in undefined array entries.
To avoid this, the equivalence list should be initialized in an appropriate way. Using a new mark as
index and entry of the array is recommended here (EquLst[Mark] = Mark in Fig. 5.23). Thus,
during the later analysis of the equivalence list, a pair consisting of an identical index and entry
indicates that the corresponding mark is free of any equivalence.

1
1
1
1 1 1 1 1 1 1 1 1 1

111111111
1
1

2
2 2

2 3
3

3
3

1 1 11 1 1 1
111111
11

1
1
1 1

1
1

2222
2 2 2 2

3333
3 33 3

U* L* L* U*

1 1
1
1

1

3
2

2
22
33

U* L* L* U*

1 1
1
1

1 2
2
33

2
and 3

Fig. 5.21:

Example illustrating the problem of multiple
equivalences.

Fig. 5.21 shows two examples of the equivalence problem. Let us start with the top one: due to the
W-shaped region, the blob coloring procedure extracts three different marks. On the right two

possible equivalence lists are shown. The first version (U* is the array index) creates no difficulties.

However, the other version (L* represents the array index) leads to two entries in the case of mark ‘1’.
Since the equivalence list is a simple one-dimensional array, it is only able to store one entry. Thus the
second entry (‘3’) eliminates the first one (‘2’). Unfortunately, choosing the first version of the list does
not solve the problem. The second example of blob coloring illustrates the problem of multiple
equivalences the other way round. Thus, the realization of equivalence lists by simple arrays seems to
be wrong. It is not: the short recursive procedure shown in Fig. 5.22 solves the problem. Formal
parameters are

List: equivalence list

i: entry which has to be checked.

int LastMark (List, i)
int *List;
int i;
{
 if (i==List[i]) return (i);
 else return (LastMark (List, List[i]));

}

Fig. 5.22:

C realization which removes multiple equivalences.

The procedure returns the mark whose index and entry are identical. The idea of the procedure is
based on the following considerations:

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 128

(a) If a mark a is equivalent to other marks b, c, ..., the marks b, c, ... are also equivalent to each other.
Thus, only one of the marks b, c, ... is needed to describe the equivalence with a, provided (and
this is essential) the equivalence between the remaining marks is expressed by the list.

(b) The above mentioned provision means that the list contains chains of equivalent marks. Realizing
this idea in the context of the example shown in Fig. 5.21 index ‘1’ would have the entry ‘2’, mark
‘3’ would be assigned to index ‘2’ and finally index ‘3’ obtains mark ‘3’ indicating the end of the
chain.

(c) The entry of a new mark is to be put into the array element with an index which is identical to this
new mark. According to (b) such an index is positioned at the end of an equivalence chain.

(d) The direct entry into the list of a pair of equivalent marks is not allowed. Before this can be done,
the end of the chain within which each mark appears, has to be found. Instead of the original
equivalent marks, these “end of chain marks” serve as index and entry of the equivalence list.

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 129

int ConCom (ImSize, MaxMark, InIm, MarkIm, EquLst)
int ImSize, MaxMark;
BYTE ** InIm;
int ** MarkIm;
int * EquLst;
{
 int r,c, yu,xu,yc,xc,yl,xl, U,C,L, Mark, Um,Lm;

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) MarkIm[r][c] = 0;

 for (r=0; r<ImSize; r++) InIm[r][0] = 0;
 for (c=0; c<ImSize; c++) InIm[0][c] = 0;
 for (r=0; r<ImSize; r++) InIm[r][ImSize-1] = 0;
 for (c=0; c<ImSize; c++) InIm[ImSize-1][c] = 0;

 Mark = 0;
 GetMem (EquLst);
 EquLst[Mark] = Mark;
 for (r=1; r<ImSize-1; r++) {
 for (c=1; c<ImSize-1; c++) {
 yu = r-1; xu = c;
 yc = r; xc = c;
 yl = r; xl = c-1;
 U = (int) InIm [yu][xu];
 C = (int) InIm [yc][xc];
 L = (int) InIm [yl][xl];
 if (c) {
 if (C==U && C!=L) {
 MarkIm [yc][xc] = MarkIm [yu][xu];
 }else{
 if (C==L && C!=U) {
 MarkIm [yc][xc] = MarkIm [yl][xl];
 }else{
 if (C==L && C==U) {
 Lm = MarkIm [yl][xl];
 Um = MarkIm [yu][xu];
 MarkIm [yc][xc] = Lm;
 if (Lm!=Um) {
 Lm = LastMark (EquLst, Lm);
 Um = LastMark (EquLst, Um);
 EquLst [Lm] = Um;
 }
 }else{ /*(!L && !U)*/
 Mark++;
 MarkIm [yc][xc] = Mark;
 GetMem (EquLst);
 EquLst[Mark] = Mark;
 } } } } } }
Leave:
 return (Mark);

}

Fig. 5.23:

C realization of connectivity analysis. Procedure GetMem is defined in Appendix A.

The search for these “end of chain marks” is performed by the procedure LastMark. The application
of this procedure in the context of blob coloring is shown in Fig. 5.23. ConCom realizes the approach
illustrated in Fig. 5.20. Formal parameters are:

ImSize: image size

MaxMark: maximum number of marks

InIm: label image on which the connectivity analysis is to be carried out

MarkIm: mark image

EquLst: equivalence list.

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 130

The procedure starts by initializing the mark image MarkIm. Additionally the blob coloring procedure
requires a label image InIm with a border which is free of labels. The width of this border should be
one pixel. The next step initializes the variable Mark with zero and allocates memory for the first
element of the equivalence list EquLst.

The kernel of the procedure is as usual framed by two for loops. The coordinates of the L-shaped
masks are yu, xu, yc, xc, yl and xl. They are indices which point to the labels U, C and L. Label zero
is interpreted as background. If the current label C belongs to the background, no further processing is
necessary. Otherwise the connectivity analysis proceeds according to Fig. 5.20b, considering the
equivalence problems. The procedure returns the number of marks in MarkIm.

Enhancement of equivalence list

The equivalence list connects two marks. However, usually more than two marks are equivalent. This
leads to an equivalence chain which has already been discussed in the context of the procedure
ConCom. A typical example of the equivalence problem is shown in Fig. 5.24. i is the index of the
equivalence list, representing the marks from ‘1’ to ‘14’. The equivalent marks are positioned on the
right of the indices (EquLst). For instance, the marks ‘1’ and ‘4’ are equivalent. Mark ‘4’ is again
equivalent to mark ‘5’, which itself is equivalent to ‘2’. Thus, equivalence applies to all of the marks ‘1’,
‘2’, ‘4’ and ‘5’.

It is the purpose of the enhancement procedure to replace different but equivalent marks by only one
“new” mark. Assume that ‘1’ is the new mark in the example. Then the indices ‘1’, ‘2’, ‘4’ and ‘5’ of the
new list NewLst, yield the entry ‘1’. The next index to work on is ‘3’. This mark is not equivalent to any
other mark. Thus, only the “old” mark ‘3’ is replaced by the “new” mark ‘2’. Index ‘6’ is the next
candidate. It is the first element of the following equivalence chain: ‘9’, ‘8’, ‘13’. Now a new situation
arises: EquLst contains another mark ‘13’ the index of which is ‘10’. However, ‘10’ is also a mark which
appears in EquLst. The corresponding index is ‘7’.

If we return to the starting point i=’13’ the equivalences ‘11’ and ‘12’ are detected. To sum up: all the
marks from ‘6’ to ‘13’ are equivalent and obtain the “new” mark ‘3’. In the end index ‘14’ is left. It is
replaced by the “new” value ‘4’. The enhancement procedure has reduced the number of marks from
14 to 4. This example is not an extreme one, it is typical. The large number of different marks is due to
the extremely local scope of the blob coloring procedure.

Although the enhancement operation seems to be rather complicated, it is realizeable by a simple
recursive procedure. First of all, the frame procedure of the enhancement operation is illustrated (Fig.
5.26). Formal parameters are:

ImSize: image size

n: number of marks in MarkIm

EquLst: list reflecting the equivalences in MarkIm

MarkIm: mark image which has to be cleaned.

The enhancement procedure already mentioned is FillEquiv. It replaces the different marks in an
equivalence chain by the last mark of the chain. At the end of the filling procedure the differences
between the remaining marks in EquLst are usually greater than 1. However, according to the
example shown in Fig. 5.24, the marks should be represented by increments. This is realized by the
procedure IncEquLst. Both procedures manipulate the original equivalence list EquLst without
using a buffer list. Thus, in contrast to the example shown in Fig. 5.24, the frame procedure
CorrectMarks does not need a NewLst. CorrectMarks ends with the replacement of the old
marks in MarkIm.

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 131

1

1

1

1

1

2

2

3

3

3

3

3

3

3

3

3

4 5 6 7 8 9 10 11 12 13 14

4

NewLstStart

Stop

E
q

u
L
s
t

2

3

4

5

6

7

8

9

10

11

12

13

14

1 4

5

5

5

3

9

10

13

13

8

12

12

12

14

i

Fig. 5.24:

Example of the enhancement of an equivalence list.

The most important procedure of the whole enhancement process is FillEquiv (Fig. 5.27). It is
based on the principles of the procedure LastMark (Fig. 5.22). Formal parameters are:

Lst: equivalence list

Mark: current mark.

The procedure is calling itself until it encounters the end of the equivalence chain (Equ=Lst[Equ]),
the beginning of which is indicated by the value of Mark at the first calling. Since the recursive calling
is connected with an assignment of the current return value to the current index (return (Lst[Equ]
= FillEquiv (Lst, Equ))), the whole chain is filled with the return value of the last recursive
calling (return (Equ)) during the backtracking process.

a b c d e f g h i j k l m nS
ta

rt

In
d

e
x

1
2
3
4
5
6
7
8
9

10
11
12
13
14

4
5
3

5

5
9

10
13
8

13
12
12
12
14

5 5

5
3

5
5

12

12
12

12 12

12

12
12

12
12

12
12

12
14

1
4
2
3
4
5
6
9
8

13
7 10

13
8
9

10
11
12
13
14

4
5
5
3
5
5

8
9

13
12

1312
12
12
12
12
12
12
12
14

5
5
5

5
5

3

8
13

13

12
12

12
12
12
12
12
12
12
12
14

Mark Equ Lst[Equ]

a
b
c
d
e

f

g
h
i
j
k
l
m
n

Fig. 5.25:

Tracing the enhancement process shown in Fig. 5.24.

Applying FillEquiv to the example shown in Fig. 5.24 the result depicted in Fig. 5.25 is obtained.
The left table shows a trace of the variables during the recursive calls of FillEquiv. Starting point is
mark ‘1’. It is equivalent to ‘4’ which again is equivalent to ‘5’. This is the end of the chain. New chains

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 132

start with the marks ‘2’, ‘3’, ‘5’, etc. The end of each chain is marked in the left table by small letters.
The end of a chain starts the backtracking of the recursion. This process is illustrated with the aid of
the right table. The columns Index and Start represent the original equivalence list. For each recursion
end from a to n, the new mark is noted. This new mark replaces the old mark of an equivalence chain
during backtracking.

Finally the marks ‘3’, ‘5’, ‘12’ and ‘14’ “survive”. The desired incremental representation of these new
marks is performed by the procedure IncEquLst (Fig. 5.28). Formal parameters are:

n: number of marks

Lst: equivalence list.

The new representatives of the marks are generated with the aid of the variable New. Initially the
values of New are negative and replace the old entries of the equivalence list. The negative sign
serves as an indicator for entries which have already been replaced. At the end of IncEquLst the
negative signs are removed. Now the enhanced equivalence list is available for further processing.

void CorrectMarks (ImSize, n, EquLst, MarkIm)
int ImSize, n;
int *EquLst;
int ** MarkIm;
{
 int i,r,c;

 for (i=1; i<=n; i++)
 EquLst[i] = FillEquiv (EquLst, i);

 IncEquLst (n, EquLst);

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++)
 if (MarkIm[r][c])
 MarkIm[r][c] = EquLst [MarkIm[r][c]];

}

Fig. 5.26:

C realization of the recursive enhancement of equivalence lists: the frame procedure.

int FillEquiv (Lst, Mark)
int *Lst;
int Mark;
{
 int Equ;
 Equ = Lst [Mark];
 if (Equ==Lst[Equ]) return (Equ);
 else return (Lst[Equ] = FillEquiv (Lst, Equ));

}

Fig. 5.27:

C realization of the recursive enhancement of equivalence lists: the filling procedure.

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 133

void IncEquLst (n, Lst)
int n;
int *Lst;
{
 int i,j, Old, New;

 New = -1;
 for (i=1; i<n; i++) {
 Old = Lst[i];
 if (Old >= 0) {
 for (j=i; j<n; j++)
 if (Lst[j]==Old) Lst[j] = New;
 New--;
 } }

 for (i=1; i<n; i++) Lst[i] = abs (Lst[i]);

}

Fig. 5.28:

C realization of the recursive enhancement of equivalence lists: the cleaning procedure.

5.3.3 Feature Extraction

Fig. 5.29 shows a procedure which extracts the features area, center of gravity, perimeter, polar
distance and compactness. Formal parameters are:

ImSize: image size

M: number of marks in MarkIm

MarkIm: mark image

RegIm: image which stores the region under consideration

OutlIm: image which stores the outline of the region under consideration.

It is the purpose of this procedure to store that region in the image RegIm which corresponds to the
current mark m in order to extract the features of this region. Except for compactness, each feature
requires a special procedure. The filling of RegIm is performed with the aid of the procedure
LoadRegIm (Fig. 5.30). Formal parameters are

m: current mark

ImSize: image size

MarkIm: mark image

RegIm: image which stores the region under consideration.

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 134

void Features (ImSize, M, MarkIm, RegIm, OutlIm)
int ImSize, M;
BYTE ** MarkIm;
BYTE ** RegIm;
BYTE ** OutlIm;
{
 int r,c, m, Area, Peri;
 float Com;
 CGTyp CenGra;
 PolTyp Pol;

 for (m=1; m<=M; m++) {
 LoadRegIm (m, ImSize, MarkIm, RegIm);
 Area = CountPixel (ImSize, RegIm);
 CenGra = CentOfGrav (Area, ImSize, RegIm);
 Peri = GenOutLine (ImSize, RegIm, OutlIm);
 Pol = PolarCheck (ImSize, CenGra, OutlIm);
 Com = (float) (Peri*Peri) / (12.56*Area);
} }

Fig. 5.29:

C realization of feature extraction. Data types CGTyp and PolTyp are defined in Appendix A.

void LoadRegIm (m, ImSize, MarkIm, RegIm)
int m,ImSize;
BYTE ** MarkIm;
BYTE ** RegIm;
{
 int r,c;
 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++)
 if ((int)MarkIm[r][c] == m) RegIm [r][c] = 1;
 else RegIm [r][c] = 0;

}

Fig. 5.30:

C realization of the determination of the current region.

The procedure is simple and self-explanatory. A typical region feature is area. In order to be
independent of a particular scale, we use the number of pixels measured.

The procedure CountPixel, which is shown in Fig. 5.31, calculates the number of pixels. Formal
parameters are:

ImSize: image size

RegIm: image which stores the region under consideration.

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 135

int CountPixel (ImSize, RegIm)
int ImSize;
BYTE ** RegIm;
{
 int r,c,n;
 n=0;
 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++)
 if (RegIm[r][c]) n++;
 return(n);

}

Fig. 5.31:

C realization of the calculation of area.

The procedure returns the number of pixels of the region under consideration. Like the preceding one,
the current procedure is simple and self-explanatory. The center of gravity of a region is important in
localizing this region. The center coordinates are:

R 1C 1
1

G N
r 0 c 0

R 1C 1
1

G N
r 0 c 0

r r f (r,c)

c cf (r,c)

− −

= =
− −

= =

=

=

∑ ∑

∑ ∑

r and c are the coordinates of the image, while R and C indicate the number of rows and columns. N
represents the number of pixels of the region. f(r,c) is the image function. It yields 1 if the current pixel
(r,c) belongs to the region. Otherwise we obtain 0. Fig. 5.32 shows the procedure CentOfGrav which
calculates the center of gravity. Formal parameters are

n: number of pixels in the region

ImSize: image size

RegIm: image which stores the region under consideration.

The procedure returns the coordinates of the center of gravity. It is self-explanatory. The shape of a
region is determined by its outline. GenOutLine extracts this feature. (Fig. 5.33). Formal parameters
are:

ImSize: image size

RegIm: image which stores the region under consideration

OutlIm: image which stores the outline of the region under consideration.

5 Region-Oriented Segmentation - 5.3 Source Code

Ad Oculos 136

CGTyp CentOfGrav (n, ImSize, RegIm)
int n, ImSize;
BYTE ** RegIm;
{
 int r,c;
 CGTyp CenGra;
 long yc,xc;

 yc=0;
 xc=0;
 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++)
 if (RegIm[r][c]) {
 yc += r;
 xc += c;
 }
 CenGra.r = (int) (yc/n);
 CenGra.c = (int) (xc/n);
 return (CenGra);

}

Fig. 5.32:

C realization of the calculation of center of gravity. Data type CGTyp is defined in Appendix A.

int GenOutLine (ImSize, RegIm, OutlIm)
int ImSize;
BYTE ** RegIm;
BYTE ** OutlIm;
{
 int r,c,n;

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) OutlIm [r][c] = 0;

 for (r=1; r<ImSize; r++)
 for (c=1; c<ImSize; c++)
 if (!RegIm [r][c-1] && RegIm [r][c]) OutlIm [r][c] = 1; else
 if (RegIm [r][c-1] && !RegIm [r][c]) OutlIm [r][c-1] = 1;

 for (r=1; r<ImSize; r++)
 for (c=1; c<ImSize; c++)
 if (!RegIm [r-1][c] && RegIm [r][c]) OutlIm [r][c] = 1; else
 if (RegIm [r-1][c] && !RegIm [r][c]) OutlIm [r-1][c] = 1;

 n=0;
 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++)
 if (OutlIm[r][c]) n++;

 return(n);

}

Fig. 5.33:

C realization of the outline extraction.

The procedure returns the number of outline pixels. It starts by initializing OutlIm and ends by
counting the outline pixels. The kernel of the procedure determines the vertical and horizontal shares
of the outline. A pixel belongs to the region outline if one of two neighboring pixels (vertical or
horizontal) belongs to the background while the other is part of the region.

A simple method of describing the shape is offered by the minimum and maximum polar distances.
These features are extracted by the procedure PolarCheck (Fig. 5.34). Formal parameters are:

n: number of outline pixels

ImSize: image size

5 Region-Oriented Segmentation - 5.4 Supplement

Ad Oculos 137

CenGra: center of gravity

OutlIm: image which stores the outline of the region under consideration.

The procedure returns the minimum and maximum polar distances relative to the mean distance. The
polar distance is calculated with the aid of the Euclidean distance d = (int) sqrt ((float)dy*
dy + dx*dx).

PolTyp PolarCheck (n, ImSize, CenGra, OutlIm)
int n, ImSize;
CGTyp CenGra;
BYTE ** OutlIm;
{
 int r,c, d,dy,dx, Min,Max;
 long Mean;
 PolTyp Pol;

 Min = 2*ImSize;
 Max = 0;
 Mean = 0;
 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++)
 if (OutlIm[r][c]) {
 dy = CenGra.r - r;
 dx = CenGra.c - c;
 d = (int) sqrt ((float)dy*dy + dx*dx);
 if (d<Min)
 Min = d;
 else if (d>Max)
 Max = d;
 Mean += d;
 }
 Mean /= n;
 Pol.Min = (float) Min/Mean;
 Pol.Max = (float) Max/Mean;
 return (Pol);

}

Fig. 5.34:

C realization of the calculation of polar distances. Data types CGTyp and PolTyp are defined in Appendix A

5.4 Supplement

A fundamental problem of region-oriented segmentation procedures is their sensitivity to unusual
region shapes. Difficulties are typically caused by regions containing holes, overlapping areas and
spiral areas. In order to „toughen“ the basic procedures (described in the preceding section) against
such cases, they must be adequately modified. The specific modification depends very much on the
problem which has been encountered. Such special cases are not a subject of this book. Thus, the
following sections offer some general tips for further work.

5.4.1 Thresholding

The binarization of graylevel images with the aid of thresholds is the most popular method of
segmentation. This applies especially to industrial image processing. A thorough survey of this subject
is offered by Sahoo, Soltani and Wong [5.11]. Some interesting alternatives to thresholding (e.g. region
growing and split-and-merge approaches) are presented by Rosenfeld/Kak [5.10], Horn [5.2], Young et
al. [5.13].

In the following section a few variations to the threshold approach are outlined. The idea of positioning
the thresholds in the histogram valleys is derived from efforts to maximize the number of pixels with
graylevels which lie between two thresholds. A more sophisticated approach from Kohler [5.6]

5 Region-Oriented Segmentation - 5.4 Supplement

Ad Oculos 138

includes the contrast information: the optimum threshold yields more contours of high contrast and
fewer contours of low contrast than any other threshold. Kohler finds this optimum threshold with the
aid of a special contrast histogram.

Otsu [5.7] uses normal graylevel histograms. Based on them he obtains simple statistical measures
from which the threshold can be extracted. An appropriate measurement is the entropy of the
graylevel histogram. Many authors describe threshold procedures based on entropy (e.g. [5.8] [5.9]
[5.5] [5.4]). Tsai [5.12] interprets a graylevel image as an ideal version of a binary image. Accordingly
Tsai claims that a threshold should be found which yields a binary image, the first three moments of
which equal the moments of the graylevel image.

These variations of threshold procedures offer interesting approaches. However, regarding practical
applications, the following points should be considered:

• A lot of procedures are designed for the optimum positioning of only one threshold. Usually, it is no
problem to adapt them to a search for multiple thresholds.

• Threshold procedures do not “know” anything about the contents of the image. Thus, they only
work satisfactorily if it is guaranteed that meaningful regions are represented by similar graylevels.
In this case a region is represented in the histogram by a peak. Note that the image of a chessboard
yields the same histogram as an image which contains one white and one black region of identical
size.

5.4.2 Connectivity Analysis

The procedures described in Section 5.3.2 represent only one possible realization of connectivity
analysis. The variations of these procedures depend on the

application being considered and depend also on constraints like the necessity of a hardware
realization. The following two points outline refinements of general interest:

• The first variation concerns the L-shaped masks shown in Fig. 5.20. They find connected labels
based on a 4-connected neighborhood (Section 6.3.2, Fig. 6.11). This approach is simple and clearly
arranged. However, Horn points out that problems with line-shaped label regions may arise [5.2]. To
solve these problems, he proposes a mask which is based on a 6-connected neighborhood. In
practice such problems are not of importance since line-shaped regions do not often appear. Users
who want to be on the safe side should use the Horn approach.

• The representation of regions by the coordinates of the corresponding pixels is straightforward, but
requires unnecessary memory. A more sophisticated approach is based on those image rows which
belong to a region. When stepping (from left to right) along one of these rows, sooner or later the
left border of the region is encountered, the region is crossed and finally the right border is found.
The column indices of the left and right border represent the region completely and in a very
memory-efficient way. Furthermore, this procedure allows an efficient solution of the equivalence
problem. A detailed description of the entire approach can be found in [5.10].

5.4.3 Feature Extraction

The region features described in Section 5.1.3 are only a few of the large spectrum of possible
features the choice of which depends on the application. Thus, the following points only mention a
few generally applicable features:

Eccentricity is the ratio of the maximum and the minimum polar distances.

Orientation is the angle between the axis of the first moment of inertia and the coordinate system.

Bounding rectangle is the rectangle with mimimum area, which completely surrounds the region. It is
easily calculated with the aid of orientation.

Symmetry in different variations.

These and other features are described by many authors. Two examples are [5.1] and [5.3].

5 Region-Oriented Segmentation - 5.5 Exercises

Ad Oculos 139

5.5 Exercises

Exercise 5.1:

Apply a threshold of 2.5 and 8.5 to the source image shown in Fig. 5.2. Compare the results.

Exercise 5.2:

Apply an average operation over 3 entries to the histogram shown in Fig. 5.4 take the thresholds from
this manipulated histogram and apply them to the source image shown in Fig. 5.3.

Exercise 5.3:

Segment the source image shown in Fig. 5.35 using the thresholds 8, 13 and 17 and apply a
connectivity analysis to the label image.

10

5

10

10 10

10

10

10

10

10

10

10

15

15

15

15

15

15

15

15

15

15

15

1515

15

15

15

15

15

151515

20

20

20 20

20

20

1010 10

10 10 10 12

12

12

12

12

12

12

12

12

125 5 5 7

71111

Fig. 5.35:

This is the source image used in Exercise 5.3.

Exercise 5.4:

Write a program which computes and applies thresholds locally.

Exercise 5.5:

Write a program which computes a contrast histogram as described in Section 5.4.1.

Exercise 5.6:

Acquire workpiece images and write a program which measures them. Implement calibration
mechanisms.

Exercise 5.7:

Write a program which realizes a connectivity analysis that fills label regions with a mark and avoids
the necessity of an equivalence list.

Exercise 5.8:

Write a program which determines the features eccentricity, orientation and bounding rectangle.

Exercise 5.9:

Acquire workpiece images and write a program which determines their position and orientation
relative to the origin of the image.

5 Region-Oriented Segmentation - 5.5 Exercises

Ad Oculos 140

Exercise 5.10:

Become familiar with every region operation offered by AdOculos (AdOculos Help).

5 Region-Oriented Segmentation - References

Ad Oculos 141

References

[5.1] Ballard, D.H.; Brown, C.M.:
Computer vision.
Englewood Cliffs: Prentice-Hall 1982

[5.2] Horn, B.K.P.:
Robot vision.
Cambridge, London: MIT Press 1986

[5.3] Jain, A.K.:
Fundamentals of digital image processing.
Englewood Cliffs: Prentice-Hall 1989

[5.4] Johannsen, G.; Bille, J.:
A threshold selection method using information measures.
Proceedings, 6th Int. Conf. Pattern Recognition,
Munich, Germany, (1982) 140-143

[5.5] Kapur, J.N.; Sahoo, P.K. and Wong A.K.C.:
A new method for gray-level picture thresholding using the
entropy of the histogram.
Computer Vision Graphics Image Processing 29, (1985) 273-285

[5.6] Kohler, R.:
A segmentation system based on thresholding.
Computer Vision Graphics Image Processing 15, (1981) 319-338

[5.7] Otsu, N.:
A threshold selection method from gray-level histograms.
IEEE Trans. Systems, Man Cybernet. SMC-8, (1978) 62-66

[5.8] Pun, T.:
A new method for gray-level picture thresholding using the entropy of the histogram.
Signal Processing 2, (1980) 223-237

[5.9] Pun, T.:
Entropic thresholding: A new approach.
Computer Vision Graphics Image Processing 16, (1981) 210-239

[5.10] Rosenfeld, A. and Kak, A.C.: Digital picture processing.
Orlando: Academic Press 1982

[5.11] Sahoo, P.K.; Soltani, S.; Wong, A.K.C.:
A survey of thresholding techniques.
Computer Vision Graphics Image Processing 41, (1988) 233-260

5 Region-Oriented Segmentation - References

Ad Oculos 142

[5.12] Tsai, W.:
Moment-preserving thresholding: A new approach.
Computer Vision Graphics Image Processing 29, (1985) 377-393

[5.13] Young, T.Y.; Fu, K.S. (Eds.):
Handbook of pattern recognition and image processing.
New York: Academic Press 1986.

6 Contour-Oriented Segmentation

6.1 Foundations

The requirements of understanding this chapter are

• to be familiar with terms like derivative, gradient and convolution

• to have read Chapter 1 (Introduction) Section 3.1.2 (Emphasizing Graylevel Differences), and the
beginning of Section 5.1 (Foundations; the discussion of the basics of segmentation).

As already discussed in Section 5.1, common segmentation procedures are based on graylevel
differences within the source image. This is also valid for contour-oriented segmentation. Thus this
form of segmentation starts by emphasizing graylevel differences (Fig. 6.1) and is typically performed
by a gradient operation as discussed in Section 3.1.2. Changing the Cartesian representation of the
gradient operator into a polar representation yields the magnitude and direction of the maximum
graylevel change. In order to obtain a more illustrative representation, the gradient direction is rotated
by 90º because the direction is then aligned with the direction of the contour. In this book the
direction of a contour is defined so that the higher graylevels are at the right-hand side of the contour.

Grad
Horizontal
graylevel differences

Vertical
graylevel differences

cart

pol

Gradient
magnitude

Gradient
direction 2

_
+

Thin

Gradient
magnitude

Gradient
direction 2

_
+

LinkApprox

> >

>

>

High
graylevel

Low
graylevel

Segments Contour point chains

Fig. 6.1:

The aim of contour segmentation is to describe the borders of image regions by means of only a
few segments. This means firstly a huge data reduction an secondly the possibility of a high-level
description of the region borders.

The gradient operator „smears“ the contour due to its low-pass filter effect. To enhance the contour a
thinning procedure is applied which leaves a gradient image with lines which are only one pixel wide.

A linking procedure collects connected contour points forming a line (like the pearls of a necklace).
Thus linking contour points is the realization of the connectivity analysis in the context of contour-
oriented segmentation, just as blob coloring is the realization in the context of region-oriented
segmentation (Section 5.1.2). The linking procedure provides lists containing the coordinates of
connected contour points.

6 Contour-Oriented Segmentation - 6.1 Foundations

Ad Oculos 144

In the last step the contour represented by contour point chains is approximated by segments. Thus
the result of the whole process of contour segmentation is a list of segments represented by the
coordinates of their terminating points. The advantages of contour segmentation are:

• Comparing the enormous number of pixels of the source image with the few coordinates of the
segment list shows that a considerable data reduction has been achieved.

• A structural description of the contour of image regions is obtained. Thus we are able to describe
contours in abstract terms such as “these segments are parallel”.

6.1.1 Detection of Contour Points

The first step towards the detection of contour points is the enhancement of graylevel differences in a
source image. There are many methods available to achieve this end. In practice, however, the
gradient operation is widely used, because it is simple and robust. A gradient operator yields the
magnitude of graylevel differences as well as the direction of the highest graylevel difference (Fig.
6.2). Although most authors emphasize the representation of the gradient magnitude, the gradient
direction is in fact more important. This realization will form the focus of the following sections.

Grad

2

Source image

Gradient magnitude

Gradient direction +-

Fig. 6.2:

A gradient operation emphasizes graylevel
differences since it yields, for every pixel,
the magnitude and direction of the
maximum graylevel change. To obtain a
more illustrative representation, the
gradient direction is rotated by 90º. Then
the direction is now aligned with the
direction of the contour. In this book the
direction of a contour is defined so that the
higher graylevels are on the right-hand side
of the contour.

The following examples of gradient operations are based on the source image shown in Fig. 6.3. The
simplest gradient operation is realized by subtracting the graylevels of two horizontally and two
vertically neighboring pixels. This is equivalent to the convolution of the source image with the masks
shown in Fig. 6.4. The results of this convolution (∆x and ∆y) as well as its polar representation
(Magnitude and Direction) are also shown in Fig. 6.4.

The disadvantage of this simple operator is its sensivity to the “digital nature” of the graylevel
transition in the source image (Fig. 6.3). If the transition is interpreted as a straight border of an image
region, then the gradient magnitude and direction should be equal at every pixel of the source image.
To obtain the desired result the convolution mask must be enlarged to increase its smoothing effect
(Section 3.1.1).

6 Contour-Oriented Segmentation - 6.1 Foundations

Ad Oculos 145

105

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

1010

10

5

5

5

5

5

5

5

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0 0 0 0

00

0

0

0

0

0

0

0

Fig. 6.3:

This source image is used as the basis for experiments with gradient operators.

5

5

5

5

5

5

5

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

00

0

0

5

5

5

5

5

5

5

5

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

5

5

5

5

5

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

00

0

0

5

7

5

5

5

5

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

7

77

77

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

00

0

0

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

-5 -5

-5 -5

-5-5

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

00

0

0

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

90 90

90 90

90 90

90 90

90 90

45 45

45 45

4545

Magnitude

Direction

x

y

1

-1

1-1

Fig. 6.4:

The simplest gradient operation is realized by the subtraction of the graylevels of two
horizontally and two vertically neighboring pixels. ∆x and ∆y are the results of the
convolution of the masks with the source image (Fig. 6.3). Magnitude and Direction)
stand for the polar representation of the gradient.

Following the size of the gradient operator, the next most important parameter concerns the choice of
the mask coefficients. The aim here is to approximate the ideal gradient operation as closely as
possible. This objective is especially important for the gradient direction, because even small errors
may have a detrimental impact on the results of successive processing steps. From this point of view
the 3 * 3 gradient operator should not be used. In practice, a 5 * 5 mask has proved to be a good
compromise. Larger masks yield only marginally better results whilst consuming far more
computation time. If there are relatively large objects in an image and if the image is noisy, the
application of a 9 * 9 mask is to be recommended. The higher low-pass filter effect of this mask
frequently improves the results.

6 Contour-Oriented Segmentation - 6.1 Foundations

Ad Oculos 146

-1 0 1

-2 0 2

-1 0 1

-10 -10 0 10 10

-17 -17 0

0

0

0

0

17

-20 -20 20 20

-17 -17 17 17

17

-10 -10 0 10 10

-14 -14 -14 -14 14 14 14 14

-71 -71 -71 -71

0-14 -14 -14 -14 14 14 14 14

0-29 -29 -29 -29 29 29 29 29

0-29 -29 -29 -29 29 29 29 29

0-44 -44 -44 -44 44 44 44 44

0-44 -44 -44 -44 44 44 44 44

0-60 -60 -60 -60 60 60 60 60

0-60 -60 -60 -60 60 60 60 60

1 2 1

0 0 0

-1 -1-2

10

10

17

17

20

20

17

17

10

10

0 0 0 0 0

-10

-10 -10

-10-17

-17

-17

-17

-20

-20

14

14

14

14

0

-14

-14

-14

-14

14

14

14

14

0

-14

-14

-14

-14

29

29

29

29

0

-29

-29

-29

-29

29

29

29

29

0

-29

-29

-29

-29

44

44

44

44

0

-44

-44

-44

-44

44

44

44

44

0

-44

-44

-44

-44

60

60

60

60

-60

-60

-60

-60

0

60

60

60

60

-60

-60

-60

-60

0

71

71

71

71

0

-71

-71

-71

-71

71 71 71 71

Fig. 6.5:

The 3 * 3 mask is known as the Sobel operator. The larger masks are “inflated” Sobel masks. From a
practical point of view the 5 * 5 mask has proved to be a good compromise between simplicity, a good
approximation of the ideal gradient operation and processing speed.

The mask coefficients are determined by some basic investigations (e.g. [6.7]). Nevertheless, these
approaches are based on constraints which are often not appropriate in an industrial environment. For
industrial applications the original idea of Sobel (namely the decrease of the coefficients towards the
border of the mask) is sufficient for most cases. For instance, an arched form like the positive part of a
sine function proves suitable. The coefficients shown in Fig. 6.5 have been chosen based on this
model. The sum of the coefficients should be zero, in order to avoid shifting the local mean of the
graylevels.

A lot of computation time can be saved if the coefficients are only +1 and -1 as in the examples
above. However, the approximation error of the Sobel masks is smaller.

6.1.2 Contour Enhancement

As a result of a gradient operation, the gradient magnitudes near a contour are often distributed in a
way similar to an extended mountain ridge (Fig. 6.6). The “summit pixels” are those having locally the
highest gradient magnitudes. These points are very likely to represent the actual location of the
contour of a region. I.e. the description of the contour by the “summit pixels” should be sufficient.
Sticking to the “ridge” portrayal this means: the slopes of the ridges on the left-hand and the right-
hand side of the summit are superfluous and should be removed (non-maxima suppression). This

6 Contour-Oriented Segmentation - 6.1 Foundations

Ad Oculos 147

“thinning” of the chain of ridges eventually leaves a thin wall of width 1 pixel (Fig. 6.7). In most cases
the height of this wall is irrelevant.

Fig. 6.8 (left) shows a gradient image in polar representation. To find the local maximum magnitudes
the left-hand and the right-hand side neighbors of every gradient pixel have to be determined.
However, what is considered to be left or right? The location of the neighbors is defined relative to the
gradient direction of the current pixel. Therefore four neighbor relations have to be dealt with. They are
depicted in Fig. 6.9. Fig. 6.8 (right) shows the neighborhood relations and the local maxima of the
current example.

In practice non-maxima suppression should not only be based on the comparison of neighboring
gradient magnitudes but also on the comparison of the gradient directions too. Since “inside” the
smeared contour, neighboring gradient directions are similar, this similarity should be checked and
irregular local maxima which are caused by noise should be removed.

Fig. 6.10 shows the results of 3 different direction checks. Since the source image (Fig. 6.8 (left))
represents the corner of a region, the variations of the gradient directions are comparatively high. Thus
the similarity check should permit a variation of up to ±30º to keep the contour closed.

6 Contour-Oriented Segmentation - 6.1 Foundations

Ad Oculos 148

Gradient
magnitude

Direction +
2

Fig. 6.6:

The gradient magnitudes are distributed like an extended mountain ridge. The “summit
pixels” are those having the highest local gradient magnitudes. These points are very
likely to represent the actual location of a region’s contour.

The thinning procedure yields contours which are indeed one pixel wide but the contour points are 4-
connected. Fig. 6.11 (a) shows an example of such a chain of contour points. A 4-connected chain is
only one pixel wide, if neighborhoods are only permitted in a horizontal or in a vertical orientation.
However, if a diagonal neighborhood is permissible too, the chain shown in Fig. 6.11 (a) has redundant
contour points which may even interfere with further processing steps such as linking (Section 6.1.3).
Thus the aim should be to obtain an 8-connected chain as shown in Fig. 6.11 (b).

6 Contour-Oriented Segmentation - 6.1 Foundations

Ad Oculos 149

Thinning

2

Gradient magnitude

Gradient direction +
2

Gradient magnitude

Gradient direction +

Fig. 6.7:

The aim of a thinning procedure is to enhance a “smeared” contour
such that lines which are only one pixel wide remain.

To transform a 4-connected chain into an 8-connected one the masks shown in Fig. 6.12 are used. The
bold lines depict pixels which are part of a 4-connected chain. The current pixel of each mask
corresponds to the superfluous contour point. The algorithm using these mask works directly on the
pixels of the source image. Thus, this procedure constitutes an exception to the rule which requires
separate images for input and output. If the algorithm (starting as usual in the top left corner of the
image) encounters one of the four constellations, the current pixels of the magnitude image and of the
direction image are set to 0, i.e. they become part of the background. Fig. 6.13 shows a simple
example for the transformation of a 4-connected chain of contour points (Start) into an 8-conntected
chain (Result). Although the chain of contour points shown in Fig. 6.14 (Start) is unusual, the gradient
operator produces such chains under certain constraints. As the example indicates the basic 4-to-8
transform fails in ist attempt at processing these unusual chains. To be successful the application of
the 4 masks shown in Fig. 6.12 has to be refined.

6 Contour-Oriented Segmentation - 6.1 Foundations

Ad Oculos 150

0 0

0 0

5

5

55 5

15 15 15 15

15

15

15 15

15

15

15

15

151515151515

0

0

0

0

0

0

0

00000 000

5 5 5 5 5 5 5

5

5

5

5

5

520

20

20

20

2020202020

0 0

0 0

0

0

0

0

0

0

0

00000000

250

270 270 270 270 270

250

250

250

250

270 270 270 270

270 270 270

270 270

270

225

225

225

225

225200

200

200

200

200

180

180

180

180

180 180 180180 180

180

180

180 180 180

180

0 0

0 0

0

0

0

0

0

0

0

00000000

250

270 270 270 270 270

250

250

250

250

270 270 270 270

270 270 270

270 270

270

225

225

225

225

225200

200

200

200

200

180

180

180

180

180 180 180180 180

180

180

180 180 180

180

20

20

20

20

2020202020

Magnitude Neighbors

Local maximaDirection

Fig. 6.8:

This is a simple example demonstrating the non-maxima suppression procedure.

6 Contour-Oriented Segmentation - 6.1 Foundations

Ad Oculos 151

r-1
c

r+1
c

r-1

r+1

c-1

c+1

r r-1
c-1 c+1

r+1

r-1

c-1

c+1

112.5 67.5

22.5

337.5

292.5247.5

202.5

157.5

Fig. 6.9:

Determination of neighborhoods in the context of the non-maxima suppression. To give
one example: if the gradient direction of the current pixel (r,c) is between 67.5º and 112.5º
or 247.5º and 292.5º the neighbor pixel are (r,c-1) and (r,c+1).

6 Contour-Oriented Segmentation - 6.1 Foundations

Ad Oculos 152

20

20

202020

10

20

20

20

20202020

20

20

20

20

2020202020

20

30

Fig. 6.10:

These are the results of 3 different direction checks. Since the source image shown in Fig.
6.8 (left) represents the corner of a region, the variations of the gradient directions are
comparatively high. Thus the similarity check should permit a difference of up to ±30º to
keep the contour closed.

(a) (b)

Fig. 6.11:

Both chains are only one pixel wide but the connection
of their elements differs. (a) shows a 4-connected
chain the elements of which permit only horizontal or
vertical orientations. The 8-connected chain (b) allows
diagonal neighborhoods too. A 4-connected chain has
redundant elements which may disturb further
processing steps.

6 Contour-Oriented Segmentation - 6.1 Foundations

Ad Oculos 153

r-1
c

c

r-1

c-1
r

c-1

r+1

c+1c+1
rr r r

c

c

r
c

c c

r
c

r

r+1

(a) (b) (c) (d)

Fig. 6.12:

These masks are used to transform a 4-connected chain into an 8-connected one (Fig.
6.11). The bold lines depict pixels which are part of a 4-connected chain. The current
pixel of each mask corresponds to the superfluous contour point.

Start Result

Fig. 6.13:

This is a simple example for the transformation of a 4-
connected chain of contour points (Start) into an 8-
connected chain (Result).

Start

End

Fig. 6.14:

The application of the 4-to-8 transform to the unusual (but
not impossible) chain yields a broken chain.

Fig. 6.15 shows the application of a mask on part of a chain. Firstly, not only the middle element of the
masks has to be considered but all three mask elements are equally and simultaneously under
consideration. Secondly two forms of neighbors have to be distinguished. A corner neighbor is an 8-
connected chain element while a border neighbor is 4-connected to the mask element currently under
consideration. While border neighbors may be covered by other mask elements, corner neighbors
must lay outside of the mask.

The above definitions are the basis for the new 4-to-8 algorithm, if the following conditions are met:

• the mask element under consideration has either one or two border neighbors and

• no corner neighbor

Next delete the chain element covered by the mask element under consideration.

Fig. 6.16 demonstrates the application of the refined transformation to the unusual chain shown in Fig.
6.14.

6 Contour-Oriented Segmentation - 6.1 Foundations

Ad Oculos 154

Part
of a
chain

Current
mask

Corner
neighbor

Mask element
under consideration

Border
neighbor Mask elements are

never corner neighbors

ATTENTION:

Fig. 6.15:

The refined application of the 4-to-8 masks is based
on a more detailed consideration of the
neighborhood and the connectivity of the chain and
mask elements. First all the elements of the mask
have to be given equal consideration. Secondly
corner neighbors and border neighbors have to be
distinguished as shown in the example above.

Start Result

Fig. 6.16:

The application of the refined 4-to-8 transform to the unusual chain shown
in Fig. 6.14.

6.1.3 Linking Contour Points

Thinning the gradient images does not complete contour-oriented segmentation. If a human observer
focuses on Fig. 6.17 he or she will recognize three lines. In contrast, the computer only “knows” about
certain contour points. Hence, a connectivity analysis (Chapter 5) is required which collects connected
contour points and provides lists containing their coordinates. In the case of contour segmentation
this procedure is known as contour linking.

6 Contour-Oriented Segmentation - 6.1 Foundations

Ad Oculos 155

Linking

2
Gradient direction +

Gradient magnitude

a: ...

b:

c:

Fig. 6.17:

The linking procedure provides lists containing
the coordinates of connected contour points.

Fig. 6.18 demonstrates the search for neighboring contour points in a source image. Starting with the
„eastern“ neighbor of the current contour point (marked by a cross) a search is made
counterclockwise for another contour point. The first contour point which is encountered becomes the
new current contour point while the current one is kept in the current contour point list and deleted
from the source image.

Fig. 6.18:

The search for neighboring contour points starts with the „eastern“ neighbor of
the current contour point (marked by a cross) searching counterclockwise for
another contour point. The first contour point which is encountered becomes
the new current contour point while the current one is kept in the current
contour point list and deleted from the source image.

Fig. 6.19 (left hand side) shows two chains of contour points. The linking procedure yields two chains
a and b (right-hand side). Note that the data structure used to represent the chains is a list. Thus the
right-hand side image is only used to illustrate the result.

Fig. 6.17 suggests the utilization of the gradient direction for the linking procedure. This is indeed a
way to avoid the fragmentation of chains as demonstrated in Exercise 6.5. See Section 6.4.3 (Linking
Contour Points) for further explanation.

6 Contour-Oriented Segmentation - 6.1 Foundations

Ad Oculos 156

1

1

1

1

1

1

1

111111

1

1

1

1 1

1 1 1

1

1

1

111

a

a

a

a

a

a

a

aaaaaa

a

a

a

a a

b b b

b

b

b

bbb

Fig. 6.19:

The application of the linking procedure to the source image (left-hand side) yields two
chains a and b (right-hand side).

6.1.4 Contour Approximation

In the case of region segmentation (Chapter 5) connectivity analysis is followed by feature extraction.
These features (e.g. compactness) are typically numerical. In contrast, features describing contours
are often structural (e.g. parallelism of segments). Thus a description of contours by segments is
required. They can be obtained by contour approximation. Fig. 6.20 shows an example. The idea of a
simple approximation procedure is illustrated in Fig. 6.21. At the beginning the chain of contour points
is tentatively approximated by a single segment. If the greatest perpendicular distance between
segment and contour chain exceeds a user defined tolerance value the segment is split at the location
of the greatest distance. This procedure is repeated until the greatest distance is below the user-
defined tolerance.

Approxi-
mation

Fig. 6.20:

Features describing contours are often structural, e.g. the parallelism of
segments. Segments describing contours are achieved with the aid of an
approximation algorithm.

6 Contour-Oriented Segmentation - 6.2 AdOculos Experiments

Ad Oculos 157

(a) (b) (c)

Fig. 6.21:

A simple approximation algorithm tentatively starts by approximating the chain of contour
points by a single segment. If the greatest perpendicular distance between segment and
contour chain exceeds the tolerance value defined by the user, the segment is split at the
location of the greatest distance. This procedure is repeated until the greatest distance is
below the user-defined tolerance value.

6.2 AdOculos Experiments

To become familiar with contour-oriented segementation the New Setup shown in Fig. 6.22 is invoked
as described in Section 1.6. The example image which will be used in the current section depicts
simple geometrical objects cut out of cardboard (Fig. 6.23 (KDVSRC.128)). A piece of black cardboard
serves as a background, while the objects are gray or white. This image is suitable for demonstration
purposes because of the simple contours of its objects.

Fig. 6.22:

This chain of procedures is the basis for experiments concerning contour-oriented segmentation. The New Setup is
realized according to the steps described in Section 1.6. The results are shown in Fig. 6.23.

6 Contour-Oriented Segmentation - 6.2 AdOculos Experiments

Ad Oculos 158

Fig. 6.23:

The example image (KDVSRC.128) depicts simple geometric objects cut out of cardboard. A piece of black
cardboard serves as background, whilst the objects are gray or white. This image is suitable for demonstration
purposes because of the simple contours of its objects. (2), (3), (4) and (5) are the results of the gradient operation.
The interpretation of the gradient direction (5) is based on the palette. (6) and (7) represent the thinning result. The
chains of contour points (8) are easy to interpret if the image is magnified and colored (View menu). The same
holds for (9) which shows the segments computed by the approximation function.

6.2.1 Detection of Contour Points

Contour points are detected by a gradient operation using a 5 * 5 processing window. Fig. 6.23 (2) and
(3) show the graylevel differences in Cartesian representation. The gradient magnitudes of the contour
points are shown in (4). The gradient direction is depicted in (5), where graylevels are used to
represent the directions of gradients according to the palette.

The parameter used by Cartesian/Polar... was

Threshold:10.

This parameter may be varied by clicking the right mouse button on the function symbol. The
threshold defines a value, below which the gradient magnitudes are set to zero.

6.2.2 Contour Enhancement

The next step in the procedure of contour segmentation is thinning the gradient image. The results of
this process are shown in Fig. 6.23 (6) and (7). The parameter used by Thinning was:

Max. Angle:30.

This parameter may be varied by clicking the right mouse button on the function symbol. The
parameter controls the direction check discussed in Section 6.1.2.

The use of simple “artificial” objects emphasizes that the thinning procedure is not faultless:

6 Contour-Oriented Segmentation - 6.3 Source Code

Ad Oculos 159

• Vertices are deformed, rounded or even destroyed.

• Contours of objects which were originally straight, are often “bent”. This observation demonstrates
an unfortunate fact: a perfect placement of thin contours is not possible.

• Due to the small dimensions of the objects used here, the “digital nature” of the processing
becomes visible. For round shapes this may cause severe distortion.

6.2.3 Linking Contour Points

The result of the linking operation is shown in Fig. 6.23 (8). Magnification and coloring (View menu) of
(8) supports the illustration of the result. Contour points which are linked together have the same
color. It is obvious that the computer “sees” different concatenations than humans, whilst a human
observer can easily recognize the closed contours of the objects, the computer did not perform well.
These problems are mainly caused by small gaps in the contour. This kind of fault typically occurs at
vertices and is due to the low-pass filter effect of the preceeding gradient operation.

The results of the linking procedure are visualized by means of a pixel matrix. Note that the actual data
structure of a chain of contour points is a list or a one-dimensional array.

6.2.4 Contour Approximation

The remarks made at the end of the preceeding section (concerning the visualization of chains of
contour points) are also valid in the case of contour approximation. The results of the approximation
are segments which are eventually completely defined by their terminating points. These points are
emphasized in Fig. 6.23 (9). Again magnification and coloring (View menu) should be used in support
of this illustration.

The parameter used in Approximation was:

Max. Error: 3.

This parameter may be varied by clicking of the right mouse button on the function symbol
Approximation.

As a result of accepting this fairly high approximation error (in comparison with the size of the regions)
the circle has lost its original shape. Alternatively a smaller maximum error would have caused many
short segments. The choice of an optimal tolerance must finally depend on the specific task at hand.

6.3 Source Code

6.3.1 Detection of Contour Points

Fig. 6.24 shows a procedure which realizes a 5 * 5 gradient operation. Formal parameters are:

MaxGV: maximum graylevel permitted in the output images

ImSize: image size

InImage: input image on which the gradient operation has to be performed

DeltaX: output image of column differences

DeltaY: output image of row differences.

The current procedure uses 5 * 5 masks for calculating the gradient (Fig. 6.5). In the program these
masks are represented by the static variables Xmask and Ymask. The first step of the program serves
to initialize the output images DeltaX and DeltaY.

6 Contour-Oriented Segmentation - 6.3 Source Code

Ad Oculos 160

void GradOp5 (MaxGV, ImSize, InImage, DeltaX, DeltaY)
int MaxGV, ImSize;
BYTE ** InImage;
int ** DeltaX;
int ** DeltaY;
{
 long dXl, dYl;
 int r,c, dX,dY, gv, y,x, MaxMag;

 static int Xmask [5][5] = { { -10, -10, 0, 10, 10},
 { -17, -17, 0, 17, 17},
 { -20, -20, 0, 20, 20},
 { -17, -17, 0, 17, 17},
 { -10, -10, 0, 10, 10} };
 static int Ymask [5][5] = { { 10, 17, 20, 17, 10},
 { 10, 17, 20, 17, 10},
 { 0, 0, 0, 0, 0},
 { -10, -17, -20, -17, -10},
 { -10, -17, -20, -17, -10} };

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 DeltaX [r][c] = 0;
 DeltaY [r][c] = 0;
 } }

 MaxMag = 0;
 for (r=2; r<ImSize-2; r++) {
 for (c=2; c<ImSize-2; c++) {
 dXl = 0;
 dYl = 0;
 for (y=-2; y<=2; y++) {
 for (x=-2; x<=2; x++) {
 gv = InImage [r+y] [c+x];
 dXl += (gv * Xmask [y+2] [x+2]);
 dYl += (gv * Ymask [y+2] [x+2]);
 } }
 dX = (int) (dXl/25);
 dY = (int) (dYl/25);
 if (abs(dX) > MaxMag) MaxMag = abs(dX);
 if (abs(dY) > MaxMag) MaxMag = abs(dY);
 DeltaX [r][c] = dX;
 DeltaY [r][c] = dY;
 } }

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 DeltaX [r][c] = (int) (((long) DeltaX [r][c] * MaxGV) / MaxMag);
 DeltaY [r][c] = (int) (((long) DeltaY [r][c] * MaxGV) / MaxMag);
} } }

Fig. 6.24:

C realization of the gradient operation.

The following part of the program realizes the gradient operation itself. r and c are the coordinates of
the current pixel. The two inner for loops perform the local convolution of the input image InImage
with both masks, Xmask and Ymask. The coordinates of the pixels in the window around the current
pixel are r+y and c+x. The graylevel of each pixel in the window is gv. The corresponding coefficients
in the two masks are addressed by x+2 and y+2.

Graylevels and coefficients are multiplied and the 25 products summed up in the variables dXl and
dYl. Because sums may exceed the range of an int variable, long variables are used. Division of the
sums by 25 eliminates this danger. Thus, the final results of the local convolution are assigned to the
int variables dX and dY. Before their results are assigned to the output images, they are checked to
see if either of the variables exceeds the maximum value which has occurred so far.

6 Contour-Oriented Segmentation - 6.3 Source Code

Ad Oculos 161

Finally, the calculated data are normalized. This step ensures that the highest magnitude equals
MaxGV. For the purpose of visualization 255 is a reasonable value for MaxGV. However, it is important
to keep in mind that the values of the output images DeltaX and DeltaY may be negative. Thus, we
need the int type for DeltaX and DeltaY. Applying an abs operation to the output value and
assigning the result to the BYTE arrays, guarantees perfect visualization. However, some of the
following contour procedures need signed data.

A typical example of these procedures is the transformation from Cartesian to polar representation.
The corresponding procedure is shown in Fig. 6.25. Formal parameters are

MaxGV: highest gradient magnitude permitted

ImSize: image size

MagThres: threshold of the gradient magnitude: values below this threshold are set to zero
 and interpreted as background

DeltaX: input image of the column differences (cartesian representation)

DeltaY: input image of the row differences (cartesian representation)

GradMag: output image of the gradient magnitude

GradAng: output image of the gradient direction (plus 90º).

At the beginning of this procedure the output images GradMag and GradAng are initialized.

Determination of the highest gradient magnitude requires calculation of the expression 2 2x y+ . A

straightforward C realization would need a great deal of computing time. Since the precision required
for the gradient magnitude is minimal, it is advantageous to use the approximation |x|+|y| (abs(dX)
+ abs(dY)).

The last step of the procedure uses the the highest gradient magnitude to normalize the magnitude
values with respect to MaxGV. This parameter is user defined but must not exceed 255 since the
output image GradMag is of type BYTE. Calculation of the gradient direction is based on the
procedure DiscAtan256 which is defined in Appendix A.4. According to this procedure, the complete
circle is represented by the range of BYTE variables (i.e. from 0 to 255). Since the gradient direction
has to be rotated by 90º (Section 6.1.1) a value of 64 is added. ANDing the value of the direction with

255 is equivalent to a modulo-28 operation which forces the values of the gradient direction into the
range of a BYTE variable.

6 Contour-Oriented Segmentation - 6.3 Source Code

Ad Oculos 162

void CarToPol (MaxGV, ImSize, MagThres, DeltaX, DeltaY, GradMag, GradAng)
int MaxGV, ImSize, MagThres;
int ** DeltaX;
int ** DeltaY;
BYTE ** GradMag;
BYTE ** GradAng;
{
 int r,c, dX,dY, Mag, MaxMag;

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 GradMag [r][c] = 0;
 GradAng [r][c] = 0;
 } }

 MaxMag = 0;
 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 dX = DeltaX [r][c];
 dY = DeltaY [r][c];
 Mag = abs(dX) + abs(dY);
 if (Mag > MaxMag) MaxMag = Mag;
 } }

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 dX = DeltaX [r][c];
 dY = DeltaY [r][c];
 Mag = abs(dX) + abs(dY);

 if (Mag > MagThres) {
 GradMag [r][c] = (BYTE) (((long)Mag * MaxGV) / MaxMag);
 GradAng [r][c] = (BYTE) ((DiscAtan256 (dY,dX) + 64) & 255);
} } } }

f_KaPoCode

Fig. 6.25:

C realization of the transformation from Cartesian to polar gradient representation. Procedure DiscAtan is defined
in Appendix A.

6.3.2 Contour Enhancement

Fig. 6.26 shows a procedure which realizes contour thinning. The formal parameters are:

ImSize:image size

DeltaDir: highest value permitted for the deviation between two adjacent gradient
 directions

GradMag: input image of the gradient magnitude

GradAng: input image of the gradient direction

ThinMag: output image of the thinned gradient magnitude

ThinAng: output image of the thinned gradient direction.

The first step in this procedure initializes the output images ThinMag and ThinAng. The following
thinning procedure is only activated if the gradient magnitude of the current pixel (r,c) is greater than
0. Otherwise the pixel is considered to be a background pixel (Section 6.3.1).

The thinning procedure compares the magnitude and the direction of the current pixel with that of its
neighbors on the left-hand and the right-hand sides. However, what is considered to be left or right?
The location of the neighbors is defined relative to the gradient direction of the current pixel. Therefore
we have to deal with four neighbor relations. They are depicted in Fig. 6.9. The current neighborhood
is determined by four if expressions, which are decided according to the gradient direction C. The
result is a pair of coordinates [N1r][N1c] and [N2r][N2c] which represent the two neighbors.
Thus, the gradient directions are N1 = GradAng [N1r][N1c] and N2 = GradAng [N2r][N2c].

6 Contour-Oriented Segmentation - 6.3 Source Code

Ad Oculos 163

The next question concerns the deviations between the gradient direction of the current pixel (c) and
the gradient directions of the neighbors (N1 and N2). The highest deviation permitted is user specified
by setting the variable DeltaDir. N1 and N2 are neither allowed to fall below Cmin nor to exceed
Cmax. Care has to be taken when performing the necessary comparisions: if Cmin and Cmax are not in
the range of gradient directions (i.e. from 0 to 255) the result of any comparision may be incorrect.
There are several ways to solve this problem. The one chosen for the thinning procedure is
straightforward: the direction represented by C is rotated by 128 (corresponding to 180º). Provided
that DeltaDir is smaller than 64 (corresponding to 90º), Cmin and Cmax remain in the range between
0 and 255. Naturally, for correct comparisions the directions represented by N1 and N2 have to be
rotated accordingly.

If the comparison of the gradient directions of adjacent pixels yields a deviation exceeding DeltaDir
the procedure is aborted. Otherwise the current pixel is likely to belong to a region of homogeneous
gradient directions. Using the figurative description of Section 6.1.2, this corresponds to the gradient
direction of the current pixel being aligned with the „chain of mountains“. The remaining question is
whether or not the current pixel is a “summit pixel”. To answer this question the gradient magnitudes
are utilized: if the magnitude of the current pixel is greater than or equal to the magnitude of both the
neighbors it is classified as a “summit pixel”. In this case the magnitude and direction of the current
pixel are retained in the output images ThinMag and ThinAng, respectively.

6 Contour-Oriented Segmentation - 6.3 Source Code

Ad Oculos 164

void Thinning (ImSize, DeltaDir, GradMag, GradAng, ThinMag, ThinAng)
int ImSize, DeltaDir;
BYTE ** GradMag;
BYTE ** GradAng;
BYTE ** ThinMag;
BYTE ** ThinAng;
{
 int r,c, N1,N2, N1c,N1r, N2c,N2r, N1m,N2m, N1ok,N2ok;
 int C, Cm, Cmax,Cmin;

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 ThinMag [r][c] = 0;
 ThinAng [r][c] = 0;
 } }
 for (r=1; r<ImSize-1; r++) {
 for (c=1; c<ImSize-1; c++) if (GradMag[r][c]) {
 C = (int) GradAng [r][c];
 if (0<=C && C<=15 || 240<=C && C<=255 || 112<=C && C<=143) {
 N1r = r-1; N1c = c;
 N2r = r+1; N2c = c; /* west, east */

 }else if (16<=C && C<=47 || 144<=C && C<=175) {
 N1r = r-1; N1c = c-1;
 N2r = r+1; N2c = c+1; /* north-east, south-west */

 }else if (48<=C && C<=79 || 176<=C && C<=207) {
 N1r = r; N1c = c-1;
 N2r = r; N2c = c+1; /* north, south */

 }else if (80<=C && C<=111 || 208<=C && C<=239) {
 N1r = r-1; N1c = c+1;
 N2r = r+1; N2c = c-1; /* north-west, south-east */
 }
 Cmin = C - DeltaDir;
 Cmax = C + DeltaDir;
 N1 = GradAng [N1r][N1c];
 N2 = GradAng [N2r][N2c];
 if (Cmin>=0 && Cmax<=255) {
 N1ok = (Cmin<=N1 && N1<=Cmax);
 N2ok = (Cmin<=N2 && N2<=Cmax);
 }else{
 C += 128; C &= 255;
 Cmin = C - DeltaDir;
 Cmax = C + DeltaDir;
 N1 += 128; N1 &= 255; N1ok = (Cmin<=N1 && N1<=Cmax);
 N2 += 128; N2 &= 255; N2ok = (Cmin<=N2 && N2<=Cmax);
 }
 if (N1ok && N2ok) {
 N1m = GradMag [N1r][N1c];
 N2m = GradMag [N2r][N2c];
 Cm = GradMag [r][c];
 if (N1m<=Cm && N2m<=Cm) {
 ThinMag [r][c] = GradMag [r][c];
 ThinAng [r][c] = GradAng [r][c];
} } } } }

Fig. 6.26:

C realization of the thinning operation.

The thinning procedure yields contours which are indeed one pixel wide but the contour points are 4-
connected. Fig. 6.11 (a) shows an example of such a chain of contour points. Actually, a 4-connected
chain is only one pixel wide, if neighborhoods are only permitted in a horizontal or vertical orientation.
However, if a diagonal neighborhood is permissible too, parts of a 4-connected chain become two
pixels wide. This disadvantage disappears if contour points are 8-connected (Fig. 6.11 (b)).

6 Contour-Oriented Segmentation - 6.3 Source Code

Ad Oculos 165

void FourToEight (ImSize, ThinMag, ThinAng)
int ImSize;
BYTE ** ThinMag;
BYTE ** ThinAng;
{
 int r,c, Cm, N1c,N1r, N2c,N2r, N1m,N2m;

 for (r=1; r<ImSize-1; r++) {
 for (c=1; c<ImSize-1; c++) if (ThinMag[r][c]) {
 N1r = r-1; N1c = c;
 N2r = r; N2c = c+1;
 Cm = ThinMag [r][c];
 N1m = ThinMag [N1r][N1c];
 N2m = ThinMag [N2r][N2c];
 if (Cm && N1m && N2m) {
 ThinMag [r][c] = 0;
 ThinAng [r][c] = 0;
 }else{
 N1r = r-1; N1c = c;
 N2r = r; N2c = c-1;
 Cm = ThinMag [r][c];
 N1m = ThinMag [N1r][N1c];
 N2m = ThinMag [N2r][N2c];
 if (Cm && N1m && N2m) {
 ThinMag [r][c] = 0;
 ThinAng [r][c] = 0;
 }else{
 N1r = r+1; N1c = c;
 N2r = r; N2c = c-1;
 Cm = ThinMag [r][c];
 N1m = ThinMag [N1r][N1c];
 N2m = ThinMag [N2r][N2c];
 if (Cm && N1m && N2m) {
 ThinMag [r][c] = 0;
 ThinAng [r][c] = 0;
 }else{
 N1r = r+1; N1c = c;
 N2r = r; N2c = c+1;
 Cm = ThinMag [r][c];
 N1m = ThinMag [N1r][N1c];
 N2m = ThinMag [N2r][N2c];
 if (Cm && N1m && N2m) {
 ThinMag [r][c] = 0;
 ThinAng [r][c] = 0;
} } } } } } }

Fig. 6.27:

C realization of the transformation of 4-connected neighborhoods into 8-connected neighborhoods.

Fig. 6.27 shows a procedure, which realizes the transformation of 4-connected neighborhoods into 8-
connected neighborhoods. The formal parameters are:

ImSize: image size

ThinMag: magnitude image in which the superfluous contour points have to be erased

ThinAng: direction image in which the superfluous contour points have to be erased.

This procedure constitutes an exception to the rule which requires separate images for input and
output. Thus, the usual initialization of the images is not necessary. Fig. 6.12 shows four possible
configurations for 4-connected neighborhoods. The bold lines depict pixels which are part of a 4-
connected chain. The current pixel of each mask corresponds to the superfluous contour point. If the
algorithm encounters one of the four configurations then the current pixels of the magnitude image
and of the direction image are set to 0, i.e. they become part of the background.

6 Contour-Oriented Segmentation - 6.3 Source Code

Ad Oculos 166

6.3.3 Linking Contour Points

Fig. 6.28 shows a procedure which realizes the linking of contour points. Formal parameters are:

ImSize: image size

ThinMag: input image, which represents the thinned gradient magnitude (8-connected
 neighborhood)

Chain: output vector, which contains all chains of contour points
in ThinMag.

The procedure returns the length of the vector Chain. The two vectors x and y which are defined at
the beginning of the procedure support a simple addressing of each of the eight neighbors of the
current pixel. The coordinates of the current pixel (the gradient magnitude of which is greater than 0)
are rf and the coordinates of the neighbor cc are rf+y[cc] and cf+x[cc]. For the „eastern“
neighbor cc is 0. cc is incremented counter clockwise, i.e. cc is 7 for the „south-eastern“ neighbor
(see the definition part of the procedure in Fig. 6.28).

Continuation of the linking algorithm is controlled by two variables:

i: addresses the contour points in a chain beginning with i=1
for the first point. For the last point i corresponds to
the number of contour points in the current chain

l: counts the number of all contour points which are linked
in any given chain.

The frame of the linking algorithm is realized by two for loops which scan the whole of the input
image ThinMag for contour points. The gradient magnitudes of these points are not used by our
simple type of algorithm. It only has to be greater than 0.

If a contour pixel is encountered it is interpreted as the first element of a chain. Thus, i is set to 1 and
the coordinates of this point must be retained in Chain. Since i is also part of Chain, the beginning
of a new chain can be identified without problems. This is important for succeeding procedures which
use Chain. Before searching for further contour points in the neighborhood, it is necessary to mark
the current pixel as “found”. This is simply done by ThinMag[rf][cf]=0, which means however
than the input image is destroyed at the end of the procedure.

The inner for loop scans (by variation of x and y) the neighborhood around the current pixel searching
for further contour points. The coordinates of the neighbors are rs and cs. If this search fails for all of
the eight neighbors, the current pixel is the last point in the chain. The control is then returned to the
outer two for loops in order to search for the beginning of a new chain.

6 Contour-Oriented Segmentation - 6.3 Source Code

Ad Oculos 167

int Linking (ImSize, ThinMag, Chain)
int ImSize;
BYTE ** ThinMag;
ChnTyp * Chain;
{
 /* chain code (cc): O NO N NW W SW S SO */
 static int y [8] = {0,-1,-1,-1, 0, 1, 1, 1};
 static int x [8] = {1, 1, 0,-1,-1,-1, 0, 1};
 int r,c, rf,cf, rs,cs, i,l, cc;

 l = 0;
 for (r=1; r<ImSize-1; r++) {
 for (c=1; c<ImSize-1; c++) if (ThinMag [r][c]) {
 rf = r;
 cf = c;
 i = 1;
 Chain[l].r = rf;
 Chain[l].c = cf;
 Chain[l].i = i;
 i++;
 l++;
 ThinMag [rf][cf] = 0;

 for (cc=0; cc<8; cc++) {
 rs = rf + y[cc];
 cs = cf + x[cc];
 if (ThinMag [rs][cs]) {
 rf = rs;
 cf = cs;
 GetMem (Chain);
 Chain[l].r = rf;
 Chain[l].c = cf;
 Chain[l].i = i;
 i++;
 l++;
 ThinMag [rf][cf] = 0;
 cc=-1; /* attention: reset of loop counter */
 } } } }
 l--;
 return (l);
}

Fig. 6.28:

C realization of contour point linking. The data type ChnTyp and the procedure GetMem are defined in
Appendix A.

Consider the case of a successful search for a neighboring contour point. In this case, first of all
Chain has to be reallocated in order to provide memory for the new contour point. After assigning rf,
cf and i to Chain, the control variables i and l are incremented and the neighbor is marked as
“found”.

The termination of this procedure is in violation of an important rule of good programming: never
manipulate a loop counter. However, pragmatic programmers appreciate such exceptions which
confirm the rules. In our case the “reset” of the loop counter is a simpler and clearer realization than
any practical alternative.

The procedure Linking is the simplest realization of a linking algorithm. In practice this procedure
should be elaborated in order to realize the function described in Section 6.1.3. For further information
Section 6.4.3.

6.3.4 Contour Approximation

Fig. 6.30 shows the procedure Approx which realizes the contour approximation. Formal parameters
are:

6 Contour-Oriented Segmentation - 6.3 Source Code

Ad Oculos 168

ChnLen: length of the vector Chain

MaxErr: maximum approximation error (in pixels) permitted

Chain: input vector, which contains the chains of contour points

Segs: output vector, which contains the segments.

The procedure Approx merely serves as a frame for the original approximation algorithm. It works on
the vector Chain, beginning at the end, picking up the successive chains and starting the procedure
Polygon with the current chain which is determined by the index TopOfCurve which points to the
end of the chain and the parameter CurveLen represented by the length of the chain. The procedure
Polygon approximates the current chain by segments, and retains the coordinates of the segment
termination points in the vector Segs.

2 3
5

7
8 8 10

1111
12

1110
11

10

r

c
Max. Error

Segment

Chain of contour

points

Fig. 6.29:

The realization of the split algorithm the original idea of which is
illustrated in Fig. 6.21. The method differs a little from the ideal
approach: The approximation error is expressed by the city block
distance between the pixels of the chain and the pixels of the
segment. This offers the advantage of a fast and simple realization.

void Approx (ChnLen, MaxErr, Chain, Segs)
int ChnLen, MaxErr;
ChnTyp * Chain;
SegTyp * Segs;
{
 int NofSegs, CurveLen, TopOfCurve;

 NofSegs = 0;
 TopOfCurve = ChnLen;
 while (TopOfCurve >= 0) {
 CurveLen = Chain[TopOfCurve].i;
 Polygon (TopOfCurve, CurveLen, MaxErr, &NofSegs, Chain, Segs);
 TopOfCurve -= CurveLen;
} }

Fig. 6.30:

C realization of contour approximation (frame). The data types ChnTyp and SegTyp are defined in Appendix A.

Fig. 6.31 shows the procedure Polygon which realizes the actual approximation algorithm. Formal
parameters are:

TopOfCurve: index which points to the last contour point of the current chain

6 Contour-Oriented Segmentation - 6.3 Source Code

Ad Oculos 169

CurveLen: length of the current chain

MaxErr: highest approximation error permitted

NofSegs: return parameter representing the number of segments

Chain: vector containing the chains

Segs: output vector containing the segments.

void Polygon (TopOfCurve, CurveLen, MaxErr, NofSegs, Chain, Segs)
int TopOfCurve, CurveLen, MaxErr, *NofSegs;
ChnTyp * Chain;
SegTyp * Segs;
{
 int r0,c0,r1,c1, m,n, LineLen, Difference, MaxErrPos, MaxDiff;
 LinTyp * Line;

 r1 = Chain[TopOfCurve].r;
 c1 = Chain[TopOfCurve].c;
 r0 = Chain[TopOfCurve-CurveLen+1].r;
 c0 = Chain[TopOfCurve-CurveLen+1].c;

 LineLen = GenLine (r0,c0,r1,c1, Line);
 MaxErrPos = 0;
 MaxDiff = 0;
 for (m=1, n=TopOfCurve-CurveLen+1; m<=LineLen; m++, n++) {
 Difference = abs (Line[m].c - Chain[n].c) +
 abs (Line[m].r - Chain[n].r);
 if (Difference > MaxDiff) {
 MaxErrPos = m;
 MaxDiff = Difference;
 } }
 if (MaxDiff > MaxErr) {
 Polygon (TopOfCurve, CurveLen-MaxErrPos+1, MaxErr, NofSegs, Chain, Segs);
 Polygon (TopOfCurve-CurveLen+MaxErrPos, MaxErrPos, MaxErr,
 NofSegs, Chain, Segs);
 }else{
 GetMem (Segs);
 Segs[*NofSegs].r0 = Line[0].r;
 Segs[*NofSegs].c0 = Line[0].c;
 Segs[*NofSegs].r1 = Line[LineLen-1].r;
 Segs[*NofSegs].c1 = Line[LineLen-1].c;
 ++*NofSegs;
} }

Fig. 6.31:

C realization of contour approximation (split algorithm). The data types ChnTyp, SegTyp and LinTyp and the
procedures GenLine and GetMem are defined in Appendix A.

The approximation of contours is based on the split algorithm which is described in Section 6.1.4. Fig.
6.29 shows the basic realization of the algorithm. In order to compute the approximation error the
segment is represented by a list of pixels. The error is expressed by the city block distance between
the pixels of the chain and the pixels of the segment. This does not exactly correspond to the original
principle (Fig. 6.21), but offers the advantage of a fast and simple realization.

The pixels representing the segment are computed by the procedure GenLine (Fig. 6.31). The
coordinates of these pixels are contained in the vector Line. The procedure GenLine returns the
length LineLen of this vector. The following for loop computes the city block distances
Difference between the pixels of the chain Chain and the segment Line (Fig. 6.29).

The index of the maximum error MaxDiff is MaxErrPos. If MaxDiff does not exceed the user-
defined parameter MaxErr the current segment is to be retained in Segs. Previously Segs must have
been reallocated in order to provide more memory. This is realized with the aid of the procedure
GetMem. Now the termination points of the segment Line are assigned to the vector Segs. If the
approximation error is unacceptable (i.e. (MaxDiff > MaxErr)) then two recursive calls of the

6 Contour-Oriented Segmentation - 6.4 Supplement

Ad Oculos 170

procedure Polygon are processed in order to approximate the two parts of the chain which arose
from the splitting process.

Bear in mind that the procedure Polygon is a very simple realization of the split algorithm. In order to
keep the procedure easily understandable, mechanisms which are necessary to cope with
“inconvenient” contours have not been implemented. This applies especially to the case of closed
contours.

6.4 Supplement

6.4.1 Detection of Contour Points

Fig. 6.32 visualizes two basic approaches to contour detection: both the maximum of the first
derivative and the zero-crossing of the second derivative detect the highest local graylevel difference.
A graylevel image may be interpreted as a function f(x,y) of two coordinates x and y of a two-
dimensional coordinate system having the unit vectors i and j. The first derivative of this function
realizes the gradient:

f f
f (x, y) i j

x y

∂ ∂∇ = +
∂ ∂

The magnitude of the gradient is:

2 2
f f

f (x, y)
x y

 ∂ ∂∇ = + ∂ ∂

and the direction:

f f
(f (x, y)) arctan

y x

 ∂ ∂Θ ∇ = ∂ ∂

The second derivative realizes the Laplace operator:

2 2
2

2 2

f f
f (x, y) i j

x y

∂ ∂∇ = +
∂ ∂

which is rotation invariant. Thus the Laplace operator yields no information about the direction of the
contour.

6 Contour-Oriented Segmentation - 6.4 Supplement

Ad Oculos 171

d

d

d

d

2

2

Space

Space

Space

Space

Space

Graylevel

Graylevel

Graylevel

Fig. 6.32:

Use of the first and the second spatial derivatives of the graylevel permits the
detection of contour points.

Realizations of these two approaches are based on local convolutions (Section 3.4) of a graylevel
image with coefficient masks which approximate the gradient or the Laplace operator. In this context
the size of the mask and the choice of its coefficients are important parameters. For determination of
these parameters three requirements have to be taken into account [6.7]:

• Contour points must be safely detected.

• The positioning of contour points must be accurate.

• The contour represented by the contour points should be thin and unique.

Based on these requirements the academic community has developed several operators (e.g. [6.7]
[6.8]). Compared to the rather expensive realization of these operators, their practical benefits are
poor. The reasons for this limitation are:

• Each of these “edge detectors” only yields graylevel differences. However, the correspondence of
these differences to the edges of the objects within the image is generally not guaranteed. There is
no exact correspondence. In fact, no operator “knows” anything about the objects. The operator
merely processes (two-dimensional, discrete, spatial) signals which are meaningless to it.

• The design of the operators has been optimized for certain ideal types of graylevel differences
(typically for ideal step edges). These types are rarely found in practice, except in the case of images
which have been obtained under ideal illumination conditions. Such “clean” images, however, do
not need sophisticated operators.

• In order to find the best performance for a certain purpose, the various tools on offer must be
evaluated. However, in the case of edge detectors, there is no performance measure which is
widely accepted.

Consistently, for practical application one should remember the “good old” operators, such as the
gradient operator, which has already been described in the preceeding sections.

A good realization of the zero-crossing operator is the classic approach introduced by Marr and
Hildreth [6.12] [6.13]. However, the invariance of the Marr/Hildreth operator to rotation is a decisive
drawback: One abandons the important direction information. When considering this aspect it seems
advisable to give preference to the gradient operator.

Finally it should be emphasized that sophisticated modern operators are not simply academic “toys”.
On the contrary, these operators are most important for a deep understanding of, and for further
development of image processing procedures. Please bear in mind that the operators which have now
become classic operators were origionally developed in the academic “playground” too.

6 Contour-Oriented Segmentation - 6.4 Supplement

Ad Oculos 172

6.4.2 Contour Enhancement

The aim of contour enhancement is the removal of superfluous contour points as well as the closing
of broken contours. This task can never be quite satisfactorily performed, because the enhancement
procedures have no knowledge of the objects in the image. The decision as to whether a contour
point is superfluous or not can only be taken on the strength of the local configuration of the signal
“image”. Similar problems arise for the task of closing gaps. The danger of making decisive errors is
inseparable from this operation: certain gaps in a contour may be meaningful, and in this case must
not be closed.

A typical tool which removes superfluous contour points is the thinning procedure described in the
preceding sections. This procedure is well-known as non-maxima suppression. It is simple and
effective. However, if the information concerning the gradient magnitude has to be preserved, the
representation of the contour by its “summit pixels” (Section 6.1.2) is not sufficient. In this case the
width and the form of the “gradient ridge” must be taken into account for the thinning process. A
method of achieving this is the so-called non-maxima absorption method. Pictorially speaking, the
“summit” absorbs parts of the mountain slope on its right-hand and left hand side and in the process
becomes higher.

Enhancement procedures which are able to fill gaps in contours are much more complex. A well-
known tool that is not confined to image processing is the so-called relaxation procedure. It checks
adjacent objects (of whatever kind) for certain homogeneity criteria. Objects which do not fit into a
homogeneous neighborhood are forced to assimilate. Application of this principle to the enhancement
of contours means that:

• strong contour elements which occur in a neighborhood of weak elements should be suppressed,
since they are likely to be caused by noise,

• weak contour elements which are part of a distinct contour should be strengthened,

• a contour element which is not aligned with a distinct contour should be adapted to the contour.

The basic principles of the classic relaxation procedures were described in [6.11]. An interesting
alternative is discussed in [6.3]. It synergetically combines a non-maxima suppression, a non-maxima
absorption and a relaxation procedure.

Most of the relaxation procedures suffer from a common drawback: they require a lot of computing
power, often without returning an adequate performance. To make relaxation an appropriate tool for
closing gaps in contours, a considerable amount of research work still needs to be done. Thus, in
practice one should first try to solve current enhancement problems by using the simple non-maxima
suppression procedure.

6.4.3 Linking Contour Points

The linking procedure which was presented in Section 6.1.3 is simple and fast. However, it has two
disadvantages. They are illustrated in Fig. 6.33. Consider a thin contour image which represents a
bright semicircular object on a dark background (Fig. 6.33 (a)). The corresponding direction of the
contour (gradient direction plus 90º) is symbolized by arrows. At the lower vertices the contour is
broken.

The linking algorithm starts its search for contour points at the top left-hand corner of the image and
proceeds row by row. Thus it encounters the first contour point at the top of the semicircle. From
there it starts tracking adjacent contour points until it finds one of the terminating points. The contour
points found between start and termination establish the first chain. The other half of the semicircle is
not part of this chain. It requires another chain. Thus, we end up with three chains (Fig. 6.33 (b)),
where two chains would have been sufficient.

6 Contour-Oriented Segmentation - 6.4 Supplement

Ad Oculos 173

(a) (b)

2
Gradient direction +

Proceeding of linking

Fig. 6.33:

The disadvantage of the simple linking procedure which leads to fragmented
chains can be overcome by the using the gradient direction.

The second problem concerns the direction of the linking procedure. For two of the three chains
depicted in Fig. 6.33 (b) it does not correspond with the original direction of the contour. This fault is
not crucial but may be inconvenient for some applications.

Both problems can be easily solved:

(1) Recall the linking approach described in Section 6.1.3: In preparation, the procedure searches for
any of the two terminating points and only starts the tracking from there.

(2) Proceed according to (1) but make the preparatory search against the gradient direction of the
contour points.

In spite of these improvements the linking algorithm is only capable of linking adjacent contour points,
for this reason it is called local. Global linking strategies use context information in order to perform
well. This information may range from the progress of the entire chain which has been linked so far, to
information concerning the objects which are supposed to be part of the image. Such algorithms are
very time-consuming. Moreover, they are not yet well enough developed or understood for practical
use.

Nevertheless, one of these procedures, the so-called Hough transform has made its way into practical
application. Since it is an interesting method even beyond the scope of contour point linking, a special
section has been devoted to the Hough transform (Chapter 7).

6.4.4 Contour Approximation

The aim of the contour approximation is the representation of contour point chains by a minimum
number of segments under the constraint of a maximum approximation error. These conditions are
met by Dunham’s optimal algorithm [6.9].

This algorithm has a serious drawback: it consumes an enormous amount of computing time. On the
other hand it is an excellent reference for comparision with other algorithms. Dunham himself
conducted such comparisions and concluded that the simple split strategy (Section 6.3.4 and [6.15])
performs acceptably well. In view of the simple realization and the low consumption of computing
time, it is a good practical choice.

6.4.5 Other Contour Procedures

The procedure of contour segmentation introduced in the preceding sections is classic but certainly
not the only one possible. There are a few interesting alternatives two of which are introduced in the
following section.

One of these alternatives is derived from the work of Prager [6.14]. The basis of his idea is a special
form of contour representation as depicted in Fig. 6.34. Prager calls his approach the interpixel model.
Other authors speak of “crack edges” [6.1]. Contour elements are positioned between any two

6 Contour-Oriented Segmentation - 6.5 Exercises

Ad Oculos 174

vertically or horizontally neighboring pixels. The magnitude of such a contour element is determined
by the difference of the two graylevels. To avoid negative magnitudes the absolute value of the
differences is utilized. The direction of the contour elements is determined by their positions between
adjacent pixels. That is to say, there are only two directions, namely “horizontal” and “vertical”. Hence,
the relationship between neighborhoods becomes very simple. Obviously, this strongly influences the
succeeding procedures. For example, based on the interpixel model Prager introduces a relaxation
algorithm which is simple, fast and robust.

Contour
element

Graylevel
pixel

Fig. 6.34:

The interpixel model proposed by Prager is based on contour
elements which are positioned between any two vertically or
horizontally neighboring pixels. The magnitude of such a contour
element is determined by the absolute difference of the two
graylevels.

Another alternative was described by Burns et al. [6.6]. The procedure starts in the usual way: a simple
gradient operation is executed in order to detect contour points. Inspecting the gradient directions in
the examples of Section 6.3, it becomes obvious that there are large regions of similar gradient
direction. These homogeneous regions are the basis for further processing. Burns et al. approximate
the curve of the gradient magnitude in these regions by planes. From the positions of these planes
segments are determined which approximate the contour. Therefore, neither a thinning nor a linking
procedure is required. However, this does not mean that the approach of Burns et al. would
necessarily save computing resources. On the contrary: the amount of memory and time required is
clearly larger than the classic procedure. Nevertheless, it is a very interesting approach which provides
a deeper insight into the problems of contour segmentation.

6.5 Exercises

Exercise 6.1:

Apply the masks shown in Fig. 6.35 to the source image shown in Fig. 6.3.

-1

-1

-1 1

1

10

0

0 -1 10

0

0

1

1

-1

-1

-1 1

-1 1 -1

1

-1

1

Fig. 6.35:

Like the simple operator shown in Fig. 6.4 these masks realize
the gradient operation. However, due to their size they have a
smoothing effect which decreases their sensivity to very local
graylevel changes.

Exercise 6.2:

Apply the non-maxima suppression procedure to the gradient image shown in Fig. 6.36. Performing
the similarity check permit differences of ±5º, ±10º and ±15º.

6 Contour-Oriented Segmentation - 6.5 Exercises

Ad Oculos 175

0 0

0 19

18

0

0

20

45

81

125 217 223

234

229

210 228

231

229

188

152

112

175

12741

70

67

22 16 20 15 0

000

41

135192192

104

136 197156

100

197

173186

101 92 89

243208 224

234

15542 95

5416066

31

176

134

Magnitude

Direction

0 0

0

000

038

4445

58

65

68

70

72

73

45

65

62

68 73

73

75

70

65

53

0

0

0

25

31

39

52

66

73

70

69 52

59

59

38

23

13

7

0 321318

335

335

329

329

323

329

326

333

335

332

325336

343

346

346

342

325

Fig. 6.36:

This is the part of a gradient image produced by a 5 * 5 Sobel operator
(Fig. 6.5).

Exercise 6.3:

Apply the 4-to-8 transform to the chain shown in Fig. 6.13 starting at the bottom right.

Exercise 6.4:

Apply the refined 4-to-8 transform to the chain shown in Fig. 6.37.

Fig. 6.37:

This chain of contour points is another unusual result of the non-maxima suppression.

Exercise 6.5:

Apply the linking procedure to the chain shown in Fig. 6.38.

6 Contour-Oriented Segmentation - 6.5 Exercises

Ad Oculos 176

1 1 1

1

1

1

1

1

1

111

1 1

1

1

1

1

1

11

1

1

1 1

Fig. 6.38:

This image is used as source image for Exercise
6.5.

Exercise 6.6:

Write a program which evaluates the precision of the direction calculated by various gradient
operators. Note that the precision of the direction depends on the direction itself.

Exercise 6.7:

Write a program which realizes the refined 4-to-8 transform as discussed in Section 6.1.2.

Exercise 6.8:

Write a program which realizes the improved link procedure as discussed in Section 6.4.3.

Exercise 6.9:

Fig. 6.29 illustrates a realization of the split procedure which is fast and simple but tends to
inconvenient split errors in certain situations. Write a program which realizes the split procedure
according to its original principle.

Exercise 6.10:

Write a program which is able to detect parallel segments. Assume that the segements are described
by their terminating points.

Exercise 6.11:

Write a program which finds graylevel steps based on the zero-crossing approach.

Exercise 6.12:

Write a program which finds graylevel steps based on the interpixel approach.

Exercise 6.13:

Apply the 5*5 gradient operator to the cardboard shapes image (Fig. 6.23 (KDVSRC.128)). Also apply a
5*5 smoothing operator followed by a simple differentiation. Compare the results obtained

Exercise 6.14:

Become familiar with every contour operation offered by AdOculos (AdOculos Help).

6 Contour-Oriented Segmentation - References

Ad Oculos 177

References

[6.1] Ballard, D.H.; Brown, Ch.M.:
Computer vision.
Englewood Cliffs, New Jersey: Prentice-Hall 1982

[6.2] Bässmann, H.; Besslich, Ph.W.:
Konturorientierte Verfahren in der digitalen Bildverarbeitung.
Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1989

[6.3] Besslich, Ph.W.; Bässmann, H.:
Curve enhancement using rule-based relaxation.
Int. Cong. on Optical Science and Engineering, Hamburg, 19.-23. Sept. 1988,
(P.J.S. Hutzler and A.J. Oosterlinck, Eds.),
Image Processing II, SPIE Proc. No. 1027 (1989), 154-160

[6.4] Besslich, Ph.W.; Bässmann, H.:
A tool for extraction of line-drawings in
the context of perceptual organization:
Proceedings of the International Conference on Computer Analysis of
Images and Patterns, Leipzig, 8.-10. Sept.,
(K. Voss, D. Chetverikov and G. Sommer, Eds.), (1989) 54-56

[6.5] Besslich, Ph.W.; Bässmann, H.:
Gestalt-based approach to robot vision.
In: B.J. Torby and T. Jordanides (Eds.): Expert systems and robotics.
Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer, (1991) 1-34

[6.6] Burns, J.B.; Hanson, A.R. and Riseman, E.M.:
Extracting straight lines.
IEEE Trans. PAMI-8, (1986) 425-455

[6.7] Canny, J.:
A computational approach to edge detection.
IEEE Trans. PAMI-8, (1986) 679-698

[6.8] Deriche, R.:
Using Canny’s criteria to derive a recursively implemented
optimal edge detector.
Int. Journal on Computer Vision 1 (1987) 167-187

[6.9] Dunham, J.G.:
Optimum uniform piecewise linear approximation of
planar curves.
IEEE Trans. PAMI-8 (1986) 67-75

6 Contour-Oriented Segmentation - References

Ad Oculos 178

[6.10] Grimson W.E.L.:
Object recognition by Computers.
Cambridge, Massachusetts: The MIT Press 1990

[6.11] Kittler, J.; Illingworth, J.:
Relaxation labeling algorithms - a review.
Image and Vision Computing 1, (1985) 206-216

[6.12] Marr D., Hildreth E.:
Theory of edge detection.
Proc. R. Soc. Lond. B 207 (1980) 187-217

[6.13] Marr D.:
Vision.
San Francisco: Freeman 1982

[6.14] Prager, J.M.:
Extracting and labeling boundary segments in
natural scenes.
IEEE Trans. PAMI-2, (1980) 16-27

[6.15] Ramer, U.:
An iterative procedure for the polygonal
approximation of plane curves.
Computer Vision and Image Processing 1 (1972) 244-256.

7 Hough Transform

7.1 Foundations

The requirements of understanding this chapter are:

• to be familiar with geometry

• to have read Chapter 1 (Introduction) Section 6.1.1 (Detection of Contour Points), and Section 6.1.2
(Contour Enhancement).

The idea of the Hough transform was introduced by P.V.C. Hough in 1962. Duda and Hart [7.20]
exploited this idea to detect collinear points (points which lie on a straight line). Although this
application refers to contour-oriented segmentation (Chapter 6) this chapter has been devoted to the
Hough transform. One reason for this was to achieve greater clarity in Chapter 6. The other reason
was that the special qualities of the Hough transform justify dedicating a separate chapter to it.

The basic idea of the Hough transform is illustrated in Fig. 7.1: on the left a straight line in the
Cartesian coordinate system is shown. Usually, we determine such a straight line by its slope and its
intersection with the y-axis. Another description uses the perpendicular distance r to the origin and the
angle θ between r and the x-axis (Fig. 7.1 (a)). Both descriptions are connected by the so-called normal
representation of a line.

r x cos ysin= θ + θ .

θ lies in the interval [0,π). r may have positive and negative values.

r0

x

y

r0

r

0

(a) (b)

0

Fig. 7.1:

Usually, a straight line is determined by its slope and its intersection with the y-axis
(a). Alternatively a straight line is described by the perpendicular distance r to the
origin and the angle θ between r and the x-axis. Using r and θ to construct a two-
dimensional coordinate system the straight line becomes a point (b). This line-to-point
transform is realized by r x cos ysin= θ + θ .

In a coordinate system which is determined by r and θ (Fig. 7.1 (b)) the original straight line is a point.
Clearly this line-to-point transform is not a tool which evaluates data. However, it serves for the
enhancement of these data and therefore simplifies the succeeding data analysis.

Fig. 7.2 illustrates an example of using the Hough transform for contour segmentation. On the left a
section of a thinned gradient image (Section 6.1.2) is shown. The five arrows represent contour points
which lie on a straight line (note that a contour point consists of a magnitude and a direction). A

7 Hough Transform - 7.1 Foundations

Ad Oculos 180

human observer notices this at first sight. However, the computer only “sees” the single contour
points. Their collinearity is revealed with the aid of the Hough transform.

From the gradient direction of the contour points (x, y) we obtain θ=45°. Thus, the thinned gradient
image yields all the data required to carry out the operation r x cos ysin= θ + θ . With the current data
for each contour point r=23.

In practice, the (r,θ) domain (the so-called accumulator, Fig. 7.2) is quantized as a digital image. All the
accumulator cells (these are the “pixels” of the accumulator) are initially set to zero. Carrying out the
Hough transform turns out to be simple: for each contour point of the gradient image the Hough
transform determines a coordinate pair (r,θ) and increments the contents of the corresponding
accumulator cell. In the current example each of the 5 contour points yields the coordinate pair (r=23,
θ=45).

r
6

7

9

11

12

26

25

23

21

20

23

23

23

23

23

5

5 6 7 8 9 10 11 12 13

20

21

23

24

25

26

27

22

y

45 44 45 46 47

21

22

23

24

25

26

27

x

r

0
0

32

32

127

127

r = x cos + y sin

x y

=45

Gradient image

Line in source image

Accumulator

Fig. 7.2:

This is an example of using the Hough transform for contour segmentation. On the left a
section of a thinned gradient image is shown. The five arrows represent contour points
which lie on a straight line. The Hough transform reveals the collinearity of these contour
points.

Now the acutal Hough transform is finished and its result is to be found in the accumulator. The next
step is to analyze the accumulator. The starting point of this analysis is obvious: all of the accumulator
cells (r,θ) the entries of which are greater than 1, represent at least 2 contour points lying on a straight
line. This straight line is completely determined by r and θ. In order to illustrate this in the context of
the example shown in Fig. 7.2, the straight line determined by (r=23, θ=45) is entered into a 128 * 128
image (bottom right).

For further processing, knowledge of the intersections between the straight line and the image border
is advantageous. They are easy to obtain with the aid of r x cos ysin= θ + θ since r and θ are known and
one of the intersection coordinates x and y is given by the image border. Applying the data of the
current example to this procedure the intersections (0,32) and (32,0) are obtained (Fig. 7.2). Note that
the straight lines obtained by the Hough transform (like any straight line) have no terminating points.

The straight lines obtained so far only indicate the collinearity of contour points. Thus the use of the
Hough transform to detect contours of objects requires further processing steps which are dependent
on the actual application. The improvement of contour point linking procedures is obviously desirable.
While popular linking procedures only make use of local contour information (Section 6.1.3), the use of
the Hough transform allows the inclusion of global information like the collinearity of contour points
[7.18]). Here another interesting use of the Hough transform will be discussed: the straight lines
obtained by the Hough transform serve as “signposts” indicating those regions of the source image
which have the best chance of representing meaningful contours. Focussing the attention on these

7 Hough Transform - 7.1 Foundations

Ad Oculos 181

regions of interest avoids wasting computing time with redundant regions. Besides this signpost
function, the Hough transform yields important information concerning the geometry of straight lines.
We have already become acquainted with collinearity. In addition, the accumulator directly reflects
parallelism: all straight lines represented by the entries of one accumulator column are parallel [7.19].

Tracking

Source

Gradient
Thinning

Magnitude

Direction

Hough
Transform

Accumulator

Analysis

Lines

Segments

image

Fig. 7.3:

This is a survey of a chain of procedures, based on the Hough transform, for
extracting segments. A gradient operation followed by a thinning step extracts
the contour points of the source image. For each of the contour points the
Hough transform calculates the coordinates of the corresponding accumulator
cell and increments its entry. The analysis of the accumulator yields straight
lines representing collinear contour points. The tracking procedure “scans”
along these lines through the source image, searching for object contours.

Fig. 7.3 shows a survey of the complete procedure. A gradient operation followed by a thinning step
extracts the contour points of the source image. The resulting thinned gradient image is binary: the
gradient magnitude of any contour point is 1, while background pixels are represented by 0. For each
of the contour points the Hough transform calculates the coordinates of the corresponding
accumulator cell and increments its entry. The analysis of the accumulator yields straight lines
representing some collinear contour points. The tracking procedure “scans” along these lines through
the source image, searching for object contours. Indicators for such contours are significant graylevel
differences between the left-hand side and the right-hand side of the straight lines. The scanning
procedure detects the first and last points of each encounter (or “contact”) with such differences.
These “contacts” are the termination points of a straight line segment representing a part of an object
contour.

Fig. 7.4 illustrates a simple realization of tracking. The scanning routine is based on a “glider” which
moves along the straight lines. The glider compares the graylevels on its left-hand side and on its
right-hand side. If the graylevel difference is significant (the significance is defined by the user) the
glider is likely to be moving along the contour of an object.

Fig. 7.4:

In order to find object contours a glider moves along the straight lines. The glider
compares the graylevels on its left and on ist right hand side If the graylevel
difference is significant the glider is likely to be moving along an object contour.

7 Hough Transform - 7.2 AdOculos Experiments

Ad Oculos 182

The principle illustrated in Fig. 7.3 covers some basic problems of applying the Hough transform.
These are to be discussed in Section 7.4.

7.2 AdOculos Experiments

To become familiar with the Hough transform realize the New Setup shown in Fig. 7.5 is invoked as
described in Section 1.6. The example image which will be used in the current section contains two
wooden building blocks on a dark background (Fig. 7.6 (BLOCKSRC.128)). The image is blurred and of
low contrast. Such problems should be overcome by robust image processing procedures.

Fig. 7.5:

This chain of procedures is the basis for experiments concerning Hough transformation. The New Setup is realized
according to the steps described in Section 1.6. The results are shown in Fig. 7.6.

According to the summary shown in Fig. 7.3 the first step is a gradient operation, which is then
followed by a thinning procedure. The gradient operation is realized by a 5 * 5 Sobel mask while the
thinning is carried out by a non-maxima suppression. Both procedures are described in detail in
Chapter 6. Fig. 7.6 (6) and (7) show their results.

The parameters used by Cartesian/Polar... and Thinning were:

Threshold: 10

Max. Angle: 30.

These parameters may be varied by clicking on the right mouse button on the function symbols.

Now we have the starting point for the Hough transform the result of which is an accumulator with
mainly high entries. (8) shows that high entries are rather rare even though the low entries are
emphasized. If the actual accumulator is depicted then there are only a few light clusters. These
clusters consist of several accumulator cells with high entries which represent straight lines
determined by very similar parameters r and θ. The next step is to replace such bundles of straight
lines by a single “superior” line. A simple realization of this idea is a two-dimensional non-maxima
suppression in which only the highest entry of a cluster “survives”. Such a procedure is described in
Section 7.3 (Fig. 7.8) and in the current setup realized by the function Clean Accumulator. The result of
this cleaning step is shown in (9).

(10) depicts the straight lines represented by the highest entries of the cleaned accumulator. The
brightness of a line corresponds to the height of the entry in question. The glider moves along these
lines detecting the segments shown in (11). The parameters used by Accu Analysis... were:

7 Hough Transform - 7.2 AdOculos Experiments

Ad Oculos 183

Fig. 7.6:

The example image (BLOCKSRC.128) contains two wooden building blocks on a dark
background. The image is blurred and of low contrast. (6) and (7) show the results of the
gradient and thinning procedures. The parameters were Threshold: 10 and Max. Angle: 30.
These parameters may be varied by clicking the right mouse button on the function symbols. (8)
is the content of the accumulator, (9) is the result of the cleaning step. (10) depicts the straight
lines represented by the highest entries of the cleaned accumulator. The parameters used by
Accu Analysis... were Glider Length: 10, Min. Significant Graylevel Difference: 10 No. of
Significant Graylevel Differencens on the Glider: 7 Threshold for Accumulator Points: 50. These
parameters may be varied by clicking of the right mouse button on the function symbol Accu
Analysis....

Glider Length: 10

Min. Significant Graylevel Difference: 10

No. of Significant Graylevel Differences on the Glider: 7

Threshold for Accumulator Points: 50

These parameters may be varied by clicking the right mouse button on the function symbol Accu
Analysis....

By now it will be obvious that the procedure is only able to find straight contours. Moreover, the
segment representing the top contour of the lower building block is too short to be recognized.
Comparing the course of this segment with the course of the block contour from right to left, a slight
but clear deviation is obvious. Thus, at the left end of the segment the glider (Fig. 7.4) was not able to
detect significant graylevel differences and as a result had to stop the tracking prematurely. The

7 Hough Transform - 7.3 Source Code

Ad Oculos 184

original cause of this error was due to the misalignment of the straight line which is the result of the
cleaning step applied to the accumulator. Thus the (at first sight) good idea of replacing clusters in the
accumulator by a single point involves a certain risk. Section 7.4 offers a detailed discussion of this
problem.

7.3 Source Code

Fig. 7.7 shows a procedure for carrying out the Hough transform. Formal parameters are:

ImSize: image size

AccuRows: number of accumulator rows

AccuCols: number of accumulator columns

MaxGV: maximum accumulator entry; after the generation of the accumulator its entries
 must be normalized according to MaxGV (MaxGV must not exceed 255)

ThinMag: input image representing the gradient magnitude

ThinAng: input image representing the gradient direction

IntAccu: accumulator of type int

Accu: accumulator of type BYTE.

The gradient image (represented by ThinMag and ThinAng) should be thinned (Section 6.1.2). The
use of the original gradient image does not cause poor results, but the transform requires more
computing time than is necessary (Section 7.1).

The procedure starts by initializing the accumulator arrays IntAccu and Accu by setting each entry to
zero. The Hough transform has to be carried out for each pixel in the gradient magnitude
ThinMag[r][c] which has a non-zero value. The transformation starts by changing the gradient
direction Alpha into the accumulator coordinate Theta as shown in Section 7.1. Dtheta is the radius
representation of Theta. According to the normal representation of a line the missing accumulator
coordinate Rad is obtained with the aid of Dtheta and the coordinates r and c of the current pixel
(Section 7.1). Since Rad may be negative, the origin of this coordinate should correspond to the mean
accumulator row ([Rad+(AccuRows>>1)]). The last transformation step increments the entry of the
current accumulator cell.

7 Hough Transform - 7.3 Source Code

Ad Oculos 185

void HoughTrans (ImSize, AccuRows, AccuCols, MaxGV,
 ThinMag, ThinAng, IntAccu, Accu)
int ImSize, AccuRows, AccuCols, MaxGV;
BYTE ** ThinMag;
BYTE ** ThinAng;
int ** IntAccu;
BYTE ** Accu;
{
 int r,c, Alpha, Theta, Rad, Mag, MaxMag;
 double Dtheta;

 for (r=0; r<AccuRows; r++) {
 for (c=0; c<AccuCols; c++) {
 IntAccu [r][c] = 0;
 Accu [r][c] = 0;
 } }

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 if (ThinMag [r][c]) {
 Alpha = (int) ThinAng [r][c];
 if (Alpha >= 128) Alpha -= 128;
 if (Alpha <= 64) Theta = 64 - Alpha;
 else Theta = 192 - Alpha;
 Dtheta = (Theta*PI)/128;
 Rad = (int) (c*cos(Dtheta) + r*sin(Dtheta));
 IntAccu [Rad+(AccuRows>>1)] [Theta] ++;
 } } }

 MaxMag = 0;
 for (r=0; r<AccuRows; r++) {
 for (c=0; c<AccuCols; c++) {
 Mag = IntAccu [r][c];
 if (Mag>MaxMag) MaxMag = Mag;
 } }

 for (r=0; r<AccuRows; r++) {
 for (c=0; c<AccuCols; c++) {
 Mag = IntAccu [r][c];
 Accu [r][c] = (BYTE) (((long)Mag * MaxGV) / MaxMag);

} } }

Fig. 7.7:

C realization of the Hough transform.

In the case of IntAccu the entry of an accumulator cell ranges from 0 to 32,767. This is sufficient,
since even larger thinned gradient images are unlikely to contain 32,767 contour points of identical
Theta and Rad values. Further procedures do not require such a range. Therefore the last two steps
of the procedure compress the original range of an int variable into the range of a BYTE variable.

Cleaning the accumulator is a typical additional procedure. It is realized by CleanAccu (Fig. 7.8).
Formal parameters are:

ImSize: image size

AccuRows: number of accumulator rows

AccuCols: number of accumulator columns

WinSize: size of the operator mask

InAccu: accumulator to be cleaned

OutAccu: cleaned accumulator.

7 Hough Transform - 7.3 Source Code

Ad Oculos 186

void CleanAccu (ImSize, AccuRows, AccuCols, WinSize, InAccu, OutAccu)
int ImSize, AccuRows, AccuCols, WinSize;
BYTE ** InAccu;
BYTE ** OutAccu;
{
 BYTE Inc, Max;
 int r,c, yw,xw, ya,xa, h;

 for (r=0; r<AccuRows; r++)
 for (c=0; c<AccuCols; c++) OutAccu [r][c] = 0;

 h = WinSize>>1;

 for (r=0; r<AccuRows; r++) {
 for (c=0; c<AccuCols; c++) {
 Inc = InAccu[r][c];
 if (Inc) {
 Max = 0;
 for (yw=r-h; yw<=r+h; yw++) {
 for (xw=c-h; xw<=c+h; xw++) {
 if (xw<0) {
 xa = xw+AccuCols;
 ya = AccuRows-yw;
 }else if (xw>=AccuCols) {
 xa = xw-AccuCols;
 ya = AccuRows-yw;
 }else{
 xa = xw;
 ya = yw;
 }
 if (InAccu[ya][xa] > Max) Max = InAccu[ya][xa];
 } }
 if (Inc==Max) OutAccu[r][c] = Inc;

} } } }

Fig. 7.8:

C realization which cleans the accumulator.

At the beginning of the procedure the output accumulator OutAccu is initialized. The size of the
quadratic operator mask WinSize should be odd. Typical values of WinSize are 3 and 5. The origin of
the mask is its central pixel and variable h represents the maximum index magnitude of the mask.

The cleaning is carried out for each accumulator cell the entry Inc of which is greater than 0. If the
current entry holds the maximum value of all the entries covered by the operator mask, it is
transferred into the output accumulator OutAccu (Section 7.1). Thus, only the local maxima of the
clusters appearing in the accumulator “survive”. As long as the operator mask completely covers the
accumulator (the coordinates ya and xa do not exceed the accumulator border) the determination of
the maximum entry is no problem. But on encountering the border, the typical problems already
discussed in Section 3.1 arise. In the case of the accumulator rows the solution is simple: the
accumulator consists of “spare” rows at the “top” and “bottom” of the accumulator, so that the
operator mask never touches the horizontal border. The solution for the accumulator columns is more
complicated, since the columns represent an angle (i.e. θ). As an angle is cyclical, the “far left” and “far
right” columns are direct neighbors. Furthermore, the neighborhood is determined by the polarity of
the row index.

The example shown in Fig. 7.9 illustrates the connections. It depicts a small accumulator in order to
keep the example simple. The column index xa ranges from 0 to 7 (representing a semicircle) while
the row index ya ranges from 0 to 15. Thus, AccuCols is 8 and AccuRows is 16. Please note that r (as
shown in Fig. 7.9) may be positive or negative (the definition of the normal representation of a line in
Section 7.1).

7 Hough Transform - 7.3 Source Code

Ad Oculos 187

1 2 3 4 5 70

0

1

2

3

4

5

6

6

7

8

9

10

11

12

13

14

15

-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

yar

/xa

Fig. 7.9:

Example of the relations between neighboring accumulator cells. The two
corresponding straight lines are shown in Fig. 7.10.

The model accumulator consists of two entries. The corresponding straight lines are shown in Fig.
7.10: they are close neighbors although their positions in the accumulator suggest a considerable
separation. As discussed in Section 7.2, θ requires a fine quantization in order to avoid misplacements.
Thus, apart from the current example, θ ranges from 0 to 127. Using this range in the context of the
current example, the two straight lines would almost merge.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

x

y

=0

=1

=2

=3

=4

=5

=6

=7 r=-5

=7

r=5

=0

Fig. 7.10:

Two neighboring straight lines, the parameters r and θ of which differ considerably.
The corresponding accumulator entries are shown in Fig. 7.9.

Obviously the solution of the border problem must differ from the usual one (Section 3.1). In
procedure CleanAccu the solution starts with the test if (xw<0) (Fig. 7.8). If the index xw reaches
the bottom left (top) border of the accumulator, the resulting accumulator indices xa and ya are at the
top right (bottom) border of the accumulator. The solution of the reverse case (xw>=AccuCols) is
similar.

7 Hough Transform - 7.3 Source Code

Ad Oculos 188

Before discussing the analysis of the accumulator, it should be remembered that there are
fundamental problems concerning the displacement of straight lines caused by the cleaning
procedure (Section 7.2 and Section 7.4).

int AnalyzeAccu (ImSize, AccuRows, AccuCols, Thres, Accu, Lines)
int ImSize, AccuRows, AccuCols, Thres;
BYTE ** Accu;
LinTypH *Lines;
{
 #define XCONV(y) (int) ((Rad - y*sin(Dtheta)) / cos(Dtheta))
 #define YCONV(x) (int) ((Rad - x*cos(Dtheta)) / sin(Dtheta))

 int r,c, v,u, i, NofLines, Theta, Rad, Cy[2], Cx[2];
 double Dtheta;

 NofLines = 0;
 Cy[0]=0; Cx[0]=0; Cy[1]=0; Cx[1]=0;

 for (r=0; r<AccuRows; r++) {
 for (c=0; c<AccuCols; c++) {
 if ((int)Accu[r][c] > Thres) {
 Rad = r - (AccuRows>>1);
 Theta = c;
 Dtheta = (Theta*PI)/128;
 if (Theta==0) {
 Cy[0]=0; Cx[0]=Rad; Cy[1]=ImSize-1; Cx[1]=Rad;
 }else{
 if (Theta==64) {
 Cy[0]=Rad; Cx[0]=0; Cy[1]=Rad; Cx[1]=ImSize-1;
 }else{
 i = 0;
 v = 0;
 u = XCONV(v);
 if (0<=u && u<ImSize) {Cy[i] = 0; Cx[i] = u; i++;}
 v = ImSize-1;
 u = XCONV(v);
 if (0<=u && u<ImSize) {Cy[i] = ImSize-1; Cx[i] = u; i++;}
 if (i<2) {
 u = 0;
 v = YCONV(u);
 if (0<=v && v<ImSize) {Cy[i] = v; Cx[i] = 0; i++;}
 if (i<2) {
 u = ImSize-1;
 v = YCONV(u);
 if (0<=v && v<ImSize) {Cy[i] = v; Cx[i] = ImSize-1; i++;}
 } } } }
 GetMem (Lines);
 Lines[NofLines].r0 = Cy[0];
 Lines[NofLines].c0 = Cx[0];
 Lines[NofLines].r1 = Cy[1];
 Lines[NofLines].c1 = Cx[1];
 Lines[NofLines].Inc = Accu[r][c];
 Lines[NofLines].Dir = (BYTE) Theta;
 NofLines++;
 } } }
 return (NofLines);

}

Fig. 7.11:

C realization of the accumulator analysis. Type LinTypH and procedure GetMem are defined in Appendix A.

A simple analysis is carried out by the procedure AnalyzeAccu (Fig. 7.11). Formal parameters are:

ImSize: image size

AccuRows: number of accumulator rows

7 Hough Transform - 7.3 Source Code

Ad Oculos 189

AccuCols: number of accumulator columns

Thres: minimum value of an accumulator entry the coordinates of which determine a
 straight line

Accu: accumulator

Lines: list of straight lines which are detected by AnalyzeAccu.

The procedure returns the number of straight lines detected in the accumulator.

The principle of the analysis procedure is simple: the coordinates Rad and Theta, of those
accumulator cells the entries of which exceed the threshold Thres, represent a straight line marking
significant graylevel differences from the source image.

For the efficient handling of these straight lines, the parameters Rad and Theta are often
inconvenient. Usually it is easier to determine the straight line by its intersections with the image
border. These intersections are simply obtained with the aid of the normal representation of a line.
(Section 7.1). The corresponding formulas are realized by the macros XCONV(y) and YCONV(x) in
AnalyzeAccu. The coordinates of the intersections are: Cy[0] and Cx[0]; and Cy[1] and Cx[1].

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

x,u

y,v

Fig. 7.12:

Example of an ambiguous intersection.

For the special cases (Theta==0) and (Theta==64) the intersecting coordinates are obvious. All
other cases require testing of the four sections of the image border with regard to an intersection.
Unfortunately the image corners cause ambiguity. The straight line shown in Fig. 7.12 intersects the
left and the top part of the border at only one point. Which of these two possibilities is finally chosen
does not matter however. The important point is that the algorithm extracting the intersections should
detect the ambiguity and randomly choose one intersection.

In order to store the intersection parameters the list Lines has to be extended in preparation for a
new element (GetMem (Lines)). This new element retains the intersection coordinates (Cy[0],
Cx[0], Cy[1], Cx[1]), the entry of the corresponding accumulator cell (Accu[r][c]) and the
direction of the straight line (Theta).

After the straight lines are determined they are used to “track along” the significant graylevel
differences of the lines (Section 7.1). For this purpose the Tracking procedure was developed (Fig.
7.13). Formal parameters are:

ImSize: image size

GlidLen: length of the glider

MinDif: minimum graylevel which is considered to be significant

NofHit: minimum number of significant graylevel differences detected by the glider

NofLines: number of straight lines extracted by the Hough transform

Lines: list of straight lines

Image: source image to be analyzed

Segs: list of segments detected by the glider.

The procedure returns the number of segments detected by the glider.

7 Hough Transform - 7.3 Source Code

Ad Oculos 190

int Tracking (ImSize, GlidLen, MinDif, NofHit, NofLines, Lines, Image, Segs)
int ImSize, GlidLen, MinDif, NofHit, NofLines;
LinTypH *Lines;
BYTE **Image;
SegTyp *Segs;
{
 BYTE Inc, Dir;
 int i,j,n, r,c, r0,c0,r1,c1, NofSegs, LineLen;
 LinTyp *Line;

 NofSegs = 0;
 Line = (LinTyp *) malloc ((ImSize+ImSize)*sizeof(LinTyp));

 for (i=0; i<NofLines; i++) {
 r0 = Lines[i].r0;
 c0 = Lines[i].c0;
 r1 = Lines[i].r1;
 c1 = Lines[i].c1;
 Dir = Lines[i].Dir;
 LineLen = GenLine (r0,c0,r1,c1, Line);
 ScanLine (ImSize, Dir, GlidLen, MinDif, NofHit, LineLen,
 &NofSegs, Line, Image, Segs);
 }
 free (Line);
 return (NofSegs);

}

Fig. 7.13:

C realization of the tracking (frame procedure). Data types LinTyp, LinTypH and SegTyp as well as
procedure GenLine are defined in Appendix A.

In order to realize the tracking, the straight line which determines the track should be represented by a
chain of pixels. The generation of such a chain is carried out by the procedure GenLine which is
defined in Appendix A. The current chain is stored in the array Line. Before the start of the tracking,
the parameter Line requires the allocation of sufficient memory space.

The actual tracking is carried out by the procedure ScanLine (Fig. 7.14). Formal parameters are:

ImSize: image size

Dir: direction of the straight line

GlidLen: length of the glider

MinDif: minimum graylevel which is considered to be significant

NofHit: minimum number of significant graylevel differences detected by the glider

LineLen: length of the pixel chain

NofSegs: number of segments detected along the pixel chain Line

Line: pixel chain

Image: source image to be analyzed

Segs: list of segments detected by the glider.

7 Hough Transform - 7.3 Source Code

Ad Oculos 191

void ScanLine (ImSize, Dir, GlidLen, MinDif, NofHit, LineLen,
 NofSegs, Line, Image, Segs)
int ImSize, Dir, GlidLen, MinDif, NofHit, LineLen, *NofSegs;
LinTyp *Line;
BYTE **Image;
SegTyp *Segs;
{
 int i,j, r,c, rc,cc, r0,c0,r1,c1, n, Start, Stop;

 Start = -1;
 for (i=0; i<LineLen-GlidLen; i++) {
 n = 0;
 for (j=0; j<GlidLen; j++) {
 r = Line[i+j].r;
 c = Line[i+j].c;
 NeighInds (ImSize, Dir, r,c, &r0,&c0,&r1,&c1);
 if (abs (Image [r0][c0] - Image [r1][c1]) > MinDif) n++;
 }
 if (n>=NofHit) {
 if (Start<0) Start = i;
 }else{
 if (Start>=0) {
 Stop = i+GlidLen-1;
 Segs[*NofSegs].r0 = Line[Start].r;
 Segs[*NofSegs].c0 = Line[Start].c;
 Segs[*NofSegs].r1 = Line[Stop].r;
 Segs[*NofSegs].c1 = Line[Stop].c;
 ++*NofSegs;
 Start = -1;

} } } }

Fig. 7.14:

C realization of the tracking (core procedure). Data types LinTyp and SegTyp are defined in Appendix A.

The whole procedure is embedded in a for loop, which scans the pixel chain Line with the aid of the
index i. This index, so to speak, “pushes” the glider (with length GlidLen). Those pixels in the chain
which are covered by the glider are addressed by index j. The image coordinates of these pixels are r
and c. The procedure NeighInds (see below) determines the coordinates of the right and left
neighbor pixels of the glider (Fig. 7.15). For each of these pairs of neighboring pixels the absolute
magnitude of the graylevel difference is computed (abs (Image [r0][c0] - Image [r1][c1])).
If this difference is greater than the threshold MinDif (which is defined by the user), then the counter
n is incremented.

This counter serves as an indicator for a significant graylevel difference along the entire glider: if n
exceeds the threshold chosen by the user (NofHit), then the glider is very likely to “sit” at the edge of
an object. In order to determine this edge by a segment, we only need the first and last encounters of
the glider. The corresponding indices of the pixel chain are Start and Stop.

r

c

Fig. 7.15:

Principle of the glider realization.

7 Hough Transform - 7.4 Supplement

Ad Oculos 192

Finally consider the procedure NeighInds which has already been mentioned (Fig. 7.16). Formal
parameters are:

ImSize: image size

Dir: direction of the straight line the glider is “moving” along

r,c: coordinates of the current pixel of the straight line

r0,c0: coordinates of the right (left) neighbor

r1,c1: coordinates of the left (right) neighbor.

This procedure is self-explanatory.

void NeighInds (ImSize, Dir, r,c, r0,c0,r1,c1)
int ImSize, Dir, r,c, *r0,*c0,*r1,*c1;
{
 if (80<=Dir && Dir<112) {
 *r0 = r-1; c0 = c+1; / NO-SW */
 *r1 = r+1; *c1 = c-1;
 }else if (48<=Dir && Dir<80) {
 *r0 = r-1; c0 = c; / N-S */
 *r1 = r+1; *c1 = c;
 }else if (16<=Dir && Dir<48) {
 *r0 = r-1; c0 = c-1; / NW-SO */
 *r1 = r+1; *c1 = c+1;
 }else{
 *r0 = r; c0 = c+1; / O-W */
 *r1 = r; *c1 = c-1;
 }
 if (*r0>=ImSize) *r0 = ImSize-1; if (*r0<0) *r0 = 0;
 if (*c0>=ImSize) *c0 = ImSize-1; if (*c0<0) *c0 = 0;
 if (*r1>=ImSize) *r1 = ImSize-1; if (*r1<0) *r1 = 0;
 if (*c1>=ImSize) *c1 = ImSize-1; if (*c1<0) *c1 = 0;

}

Fig. 7.16:

C realization of the determination of the glider’s pixel positions.

7.4 Supplement

In Section 7.1 the basic principle of the Hough transform and its application were discussed. In
practice one has to deal with the following problems:

• The proposed procedure is restricted to straight contours. In principle the expansion of the
transformation to include other contour shapes is not difficult, since a “shape-to-point transform”
exists for any particular curve [7.16] [7.17]. A typical example of expansion is the circle-to-point
transform proposed by Wallace [7.21], who analyzes workpieces with circular and straight contours.

• The tracking mechanism requires a comparatively large amount of computing time. Consequently
the procedure is only useful in the case of a few straight lines or object contours.

• The accumulator array requiresa lot of memory since the quantization of the accumulator
coordinates r and θ corresponds to the image resolution. For a gradient image of size 512 * 512 the
maximum distance to the origin is r = ±512 √2. The gradient direction of a contour point is
represented by 1 byte. Thus, the gradient direction ranges from 0 to 255, while the scale of the
angle of inclination θ is 0 to 127. Therefore the memory requirement for the entire accumulator array
is 360k bytes. This is an enormous amount of memory especially in view of the limited number of
straight lines the accumulator yields. An image representing simple objects is unlikely to comprise
more than 100 of such straight lines. Their specification requires at most 400 bytes.

• Usually, the accumulator increments the entries of its cells. Thus, a “long” straight contour causes a
high entry independently of the graylevel difference along this contour. This is desirable, since due

7 Hough Transform - 7.4 Supplement

Ad Oculos 193

to its length the contour is very likely to be significant. On the other hand, short contours which
separate regions with significantly differed graylevels, would also be expected to yield a high
accumulator entry. Due to their shortness, however, they only cause a low entry. The simple
solution to this problem is the accumulation of the gradient magnitudes. But in this case the
weighting of long (and thus significant) contours with low gradient magnitudes may be too low.

• At first sight it seems useful to carry out the accumulator analysis with the aid of standard clustering
algorithms. But these procedures are too expensive and (more importantly in the context of our
application) cause unacceptable errors: ultimately they lead to a coarser quantization of the
accumulator which may have serious consequences. Fig. 7.17 illustrates the fundamental problem
of quantization. For a straight line r x cos ysin 0= θ + θ = running through the origin we obtain
y x cot= − θ . With θ = 90º the straight line equals the x-axis. Considering a deviation of one degree
(e.g. θ = 91º) at x = 511 the corresponding straight line is 9 pixels away from the x-axis. This is a
worst-case example, but it illustrates the vulnerability of the procedure to false (or too coarsely
quantisized) accumulator coordinates. Such errors cause serious problems for the tracking
mechanism.

x

y

0

0

511

=91

=90

Fig. 7.17:

Different positions of two straight lines the inclinations θ of which differ by only
1 degree.

Unfortunately, the solution of one problem increases another problem. For instance, a finer
quantization of θ and r is only feasible at the expense of memory. In practice, the application of the
Hough transform is restricted by the following rules (though doubtless none of these rules is without
an exception):

• The contour to be detected must be of simple shapes like straight lines or circles.

• The number of such contours must be low.

• The quantization of θ and r must avoid misplacements.

Thus, the enormous memory requirements of the accumulator seem at first glance to be unavoidable.
In some cases, however, the following strategy can be used: if only point or local operations (Chapter
2 and Chapter 3) are applied to the accumulator, its realization by a two-dimensional array is
unnecessary. Since the cleaning of the accumulator involves a certain danger, it is sometimes best
avoided. In this case the accumulator may be realized by a one-dimensional array representing the
rows of the original accumulator. Thus, we are only able to vary the column index r. This restriction
requires a sorting of the contour points according to their inclination θ. Since a thinned gradient image
usually consists of only a few contour points the sorting procedure does not consume much
computing time.

Starting with θ = 0 the Hough transform computes the parameter r for each contour point which holds
θ = 0 and increments the entry of the corresponding accumulator cell. The final step is similar to the
analyzing procedure in the case of a two-dimensional accumulator: a threshold extracts the
accumulator entries, the coordinates of which determine straight lines.

The remaining question concerns the decision on incremental accumulation vs. accumulation of the
gradient magnitudes. This decision depends on the application in question. The most interesting

7 Hough Transform - 7.5 Exercises

Ad Oculos 194

alternative is the combination of the two approaches. Clearly while such a combination requires more
computing resources, the resulting procedure may be much more robust than either incremental
accumulation or accumulation of gradient magnitudes alone.

7.5 Exercises

Exercise 7.1:

Why is it very simple to identify parallel lines with the aid of the Hough transform?

Exercise 7.2:

Fig. 7.18 shows a thinned gradient image consisting of 16 contour points with gradient directions 0º,
90º, 180º and 270º. The gradient directions of the 4 remaining contour points are 45º, 135º, 225º and
315º. Apply the Hough transform to the source image shown in Fig. 7.18. Create an accumulator with
θ-quantization of 45º and r-quantization of 1.

Exercise 7.3:

Analyze the accumulator obtained from the solution of Exercise 7.2 (Fig. 7.1) using every entry which
is greater than 0 (note that such a low threshold makes no sense in practice but is only used here for
demonstration purposes). Enter the straight lines extracted from the accumulator into a 8 * 8 image
using the intersections with the image border.

Exercise 7.4:

If the result of Exercise 7.3 is not completely satisfying the reason is likely to be the displacement of
the diagonal straight lines. This is due to the quantization effects of calculating r and the intersection
points at the image border. Re-calculate the intersection points at the image border using the non-
quantized values of r. Enter the straight lines into a Cartesian coordinate system.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

x

y

Fig. 7.18:

This is a thinned gradient image which is used as the source image for
Exercise 7.2.

Exercise 7.5:

Given the parametric equation for a circle:

x a rcos

y b r sin

= + θ
= + θ

Define the Hough transform for detecting circles. How can the transform be optimized if the
approximate radius of a circle is known?

7 Hough Transform - 7.5 Exercises

Ad Oculos 195

Exercise 7.6:

Write a program which realizes the 1-dimensional Hough transform described in Section 7.4.

Exercise 7.7:

Write a program which realizes the circle-to-point transform as described in Section 7.4.

Exercise 7.8:

Become familiar with every Hough operation offered by AdOculos (AdOculos Help).

7 Hough Transform - References

Ad Oculos 196

References

[7.16] Ballard, D.H.:
Generalizing the Hough transform to detect
arbitrary shapes.
Pattern Recognition 13 (1981) 111-122

[7.17] Ballard, D.H.; Brown, Ch.M.:
Computer vision.
Englewood Cliffs, New Jersey: Prentice-Hall 1982

[7.18] Bässmann, H.; Besslich, Ph.W.:
Konturorientierte Verfahren in der digitalen Bildverarbeitung.
Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1989

[7.19] Besslich, Ph.W.; Bässmann, H.:
A tool for extraction of line-drawings in the context of perceptual organization:
Proceedings of the International Conference on Computer Analysis of
Images and Patterns, Leipzig, 8.-10. Sept.,
(K. Voss, D. Chetverikov and G. Sommer, Eds.), (1989) 54-56

[7.20] Duda, R.O.; Hart, P.E.:
Use of the Hough transformation to detect lines
and curves in pictures.
Comm. ACM 15 (1972) 204-208

[7.21] Wallace, A.M.:
Greyscale image processing for industrial applications.
Image and Vision Computing 1 (1983) 178-188.

8 Morphological Image Processing

8.1 Foundations

The requirements of understanding this chapter are:

• to be familiar with basic mathematics

• to have read Chapter 1 (Introduction) and Section 3.1 (Foundations of Local Operations).

8.1.1 Binary Morphological Procedures

As the example of the median operator has already shown, there are interesting alternatives to classic
linear convolution (Section 3.4). Yet another alternative is morphological image processing
(morphology = science of shapes) which should not be confused with morphing, a technique used to
manipulate the shape of regions of an image for aesthetic purposes [8.3]. The basic idea of
morphological image processing is to exploit prior knowledge of the shape of image distortions in
order to support the removal of these distortions. In the context of binary images such distortions are
regions of 0 or 1, which are clearly distinguishable from „useful image regions“ due to their
predictable shapes. Note that „distortion“ is not limited to noise, it also describes an image
background which is to be suppressed.

A simple example illustrating the application of morphological image processing descends from the
analysis of chromosomes. Fig. 8.1 shows so-called metaphases. These are blobs formed by
chromosomes belonging to one nucleus. Thus, the blobs are the „useful image region“ while the fine
(1 or 2 pixel broad) vertical strokes are due to noise. The shapes of the „useful image region“ and the
distortion are obviously different. Moreover, the variation of the two basic forms is slight. This
information can simplify the morphological procedure considerably but is not a prerequisite.

Opening

Erosion Dilation

Source image

0
0

127

127

0
0

127

127

0
0

127

127

Structuring element

Fig. 8.1:

This example illustrates the application of morphological image processing
to chromosome analysis. The source image shows the so-called
metaphases. These blobs are formed by chromosomes belonging to one
nucleus. Thus, the blobs are the „useful image region“ while the (1 or 2 pixel
broad) vertical strokes are due to noise. The shapes of the „useful image
region“ and the distortion are obviously different. (X marks the current pixel).

In the context of morphological image processing the so-called structuring element and the basic
operators erosion and dilation are the focus of attention (Fig. 8.1). As the name suggests, erosion
removes pixels from region borders. In contrast dilation adds pixels to a border. The removal or
addition is determined by a structuring element which is an operator mask of a given shape. It is
handled like the local operators described in Chapter 3. The crosses in the structuring elements (Fig.

8 Morphological Image Processing - 8.1 Foundations

Ad Oculos 198

8.1) mark the current pixel. The operations using the structuring element are based on the following
rules:

Erosion: If the whole structuring element lies inside a region in the source image, then set the current
pixel in the output image to 1.

Dilation: If at least one pixel of the structuring element lies inside a region in the source image, then
set the current pixel in the output image to 1.

Applied to the source image shown in Fig. 8.1, a simple erosion with a 3 * 3 structuring element
completely removes the noisy background: the structuring element does not „fit“ any of the fine
vertical degrading strokes. However, it is evident that the blobs are smaller. It is possible to
compensate for this „side effect“ with the aid of a dilation, but it is not possible to reverse the
shrinking process, since morphological operators are non-linear.

Imagining erosion and dilation as the „atoms“ of morphological image processing, simple
combinations of erosion and dilation are, so to speak, „molecules“. These combinations bear their
own names:

Opening: An erosion followed by a dilation. The opening is used for removing the borders of frayed
regions borders and for eliminating tiny regions.

Closing: A dilation followed by an erosion. As the name suggests, the closing procedure fills the gaps
between „fringes“.

Fig. 8.2 shows two simple examples. A more complex example is depicted in Fig. 8.3. This example
demonstrates the detection of a region whose shape is known. Consider the small rectangle in the
middle of the source image to be the desired region. The first step of the extraction procedure uses a
structuring element, which completely removes this rectangle with the aid of an opening (erosion,
dilation). Obviously smaller regions that are not part of the desired region are also eliminated. Thus,
the image resulting from the opening contains only the larger regions (the borders of which have been
smoothed) of the source image. Therefore, this image only approximately represents the background
of the image. Hence, the first step of the procedure, as well as the resulting image, are refered to as
background estimation.

The second step compares source image and background estimation with the aid of an XOR function.
The resulting image contains:

• the desired region

• the borders of the large regions

• all of the smaller regions.

8 Morphological Image Processing - 8.1 Foundations

Ad Oculos 199

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

B

-1 0 -1

-1

0

-1

B

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

A

A*

A
* *

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

B

B

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

A

A*

A
* *

(a) (b)

Erosion Dilation

Dilation Erosion

-1 0 -1

-1

0

-1

-1 0 -1

-1

0

-1

-1 0 -1

-1

0

-1

Fig. 8.2:

Erosion and dilation may be considered as the „atoms“ of morphological image
processing. The „molecules“ are closing (dilation, erosion) which fills the gaps between
the „fringes“ and opening (erosion, dilation) which is used to remove frayed region
borders and to eliminate tiny regions.

8 Morphological Image Processing - 8.1 Foundations

Ad Oculos 200

XOR

Erosion Dilation

Dilation Erosion

Source Image

0

0

127

127

0

0

127

127

0

0

127

127

0

0

127

127

0
0

127

127

0
0

127

127

Fig. 8.3:

This example demonstrates the detection of a region the whose shape is
known (in the case of binary images). Consider the small rectangle in the
middle of the source image to be the desired region. The initial opening
(erosion, dilation) realizes a so-called background estimation. The second
step compares the source image and background estimation with the aid
of a XOR function. A second opening eliminates the undesired regions.

A second opening eliminates the undesired regions. For this purpose the structuring element is
shaped so that the erosion leaves a small part of the desired region behind. The subsequent dilation
expands the desired region to approximately its original size.

XOR

Erosion

Fig. 8.4:

This example demonstrates the extraction of contours with the aid of
an erosion and an XOR operation. Note, that in contrast to the gradient
operation discussed in Chapter 6 the current operation yields no
information concerning the contour direction.

8 Morphological Image Processing - 8.1 Foundations

Ad Oculos 201

START

Erosion Dilation

Erosion Dilation

Erosion Dilation

XOR

XOR

XOR

OR

Structuring
Element

Fig. 8.5:

This example demonstrates the extraction of a region’s skeleton (top right).

The applications shown so far are typical, but the influence of morphological image processing is
much broader. The example shown in Fig. 8.4 demonstrates the extraction of contours, a subject
which has already been discussed in Chapter 6.

Fig. 8.5 shows the extraction of the skeleton of a region. Like the outline, a skeleton yields structural
features of a region. Typical application areas of skeletonizing are character recognition and the
thinning of gradient images (discussed in Section 6.1.2).

Apart from its broad range of applications the attraction of morphological image processing is due to
three essential advantages:

• Even complex image processing problems can be reduced to simple elementary operations

8 Morphological Image Processing - 8.1 Foundations

Ad Oculos 202

• These elementary operations are based on Boolean algebra

• It is easy to realize morphological image processing on parallel machines These features make
morphological image processing suitable for hardware realizations.

8.1.2 Morphological Processing of Graylevel Images

In the case of morphological processing of binary images the steps from graylevel 0 to graylevel 1
determine the shape of the desired regions in an image. Thus, this is a two-dimensional problem. The
morphological processing of graylevel images requires a third dimension which represents the
graylevels. A good way of visualizing this is the idea of graylevel mountains. In this context an erosion
clears the top layer of the mountains away, while a dilation covers the mountains with a new layer. An
opening is used to remove peaks, a closing fills valleys. The shape of such peaks or valleys
determines the shape of the three-dimensional structuring element. Fig. 8.6 illustrates the procedures
with the aid of a non-digitized image. The structuring elements are balls. In the case of the closing, the
ball is rolled along the ridge of the mountains and the valleys below the ball are filled. In order to apply
the opening, the ball is rolled along the inner contour of the ridge of the mountains and any peak
which the ball does not make contact with is removed.

Fig. 8.7 shows a detailed example of a dilation. On the left a cross-section of a graylevel mountain is
depicted. The origin of the structuring element (middle of Fig. 8.7) is marked by a cross which
corresponds to the current pixel during processing. The structuring element is applied upside down to
the graylevel mountain: coming from the top, it moves downward until at least one of its pixels and at
least one pixel of the top mountain layer overlap. For the last step the position of the origin of the
structuring element is decisive. Its spatial coordinates determine the position of the current pixel in
the resulting image, while its coordinate on the graylevel axis determines the graylevel of this current
pixel. Doing this for each pixel of the source image, the result shown in Fig. 8.7 (right) is obtained.

OpeningClosing

filled removed

Space Space

Graylevel Graylevel

Fig. 8.6:

Illustration of closing and opening in the
case of graylevel images: the figure
shows cross-sections of two graylevel
mountains and ball-shaped structuring
elements.

Space Space

Graylevel Graylevel

- - - -

Fig. 8.7:

Carrying out the dilation of graylevel
images.

The border problem, which is typical for local operations (Section 3.1), is simply but effectively solved
with the aid of the following definitions:

• Everywhere outside the image, the graylevel is 0

• All pixels with graylevel 0 (including the pixels in the image) are handled as if their graylevel were -∞.

• Thus a structuring element never collides with the „floor“

8 Morphological Image Processing - 8.1 Foundations

Ad Oculos 203

• If the position of the current pixel is out of the image, its graylevel „drops“ to -∞.

Fig. 8.8 shows the procedure in the case of an erosion with the structuring element scanning the
graylevel mountains from below: it moves upward until it encounters the highest position where all its
pixels are inside the mountains. The remaining steps are similar to those of dilation.

Space Space

GraylevelGraylevel

- - - -

Fig. 8.8:

Carrying out the erosion of graylevel
images.

Fig. 8.3 shows an example of the detection of binary image regions (representing an object) which has
a known shape. The corresponding problem for graylevel images is depicted in Fig. 8.9. The aim is to
extract the top corner of the mug’s handle from the source image. A practical application for such an
example is hard to imagine, but it illustrates the use of asymmetrical structuring elements.

+

-

+

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Opening

Dilation Erosion

1 1 1 1 1 1 1 1 1

1 1 1 1 1

1
1
1
1

1
1
1
1

1
1
1
1

50 50 50 5050 50 50 50

50 5050 50 50 50

50

50

50

50

50

50

50

50

50

50

50

50

0
0

127

127

0
0

127

127

0
0

127

127

0
0

127

127

0
0

127

127

50 50 5050 50 50 50

50

50

50

50

50

50

1 1 1 1 1 1 1 1 1

1 1 1 1 1

1
1
1
1

1
1
1
1

1
1
1
1

50 50 50 5050 50 50 50

50 5050 50 50 50

50

50

50

50

50

50

50

50

50

50

50

50

50 50 5050 50 50 50

50

50

50

50

50

50

Fig. 8.9:

Example of detection of an image region, the shape of which is known (in the case
of graylevel images). The basic procedure is similar to that used in the case of
binary images shown in Fig. 8.3.

The basic structure of the procedure is similar to that used for binary images: it starts with an
estimation of the background, followed by its subtraction from the source image and finishes by
enhancing the difference image. The background estimation is carried out by an opening with a
structuring element which removes the handle. The design of such a structuring element is
straightforward: it must be just big enough not to fit inside the handle. The subtraction of the images
yields absolute magnitudes. Signs are of no interest. Obviously the difference image contains the
desired region but also several degraded regions too, none of which is similar to the desired region.
Thus an erosion with a structuring element adapted to the graylevel mountains of the handle corner
removes the degraded regions. Now the position of the handle has been detected. If the desired
region is to be emphasized, a dilation with the same structuring element is required.

8 Morphological Image Processing - 8.2 AdOculos Experiments

Ad Oculos 204

8.2 AdOculos Experiments

8.2.1 Binary Morphological Procedures

To become familiar with morphological image processing we realize the New Setup shown in Fig. 8.10
as described in Section 1.1. For the current experiment the structuring element 3X3.SEB was selected.
A structuring element has to be loaded by clicking of the right mouse button on the function symbol
of a morphological operator. AdOculos offers several structuring elements which can be found in the
STRELEM subdirectory. A structuring element is represented by a text file which may be manipulated
with any text editor in order to change its elements.

Fig. 8.10:

This chain of procedures is the basis of experiments with morphological image processing. The New
Setup is realized according to the steps described in Section 1.1. The results are shown in Fig. 8.11.

In Section 8.1 the extraction of metaphases from a source image was used as an introductory
example. Fig. 8.11 (METASRC) shows the original image. The picture has low contrast and is degraded
by interference bands. The purpose of the subsequent process is therefore to isolate the metaphases
from the noisy background.

8 Morphological Image Processing - 8.3 Source Code

Ad Oculos 205

Fig. 8.11:

The example image (METASRC.128) is the original metaphases image as discussed in Section 8.1.
The picture has low contrast and is degraded by interference bands. The task here is to isolate the
metaphases from the noisy background. (2) is the result of thresholding the source image at
graylevel 143 while (3) is the inverted version of (2). (4) and (5) are the erosion and dilation results
of the inverted binary image while the complementary dilation and erosion of the original binary
image is demonstrated with (6) and (7).

The mean graylevel of the metaphasis is clearly lower than that of the background. Thus, the first step
should be a binarization using a threshosld. Fig. 8.11 (2) shows the binarization result. The threshold
was 143. Usually the pixels with a graylevel of 0 (black in Fig. 8.11) are defined as background. In order
to keep to this convention the binary image must be inverted (3).

At first glance the background disturbance seems to be really bad. However, on closer inspection the
disturbance turns out to consist of tiny regions which seem to have aquired their value (‘0’ or ‘1’) by
chance. In contrast to this the metaphases are represented by comparatively large regions. Therefore
an opening with a 3 * 3 structuring element removes the disturbances without any difficulty. The
result of the erosion is image (4). The subsequent dilation yields the resulting image (5).

The inversion of the source image would not be very expensive, and is in any case unnecessary. So,
consider the original binarization result (2) as the starting point. In order to remove the disturbances
(now represented by ‘0’ pixels) the first step should be a dilation. The result is image (6). Consistently
the second step is an erosion yielding the final result image (7).

8.3 Source Code

8.3.1 Binary Morphological Procedures

Fig. 8.12 shows a procedure which realizes a binary erosion and dilation. Formal parameters are:

ImSize: image size

8 Morphological Image Processing - 8.3 Source Code

Ad Oculos 206

InIm: input image

OutIm: output image

StrEl: list of the structuring element coordinates which relate to the origin of the
 structuring element (Fig. 8.2)

Black: code representing binary 0 (background)

White: code representing binary 1 (desired region).

The procedure starts by initializing the output image. The subsequent part of the procedure carries out
the erosion. It is embedded in two for loops, which „guide“ the current pixel (represented by the
coordinates r and c) through the whole image, ignoring the border problem. The inner for loop tests
the erosion condition for each element of the structuring element (Section 8.1.1): in order to obtain an
entry in the output image the desired region (in the input image) has to enclose the structuring
element completely. y and x are those row and column coordinates of the input image which are
covered by the structuring element positioned at the current pixel (r, c). Before the test of the erosion
condition the coordinates y and x have to be checked to see if they cross the image border. The
actual test is simple: if pixel (y, x) belongs to the background (InIm [y][x] == Black), the inner
for loop is stopped. This break-off takes place unless every pixel (y, x) belongs to the desired region.
In this event a 1 is entered into the output image OutIm.

8 Morphological Image Processing - 8.3 Source Code

Ad Oculos 207

void EroBin (ImSize, InIm, OutIm, StrEl, Black, White)
int ImSize;
BYTE **InIm;
BYTE **OutIm;
StrTypB *StrEl;
BYTE Black, White;
{
 int r,c,y,x,i;

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) OutIm [r][c] = Black;

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 for (i=1; i<=StrEl[0].r; i++) {
 y = r + StrEl[i].r;
 x = c + StrEl[i].c;
 if (y>=0 && x>=0 && y<ImSize && x<ImSize)
 if (InIm [y][x] == Black) goto Failed;
 }
 OutIm [r][c] = White;
Failed: ;
} } }

void DilBin (ImSize, InIm, OutIm, StrEl, Black, White)
int ImSize;
BYTE **InIm;
BYTE **OutIm;
StrTypB *StrEl;
BYTE Black, White;
{
 int r,c,y,x,i;

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) OutIm [r][c] = Black;

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 for (i=1; i<=StrEl[0].r; i++) {
 y = r - StrEl[i].r;
 x = c - StrEl[i].c;
 if (y>=0 && x>=0 && y<ImSize && x<ImSize)
 if (InIm [y][x] == White) {
 OutIm [r][c] = White;
 goto Leave;
 } }
Leave: ;

} } }

Fig. 8.12:

C realization of the binary erosion and dilation. Data type StrTypB is defined in Appendix 1.

The realization of dilation is very similar to that of erosion. Only the inner for loops differ (Fig. 8.12).
This loop realizes the dilation condition: if at least one pixel of the desired region and one pixel of the
structuring element overlap, then a 1 is entered into the output image. Note that the structuring
element has to be applied upside down.

8.3.2 Binary Morphological Processing of Graylevel Images

Fig. 8.13 shows a procedure which realizes erosion and dilation of graylevel images. Formal
parameters are:

ImSize: image size

8 Morphological Image Processing - 8.3 Source Code

Ad Oculos 208

InIm: input image

OutIm: output image

StrEl: list of the structuring element coordinates which relate to the origin of the
 structuring element (Fig. 8.2).

void EroGray (ImSize, InIm, OutIm, StrEl)
int ImSize;
int **InIm;
int **OutIm;
StrTypG *StrEl;
{
 int r,c,y,x,i,gv,min;

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) OutIm [r][c] = 0;

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 min = 32767;
 for (i=1; i<=StrEl[0].r; i++) {
 y = r + StrEl[i].r;
 x = c + StrEl[i].c;
 if (y>=0 && x>=0 && y<ImSize && x<ImSize) {
 gv = InIm[y][x] - StrEl[i].g;
 if (gv < min) min = gv;
 } }
 OutIm [r][c] = min;
} } }

void DilGray (ImSize, InIm, OutIm, StrEl)
int ImSize;
int **InIm;
int **OutIm;
StrTypG *StrEl;
{
 int r,c,y,x,i,gv,max;

 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) OutIm [r][c] = 0;

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 max = -32768;
 for (i=1; i<=StrEl[0].r; i++) {
 y = r - StrEl[i].r;
 x = c - StrEl[i].c;
 if (y>=0 && x>=0 && y<ImSize && x<ImSize) {
 gv = InIm[y][x] + StrEl[i].g;
 if (gv > max) max = gv;
 } }
 OutIm [r][c] = max;

} } }

Fig. 8.13:

C realization of the graylevel erosion and dilation. Data type StrTypB is defined in Appendix 1.

The procedure starts by initializing the output image. The frame of the following erosion algorithm is
similar to the binary case. However, obviously the kernel of the algorithm does not correspond to the
idea of graylevel erosion proposed in Section 8.1.2: the graylevels of the structuring element
StrEl[i].g are subtracted from the graylevels of the input image InIm[y][x] and the minimum
min of these values is entered into the output image OutIm[y][x]. Thus, the graylevels of the
structuring element realize the third dimension of the structuring element (Section 8.1.2).

8 Morphological Image Processing - 8.4 Supplement

Ad Oculos 209

The algorithm realizing dilation differs from that of erosion in the following respects:

• Since the structuring element has to be applied „upside down“ (Section 8.1.2), the coordinates y
and x are obtained by subtracting the coordinates of the structuring element from r and c.

• The graylevels of the structuring element have to be added to the corresponding graylevels of the
input image.

• The result of the dilation is the maximum sum.

8.4 Supplement

Morphological image processing is based on mathematical morphology which has been mainly
developed by Serra [8.5] [8.6]. The following Sections 8.1.1 and 8.1.2 offer a short introduction to
these more or less theoretical aspects of morphological image processing. Readers more interested in
applications will find information for further work in the papers or books of Giardina and Dougherty
[8.1], Schalkoff [8.4] and Sternberg [8.7].

8.4.1 Binary Morphological Procedures

The theoretical base of morphological image processing as well as mathematical morphology is set
theory. Against this background a binary image is a function f(r,c) (discrete in space and value), which
depends on the row coordinate r and the column coordinate c. The function yields the values 0
(background) or 1 (desired region). In the case of only one desired region, it is simply represented by
the set of all pixels (r,c) for which f(r,c)=1. The background is the complement of this set.

Now consider that a desired region is represented by set A and the structuring element is represented
by set B. The coordinate origin of the structuring element corresponds to the current pixel p=(r,c).

Then the set Bp is the structuring element at place p. A dilation requires a structuring element *
pB

which is upside down. Now the definitions of erosion and dilation are:

{ }
{ }

p

*
p

Erosion:A B p : B A

Dilation:A B p : B A

= ⊆

⊕ = ∩ ≠ ∅

Θ

8 Morphological Image Processing - 8.4 Supplement

Ad Oculos 210

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

-1 0

0

A (0,-1) A (0,1)A (0,0)

A (0,-1) A (0,1)A (0,0)

+1

Source image A Structuring element B

Transition

(For erosion vice - versa)

Difference set/ And

Fig. 8.14:

Example illustrating the definition of erosion with the aid of transition and a set difference
operations.

8 Morphological Image Processing - 8.4 Supplement

Ad Oculos 211

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

-1 0

0

A (0,-1) A (0,1)A (0,0)

A (0,-1) A (0,1)A (0,0)

+1

Source image A Structuring element B

Transition

Union set/ Or

Fig. 8.15:

Example illustrating the definition of dilation with the aid of a transition and a set union
operations.

Another definition of the basic morphological operations is illustrated by the example shown in Fig.
8.14 and Fig. 8.15. The individual elements (pixels) of the structuring element determine a transition in
the source image. For instance, the element with the coordinates (0,-1) causes a transition of one
column to the left in the case of a dilation and one column to the right in the case of an erosion. Since
each of the structuring elements shown in Fig. 8.14 and Fig. 8.15 consists of three single elements,
three variations on the source image are generated. They are represented by the sets A(0,-1), A(0,0) and
A(0,1). With these sets the basic morphological operations are:

8 Morphological Image Processing - 8.4 Supplement

Ad Oculos 212

() () ()

() () ()

0, 1 0,0 0,1

0, 1 0,0 0,1

Erosion:A B A A A

Dilation:A B A A A

−

−

= ∩ ∩

⊕ = ∪ ∪

Θ

or more generally

()
()

()
()

r,c
r,c B

r,c
r,c B

Erosion:A B A

Dilation:A B A

∈

∈

=

⊕ =

∩

∪

Θ

Furthermore it is possible to replace the set operations ∩ and ∪ by the Boolean operators and and or.

8.4.2 Binary Morphological Processing of Graylevel Images

Similar to the binary morphological procedures the starting point is an image, which is defined by a
function f(r,c) (discrete in space and value). This function yields values ranging from 0 to 255. Such an
image may be illustrated by a tower block landscape (Fig. 8.16). The number of floors of the
towerblock on „grid square“ (r,c) corresponds to the graylevel of the pixel with coordinates (r,c).

In order to transfer the morphological operations from the binary domain to the graylevel domain, the
graylevel function has to be described by a set. For this purpose Sternberg [8.7] developed the
operations „umbra“ and „top surface“.

Suppose the „tower blocks“ (Fig. 8.16) are illuminated by an infinitely distant light source which is
positioned exactly above the blocks, so that the blocks cast a downwardly-directed shadow continuing
to infinity. Thus the blocks produce a basement consisting of an infinite number of subterranean
floors. Now „umbra“ is the set consisting of all (underground and overground) floors, or alternatively
an operation which generates this set with the aid of the top floors (black in Fig. 8.16) causing the
shadow. Then „top surface“ is the set consisting of all these floors, or alternatively an operation which
extracts the set of top floors from the „umbra“ set.

c

r

f(r,c)

Fig. 8.16:

Illustration of the morphological processing of
graylevel functions.

The set of floors which causes shadows corresponds to the graylevel function f(r,c). Thus, the „umbra“
operation may be defined as a function U[f] of the graylevel function. The „top surface“ operation acts
in reverse: f=T[U[f]]. Now the desired link between functions and sets is created. The brackets are to
indicate that we have a function of a function.

Among others, two equivalences between set operations and function operations of two graylevel
functions f(r,c) and g(r,c) are:

() (){ }
() (){ }

T U f U g min f r,c ,g r,c

T U f U g max f r,c ,g r,c

 ∩ =
 ∪ =

In this context the definitions of erosion and dilation are:

Erosion:f g T U f U g

Dilation:f g T U f U g

 = ∩
 ⊕ = ∪

Θ

8 Morphological Image Processing - 8.5 Exercises

Ad Oculos 213

The linking of the sets U[f] and U[g] is a binary erosion whilst the linking of the functions f and g
represents the desired graylevel erosion. A corresponding process applies to dilation. Let f(r,c) be the
graylevel function of the image. Then g(r,c) is the graylevel structuring element (also known as the
structuring function).

8.5 Exercises

Exercise 8.1:

Perform erosion and dilation using the structuring element shown in Fig. 8.17. Comment on the result.

Erosion

Dilation

Fig. 8.17:

Exercise 8.1 demonstrates the relation between erosion
and dilation.

Exercise 8.2:

Design a morphological procedure which removes the angular fragments in the top corners of the
source image shown in Fig. 8.18.

Fig. 8.18:

Exercise 8.2 demonstrates the removal of the angular
fragments in the top corners of this image.

Exercise 8.3:

Extract the contours of the image shown in Fig. 8.19 with the aid of a morphological procedure.
Compare the results of applying the two structuring elements one after the other.

8 Morphological Image Processing - 8.5 Exercises

Ad Oculos 214

Fig. 8.19:

Exercise 8.3 demonstrates the extraction of contours.

Exercise 8.4:

Extract the skeleton of the two images shown in Fig. 8.5. Comment on the result.

Fig. 8.20:

Exercise 8.4 demonstrates the extraction of skeletons.

Exercise 8.5:

Become familiar with every morphological operation offered by AdOculos (see AdOculos Help).

Exercise 8.6:

As discussed in Section 8.1.1, Fig. 8.3 demonstrates the extraction of a small rectangle. This example
originates from the AdOculos example image BOLTSRC.128 showing a pin welded on a piece of
bodywork. Construct an AdOculos setup which realizes the example shown in Fig. 8.3 using binary
morphological operations. The first step would be the binarization of BOLTSRC.128.

Exercise 8.7:

As discussed in Section 8.1.2, Fig. 8.9 demonstrates the extraction of part of a cup. This example
originates from the AdOculos sample image CUPSRC.128. Construct an AdOculos setup which
realizes the example shown in Fig. 8.9 using morphological operations for graylevel images.

Exercise 8.8:

Experiment with morphological operations to manipulate images from an aesthetic point of view.

8 Morphological Image Processing - References

Ad Oculos 215

References

[8.1] Giardina, C.R.; Dougherty, E.R.:
Morphological methods in image and signal processing.
Englewood Cliffs: Prentice-Hall 1988

[8.2] Haralick, R.M.; Shapiro, L.G.:
Computer and Robot Vision, Vol. 1 & 2.
Reading MA: Addison-Wesley 1992

[8.3] Morrision, M.:
The magic of image processing.
Carmel: Sams Publishing 1993

[8.4] Schalkoff, R.J.:
Digital image processing and computer vision.
New York, Chichester, Brisbane, Toronto, Singapore: Wiley 1989

[8.5] Serra, J.:
Image analysis and mathematical morphology.
Orlando, San Diego, San Francisco, New York, London, Toronto,
Montreal, Sydney, Tokyo: Academic Press 1982

[8.6] Serra, J.:
Image analysis and mathematical morphology,
Volume 2: Theoretical advances.
Orlando, San Diego, San Francisco, New York, London, Toronto,
Montreal, Sydney, Tokyo: Academic Press 1982

[8.7] Sternberg, S.R.:
Grayscale morphology.
Computer Vision Graphics and Image Processing 29 (1985) 377-393.

9 Texture Analysis

9.1 Foundations

The requirements of understanding this chapter are

• to be familiar with basic mathematics

• to be familiar with local operations (Section 3.1)

• to have read Chapter 1.

Compared to other subjects of image processing texture analysis is an unpopular topic. The problem
begins with the attempt to define „Texture“. Two typical examples of texture are shown in Fig. 9.1. A
pullover’s cuff is easily distinguishable from its sleeve due to different textures (Fig. 9.1(a)). Fig. 9.1 (b)
depicts an example arising from a completely different context: the image suggests a path which is
paved with round tiles or a riverbed which has been cracked because of a drought. Furthermore, the
image gives a strong impression of space. A third example occurs in the context of satellite pictures:
certain regions like urban or forest areas are separable from their surroundings, due to their texture.

(a) (b)
Fig. 9.1:

Two typical examples of texture: A pullover’s cuff is easily distinguishable
from its sleeve due to different textures. Fig. 9.1 depicts an example arising
from a completely different context, the image suggests a path which is
paved with round tiles or a riverbed which has been cracked because of a
drought. Furthermore, the image gives a strong impression of space.

The attempt to find an exact and generally accepted definition of „Texture“ has failed up to now and
may be impossible anyway. Therefore, this section will simply not make the attempt.

9 Texture Analysis - 9.1 Foundations

 Ad Oculos 217

Current pixel

Fig. 9.2:

The purpose of the co-occurrence matrix is to describe the relationships
between the current pixel and the graylevels of the neighboring pixels.
However, in contrast to local operators the co-occurrence matrix only
needs certain „graylevel samples“ from the neighborhood. In this
drawing typical sample pixels have been shaded.

Let us start with a source image which is completely filled with a single uniform texture. Our aim is to
find characteristic features of this texture. Very simple features are the mean and variance of the
graylevels in a small operation mask (local mean, local variance). A spectral analysis offers further
possibilities of describing a texture. However, a more common tool for texture analysis is the so-called
co-occurrence matrix , which is also known as a spatial graylevel dependence matrix (SGLD).

The purpose of the co-occurrence matrix is to describe the relationships between the current pixel and
the graylevels of the neighboring pixels. However, in contrast to local operators the co-occurrence
matrix only needs certain „graylevel samples“ from the neighborhood. In Fig. 9.2 typical sample pixels
have been shaded.

The realization of a co-occurrence matrix is best described with the aid of an example. Fig. 9.3 shows
a simple source image and 4 co-occurrence matrices originating from 4 different sample pixels a and
b. The number of rows and columns of the co-occurrence matrix equals the number of graylevel
variations in the source image. The current example uses only 4 different graylevels and the co-
occurrence matrices are rather small. The entry of the co-occurrence matrix at position (a,b)
corresponds to the frequency of the graylevel combination (a,b) in the source image. Take the
neighborhood „b east of a“ as an example. For this neighborhood we find the graylevel combinations
(0,0); (1,1); (2,2); (3,3) 12 times, the graylevel combination (2,1) 4 times and the graylevel combination
(0,3) 4 times in the source image.

The basic operations used to realize a co-occurrence matrix are addressing pixels in the source image,
addressing „cells“ of the co-occurrence matrix and counting. This is advantageous with regard to
computing time. However, the memory requirement in the case of a typical image with 256 graylevels
is enormous: the size of each of the co-occurrence matrices is 256 * 256. Fortunately such a fine
graylevel quantization is usually unnecessary for the purpose of texture analysis. Normally 16
graylevels are sufficient, in which case the memory requirements decrease drastically.

The generation of co-occurrence matrices resembles the Fourier transform (Section 4.1) in the
following way: both procedures transform the source image into another representation. In the case
of the co-occurrence matrix this procedure is not reversible (in contrast to the Fourier transform). For
both approaches the desired texture features must be extracted in a second step. Since the
generation of a co-occurrence matrix is much faster than the computation of a Fourier transform, we
tend to concentrate on the features extracted from co-occurrence matrices.

Typical features derived from co-occurrence matrices are Energy, Contrast, Entropy and Homogeneit .
They are defined as follows (f is the co-occurrence matrix):

9 Texture Analysis - 9.1 Foundations

 Ad Oculos 218

1 2 3 4 5 6 70

0

1

2

3

4

5

6

7

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

0 1 2 3

0

1

2

3

a

b

0 1 2 3

0

1

2

3

a

b

0 1 2 3

0

1

2

3

a

b

0 1 2 3

0

1

2

3

a

b

12

12

12

12

4

4

9

9

9

9

1

3

3

3 3

12

12

12

12

4

4

9

9

9

9

3

3

33 1

a

b

a

b

a

b

a b

Column index

Source image

R
o

w
in

d
e
x

Fig. 9.3:

This example describes the generation of co-occurrence matrices (shown on the
right hand side). The number of rows and columns of the co-occurrence matrix
equals the number of graylevel variations in the source image. The current example
uses only 4 different graylevels and the co-occurrence matrices are rather small.
The entry of the co-occurrence matrix at position (a,b) corresponds to the frequency
of the graylevel combination (a,b) in the source image.

R 1C 1

2
1

r 0 c 0

R 1C 1
2

2
r 0 c 0

R 1C 1
2

3
r 0 c 0

R 1C 1
2

4
r 0 c 0

Energy : M f (r,c)

Contrast : M f (r,c)

Entropy : M f (r,c)

Homogeneity : M f (r,c)

− −

= =
− −

= =
− −

= =
− −

= =

=

=

=

=

∑ ∑

∑ ∑

∑ ∑

∑ ∑

As one might have guessed from the experience of image processing so far, the definition of these
parameters is partly an improvisation and different authors propose different definitions.

The parameters described above are appropriate for describing only one particular texture. The
realization of a texture segmentation algorithm is however much more difficult but uses essentially the
same ideas as region-oriented and contour-oriented segmentation (Chapter 5 and Chapter 6). Recalling

9 Texture Analysis - 9.2 AdOculos Experiments

 Ad Oculos 219

the previous example of the pullover’s cuff and sleeve, it can be said that the aim of texture
segmentation is to extract the cuff and the sleeve as independent regions from the source image, or
to determine the dividing line between cuff and sleeve (Fig. 9.1).

To carry out texture segmentation, the well-known texture analysis methods have to be applied in the
form of local operations. Typical sizes of such operators range from 9 * 9 to 15 * 15. The application of
larger masks usually causes low-pass effects which are not acceptable: the borders between the
texture regions become too blurred. Alternatively, smaller operators process only a few pixels and the
resulting extraction of texture features is not robust. Partly due to this contradiction, the results of
simple texture segmentation methods are often unsatisfactory. Good strategies for solving these
problems are based on pattern recognition methods (Chapter 10).

9.2 AdOculos Experiments

To become familiar with co-occurence matrices realize the New Setup shown in Fig. 9.4 as described
in Section 1.6. This setup is used to compare the co-occurrence matrices of four sample images
derived from the „textile trade“. The parameters used by Co-Occurence Matrix were:

... x direction: 0

... y direction: 1

Size of Co-Occurence Matrix:128

Fig. 9.4:

This chain of procedures is the basis for experiments
with co-occurrence matrices. The New Setup is realized
according to the steps described in Section 1.6. The
results are shown in Fig. 9.5.

Thus the neighborhood consists of the current pixel and its southern neighbor. These parameters may
be varied by clicking the right mouse button on the function symbol Co-Occurence Matrix.

The first source image (FURSRC.128; Fig. 9.5) to be loaded into (1) shows part of a glove lining. The
material is synthetic fur. The transitions from light to dark are mainly smooth. The highest entries of
the corresponding co-occurrence matrix (2) are concentrated on the main diagonal. These entries yield
the texture features depicted in (3).

9 Texture Analysis - 9.3 Source Code

 Ad Oculos 220

Fig. 9.5:

The four sample images the co-occurrence matrices of which are compared here are derived from the „textile
trade“. (FURSRC.128) shows part of a glove lining. (RHOMBSRC.128) shows a sponge-like cloth with a rhombic
patterned napped surface. (SILKSRC.128) shows part of a silk scarf. (KNITSRC.128) shows part of a pullover. The
parameters used by Co-Occurence Matrix were ... x direction: 0, ... y direction: 1, Size of Co-Occurence Matrix: 7.
These parameters may be varied by clicking the right mouse button on the function symbol Co-Occurence Matrix.

The second sample image comes from the kitchen. (RHOMBSRC.128) shows a sponge-like cloth with
a rhombic patterned napped surface. The image is characterized by a lot of regions of almost
homogeneous graylevels. Thus the high entries in the co-occurrence matrix (5) are concentrated in a
small region on the main diagonal. The corresponding texture features are depicted in (6).

(SILKSRC.128) shows part of a silk scarf. Due to its fine structure, light and dark pixels are in close
proximity. Therefore the high entries of the co-occurrence matrix accumulate in two regions next to
the main diagonal (8). This pattern leads to the texture features listed in (9).

The last example is (KNITSRC.128). This section of a pullover is characterized by different forms of
graylevel transition. This variety causes a comparatively large „cloud“ of entries (11). Concentrations of
high entries do not exist. The texture features are depicted in (12).

The contrast of the co-occurrence images (2), (5), (8) and (11) is low. Thus the Image Attributes have
been changed (by clicking the right mouse button on the image) as follows:

Min Graylevel: 0

Max Graylevel: 20

9.3 Source Code

Fig. 9.6 shows a procedure for calculating the mean and the variance of the graylevels in an operator
mask. Formal parameters are

ImSize: image size

9 Texture Analysis - 9.3 Source Code

 Ad Oculos 221

WinSize: size of the operator mask

InIm: input image

MeanIm: output image of mean

VarIm: output image of variance.

The procedure starts by initializing the output images VarIm and MeanIm as well as the parameters
Cen and WinArea. Cen serves to determine the coordinates of the current pixel, WinArea serves as a
normalization factor.

The following step of the procedure calculates the mean of the graylevels in the operator mask. r and
c are the coordinates of the top left corner of the operator mask. Its central coordinates are r+Cen
and c+Cen. The actual mean calculation is realized by adding the graylevels together and normalizing
the sum by the number of pixels in the mask.

void Variance (ImSize, WinSize, InIm, MeanIm, VarIm)
int ImSize, WinSize;
BYTE ** InIm;
BYTE ** MeanIm;
int ** VarIm;
{
 int r,c, y,x, Cen, WinArea, Mean;
 long Sum, Diff;

 Cen = WinSize/2;
 WinArea = WinSize*WinSize;

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 MeanIm [r][c] = 0;
 VarIm [r][c] = 0;
 } }

 for (r=0; r<ImSize-WinSize; r++) {
 for (c=0; c<ImSize-WinSize; c++) {
 Sum = 0;
 for (y=r; y<r+WinSize; y++)
 for (x=c; x<c+WinSize; x++) Sum += (long) InIm [y][x];

 Sum /= WinArea;
 MeanIm [r+Cen][c+Cen] = (BYTE) Sum;
 } }

 for (r=0; r<ImSize-WinSize; r++) {
 for (c=0; c<ImSize-WinSize; c++) {
 Mean = MeanIm [r+Cen] [c+Cen];
 Sum = 0;
 for (y=r; y<r+WinSize; y++) {
 for (x=c; x<c+WinSize; x++) {
 Diff = (long) Mean - InIm [y][x];
 Sum += Diff*Diff;
 } }
 Sum /= WinArea-1;
 VarIm [r+Cen][c+Cen] = (int) Sum;
} } }

Fig. 9.6:

C realization for calculating local mean and variance.

The frame of the following variance calculation is similar to that of the mean calculation. The variance
is obtained as the sum of the squares of the deviations between the current graylevel InIm[y][x]
and the mean graylevel in the current operator mask Mean. The normalization factor is the number of
mask pixels minus 1. This Bessel correction of the sample variance only affects the results obtained
with small masks.

9 Texture Analysis - 9.3 Source Code

 Ad Oculos 222

Fig. 9.7 shows the procedures Cooccurrence and EvalCooc which generate and analyze the co-
occurrence matrix. Formal parameters of Cooccurrence are:

ImSize: image size

CoSize: size of the co-occurrence matrix

Dy: column distance between the current pixel and the neighbor pixel under
 consideration

Dx: row distance between the current pixel and the neighbor pixel under
 consideration

InIm: input image

CoMa: co-occurrence matrix.

The procedure starts by initializing the co-occurrence matrix CoMa. Then the factor Resol is
calculated, to determine the resolution of the co-occurrence matrix. The maximum graylevel of the
source image is 255. Thus, the co-occurrence matrix would be of size 256 * 256. If this size is too
large, the graylevels have to be quantized more coarsely by using Resol.

The following step of the procedure generates the co-occurrence matrix. For each current pixel
[r][c] the graylevel a as well as the graylevel b of the neighbor pixel [r+Dy][c+Dx] are
determined. Then a and b are the coordinates of the current element of the co-occurrence matrix. The
last step of the procedure increments the entry of this element. The solution of the border problem is
straightforward: the two differences Dx and Dy determines the width of the image border which is not
to be processed.

The analysis of the co-occurrence matrix is carried out by the procedure EvalCooc (Fig. 9.7). Formal
parameters are:

ImSize: image size

CoSize: size of the co-occurrence matrix

CoMa: co-occurrence matrix which is to be analyzed.

EvalCooc returns the features Energy, Contrast, Entropy and Homogeneity extracted from the
co-occurrence matrix. The computation of these features is based on the formulas described in
Section 9.1.

In order to perform the texture segmentation each pixel of the source image requires the texture
features. Thus the co-occurrence technique needs to be realized as a local operator. This is carried out
by the procedure LocalCooc (Fig. 9.8). Formal parameters are:

ImSize: image size

CoSize: size of the co-occurrence matrix

WinSize: size of the operator mask

Dy: column distance between the current pixel and the neighbor pixel under
 consideration

Dx: row distance between the current pixel and the neighbor pixel under
 consideration

InIm: input image

CoMa: co-occurrence matrix which is to be analyzed

EnerMa: output image of the feature Energy

ContMa: output image of the feature Contrast

EntrMa: output image of the feature Entropy

HomoMa: output image of the feature Homogeneity.

The procedure starts by initializing the co-occurrence matrix CoMa as well as the output images
EnerMa, ContMa, EntrMa and HomoMa. The parameters o, Cen and Resol have already been
described in the context of the procedures Variance and Cooccurrence.

9 Texture Analysis - 9.3 Source Code

 Ad Oculos 223

The subsequent step of the procedure is also similar to the procedures which generate the co-
occurrence matrix and extract the texture features from this matrix. The only difference is the
performance of these procedures in an operator mask of size WinSize. This mask is stepped through
the source image InIm pixel by pixel under the control of the two outer for loops.

Note the basic problems of texture segmentation described in Section 9.1. This also applies to
procedure LocalCooc.

void Cooccurrence (ImSize, CoSize, Dy,Dx, InIm, CoMa)
int ImSize, CoSize, Dy,Dx;
BYTE ** InIm;
int ** CoMa;
{
 int r,c, a,b, o, Resol;

 Resol = 256 / CoSize;
 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) CoMa [r][c] = 0;

 o = MaxAbs (Dx,Dy);
 for (r=o; r<ImSize-o; r++) {
 for (c=o; c<ImSize-o; c++) {
 a = InIm [r][c] / Resol;
 b = InIm [r+Dy][c+Dx] / Resol;
 CoMa [a][b] ++;
} } }

EvalTyp EvalCooc (ImSize, CoSize, CoMa)
int ImSize, CoSize;
int ** CoMa;
{
 int r,c;
 EvalTyp Eval;

 Eval.Energy = Eval.Contrast = Eval.Entropy = Eval.Homogen = (float)0;

 for (r=0; r<CoSize; r++)
 for (c=0; c<CoSize; c++)
 Eval.Energy += (float) CoMa[r][c] * CoMa[r][c];

 for (r=0; r<CoSize; r++)
 for (c=0; c<CoSize; c++)
 Eval.Contrast += (float) (r-c) * (r-c) * CoMa[r][c];

 for (r=0; r<CoSize; r++)
 for (c=0; c<CoSize; c++)
 if (CoMa[r][c])
 Eval.Entropy += (float) CoMa[r][c] * log((double)CoMa[r][c]);

 for (r=0; r<CoSize; r++)
 for (c=0; c<CoSize; c++)
 if (CoMa[r][c])
 Eval.Homogen += (float) CoMa[r][c] / (1 + abs(r-c));

 return (Eval);
}

Fig. 9.7:

C realization for generating and analyzing the co-occurrence matrix. Data type EvalTyp and procedure MaxAbs are
defined in Appendix A.

9 Texture Analysis - 9.3 Source Code

 Ad Oculos 224

void LocalCooc (ImSize, CoSize, WinSize, Dy,Dx, InIm, CoMa,
 EnerMa, ContMa, EntrMa, HomoMa)
int ImSize, CoSize, WinSize, Dy,Dx;
BYTE ** InIm;
int ** CoMa;
float ** EnerMa;
float ** ContMa;
float ** EntrMa;
float ** HomoMa;
{
 int j,i, y,x, r,c, a,b, o, Resol, Cen;
 long l;

 o = MaxAbs (Dx,Dy);
 Cen = WinSize / 2;
 Resol = 256 / CoSize;

 for (r=0; r<CoSize; r++)
 for (c=0; c<CoSize; c++) CoMa [r][c] = 0;

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 EnerMa [r][c] = (float)0;
 ContMa [r][c] = (float)0;
 EntrMa [r][c] = (float)0;
 HomoMa [r][c] = (float)0;
 } }

 for (r=o; r<ImSize-WinSize-o; r++) {
 for (c=o; c<ImSize-WinSize-o; c++) {

 for (j=0; j<CoSize; j++)
 for (i=0; i<CoSize; i++) CoMa [j][i] = 0;

 for (y=r; y<r+WinSize; y++) {
 for (x=c; x<c+WinSize; x++) {
 a = InIm [y][x] / Resol;
 b = InIm [y+Dy][x+Dx] / Resol;
 CoMa [a][b] ++;
 } }
 /*--------------------------------------- Gen Features */
 for (j=0; j<CoSize; j++)
 for (i=0; i<CoSize; i++)
 EnerMa [r+Cen][c+Cen] += (float) CoMa[j][i] * CoMa[j][i];

 for (j=0; j<CoSize; j++)
 for (i=0; i<CoSize; i++)
 ContMa [r+Cen][c+Cen] += (float) (j-i) * (j-i) * CoMa[j][i];

 for (j=0; j<CoSize; j++)
 for (i=0; i<CoSize; i++)
 if (CoMa[j][i])
 EntrMa [r+Cen][c+Cen] += (float) CoMa[j][i] *
log((double)CoMa[j][i]);

 for (j=0; j<CoSize; j++)
 for (i=0; i<CoSize; i++)
 if (CoMa[j][i])
 HomoMa [r+Cen][c+Cen] += (float) CoMa[j][i] / (1 + abs(j-i));
} } }

Fig. 9.8:

C realization which applies the co-occurrence technique locally. Procedure MaxAbs is defined in Appendix A.

9 Texture Analysis - 9.4 Supplement

 Ad Oculos 225

9.4 Supplement

Certainly the co-occurrence approach introduced in the preceding sections is the most popular tool of
texture analysis. However, many other methods exist, which may be more or less successful
depending on the actual application. The following 4 examples represent a small selection of
alternative methods:

Fourier Analysis: Obviously, texture characteristics influence the spatial frequency domain
representation of an image. An image consisting of large homogeneous regions corresponds to
a spectrum predominantly consisting of low frequencies. In contrast, „busy“ images yield more
harmonics (Chapter 4).

Morphology: If it is possible to describe the structure of a texture with the aid of structuring elements,
morphological image processing is likely to be an appropriate tool to analyze this texture
(Chapter 8).

Orientation: If the texture under consideration is characterized by regions of homogeneous orientation
(e.g. fibrous material) the image may be preprocessed by gradient operations. The gradient
direction is likely to represent the texture orientation. The gradient magnitude is useful for
describing the „strength“ of the transitions from light to dark caused by the texture (Chapter 6).

Pattern Recogniton: The purpose of pattern recognition is the classification of objects (of whatever
kind) based on features representing these objects (Chapter 10). In the case of texture analysis
the objects are texture regions to be detected and separated. The features are derived from the
local graylevel variations caused by the texture. The best method for describing such graylevel
changes is dependent on the actual application. The advantage of pattern recognition methods
is their ability to „adapt themselves“ to different textures. Thus, these methods are an
appropriate tool for solving the texture segmentation problems (Section 9.1). However, it is
important to understand that the success of a pattern recognition approach mainly depends on
the appropriate selection of features. The choice of the actual classification procedure is of
secondary importance.

In view of the problems involved in defining „texture“, further work should be based on several
different references. Surveys of texture analysis are presented by Ballard and Brown [9.1], Haralick
[9.2], Jain [9.3] and Schalkoff [9.4].

9.5 Exercises

Exercise 9.1:

Compute the global graylevel mean and variance of each of the two images shown in Fig. 9.9. For the
sake of simplicity normalize the variance with n instead of n-1.

9 Texture Analysis - 9.5 Exercises

 Ad Oculos 226

10 10 10 10

10 10 10 10

10 10 10 10

10 10 10 10

10 10 10 10

10 10 10 10

10 10 10 10

10 10 10 10

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

010 010 010 010

010 010 010 010

010 010 010 010

010 010 010 010

0 010 010 010

0 010 010 010

0 010 010 010

0 010 010 010 10

10

10

10

(a)(b)

Fig. 9.9:

Exercise 9.1 and Exercise 9.2 demonstrate the use of graylevel mean and variance
to describe different textures.

Exercise 9.2:

Compute the local graylevel mean and variance of each of the two images shown in Fig. 9.9. Use a 3 *
3 mask.

Exercise 9.3:

Compute the co-occurrence matrices of the three images shown in Fig. 9.10 according to the example
illustrated in Fig. 9.3.

Exercise 9.4:

Take the sample images used in Section 9.2 and apply a Fourier transform to them (see Chapter 4).
Compare the results with texture analysis using co-occurrence matrix approach.

Exercise 9.5:

Become familiar with every texture operation offered by AdOculos (see AdOculos Help).

Exercise 9.6:

Acquire different texture images and compare the performance of the mean/variance, the co-
occurrence and the Fourier approach.

9 Texture Analysis - 9.5 Exercises

 Ad Oculos 227

0 00 0 0 00 0

0 00 00 00 0

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0 0 0

0

0

0

0

00

0

0

01

1

1

1

2

2

2

2

3

3

3

3 1

1

10

0

0 00 0 0 00 0

0 00 00 00 0

0

0

0

0

0

0

0

0

0

0

0

0

00 0

00 0 00 0

00 000 0

0 0

1 1 1

0 03333

0 0

1111

2 2 22

0 00 0 0 00 0

0 00 00 00 0

0

0

1

0

0

0

0

0

0

0

0

1

1

1 1

1

13

3

3

3 0 0 00

0 00

0 00

0 02

2

2

2

0

0

0

0

0 0

0

0

0

0

0

(a)

(b)

(c)

Fig. 9.10:

Exercise 9.3 demonstrates application of the co-occurrence matrix.

9 Texture Analysis - References

 Ad Oculos 228

References

[9.1] Ballard, D.H.; Brown, C.M.:
Computer vision.
Englewood Cliffs: Prentice-Hall 1982

[9.2] Haralick, R.M.:
Statistical image texture analysis.
In: Young, T.Y.; Fu, K.-S.(Eds.): Handbook of pattern recognition and image processing.
Orlando, San Diego, New York, Austin, London, Montreal, Sydney, Tokyo,
Toronto: Academic Press 1986

[9.3] Jain, A.K.:
Fundamentals of digital image processing.
Englewood Cliffs: Prentice-Hall 1989

[9.4] Schalkoff, R.J.:
Digital image processing and computer vision.
New York, Chichester, Brisbane, Toronto, Singapore: Wiley 1989

10 Pattern Recognition

10.1 Foundations

The requirements of understanding this chapter are:

• to be familiar with basic mathematics

• to be familiar with probability theory (to understand the supplement section)

• to have read Chapter 1.

The purpose of pattern recognition is to place objects in a given world in categories. The interface
between the world and the pattern recognition system is provided by sensors. The first step of the
procedure extracts features from the input data which characterize the objects represented by these
data. Based on these features the final step identifies the object and sorts them into certain classes.

Fig. 10.1 illustrates the basic method with the aid of a simple example. The „world“ consists of various
types of fruit. The sensor is a camera. Appropriate features to describe fruit are „color“ and „shape“
(Section 5.1.3). If the fruit is to be sorted, the pattern recognition system needs information
concerning the typical features of apples, bananas, oranges etc. Figuratively speaking the system
needs a label for each type of fruit (note that the meaning of „label“ as used here is not to be
confused with the meaning of „label“ used in Chapter 5).

Training

Sensor
World

Feature
extraction

yellow

red

long

bent

round...

Decision

Apple

Banana

Pear ...

Labeling

Classifi-
cation

Fig. 10.1:

This simple example illustrates the basic method of pattern recognition. The
„world“ consists of types of fruit. The sensor is a camera. Appropriate
features for describing fruit are „color“ and „shape“. If the fruit is to be
sorted the pattern recognition system needs information concerning the
typical features of apples, bananas, oranges etc. Figuratively speaking the
system needs a label for each type of fruit (note that the meaning of „label“
as used here is not to be confused with the meaning of „label“ used in
Chapter 5).

Certain pattern recognition systems are able to generate these labels themselves, assigning them to
those objects with similar features to the same class. Note that these un-supervised classifiers do not
yield information about the kind of object they „recognize“ (e.g. „Banana“). In contrast, the supervised
classifiers are „taught“ such information as „This is a banana“. These classifiers work in two stages.
The first step (training step) needs a teacher who gives the classifier the typical representations of a
class. The second step (classification step) compares the features of an actual object with the typical
features which have been thaught. Then the object is assigned to the class which fits it best.

10 Pattern Recognition - 10.1 Foundations

Ad Oculos 230

Suppose somebody smuggles a pocket calculator into the world of fruit. Surely a class exists in which
this calculator „fits better“ than in any other. Clearly such a classification should be avoided, for
instance by introducing a rejection level which tests the limits of similarity.

In the following section the single components of a pattern recognition system are described in more
detail. The features extracted from the input data span a so-called feature space. Fig. 10.2 depicts a
two-dimensional feature space for a small fruit world comprising the classes „Apple“, „Banana“,
„Orange“ and „Plum“. The feature „Compactness“ represents the ratio of surface area to volume of
the fruit. In this sense the compactness of a ball is low, while that of a pyramid is high (Section 5.1.3).
The ovals shown in Fig. 10.2 form the boundaries of the possible feature combinations constituting
the single classes. For instance, bananas are more or less tubular (high compactness) and their color
ranges from green to yellow. Oranges have colors from yellow to red and minimum compactness
since they are spherical.

Orange

Color

Compactness

Apple

Plum

Banana

blue

green

yellow

red

Fig. 10.2:

This is a two-dimensional feature space for a small fruit world
comprising the classes „Apple“, „Banana“, „Orange“ and „Plum“. The
feature „Compactness“ represents the ratio of surface to volume of the
fruit. In this sense the compactness of a ball is low, whilst that of a
pyramid is high (Section 5.1.3). The ovals form the boundaries of the
possible feature combinations constituting the single classes. For
instance, bananas are more or less tubular (high compactness) and
their color ranges from green to yellow. Oranges have colors from
yellow to red and low compactness since they are spherical.

The color variations of the „model apples“ used in the example shown in Fig. 10.2 are rather limited. In
reality the colors of apples range from green to red. Admittedly this range would cause an overlapping
of the classes „Apple“ and „Orange“. This leads us to a typical problem of pattern recognition: too few
or unsuitable features result in classes which are not separable. Thus the classification is not
completely faultless. If an appropriate choice of features is not possible or is too expensive, the aim
should obviously be to use features leading to a minimum classification error. To avoid these errors, it
may be possible to „reduce“ the world, for instance by limiting the color range of apples as in the
current example. However, if red apples are indispensable a third feature must be introduced (e.g.
surface quality).

In order to describe classification procedures, let us consider the more abstract feature space shown
in Fig. 10.3. In a computer any feature space must be realized by an array. Thus the features are
discrete. Our feature space contains 11 entries a to k which are named feature vectors. To simplify
matters, the current example permits a feature vector to occur only once.

10 Pattern Recognition - 10.1 Foundations

Ad Oculos 231

b

a

dc

e

ji

k

h

g
f

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature 0

Feature 1

Fig. 10.3:

This more abstract feature space is the basis for the description of classification
procedures. In a computer any feature space must be realized by an array. Thus the
features are discrete. This example feature space contains 11 entries a to k which
are named feature vectors.

Two simple and straightforward classification methods will be described: the non-supervised and the
supervised minimum distance classifier. Fig. 10.4 traces the non-supervised classification in the case
of the feature space shown in Fig. 10.3. The left column lists the distances between pairs of feature
vectors. To calculate these distances the city block distance (this is the sum of the vertical and
horizontal distances) is used. Let the rejection level be 6.

Since classes are not trained, non-supervised classifiers build classes during processing. The search
for classes usually starts in the top left corner of the feature space and proceeds row by row. The
search algorithm first encounters the feature vector a, which is used as the center of the first class k0.
The next feature vector is b. The distance between a and b is 3. Thus it does not exceed the rejection
level and b is therefore a member of the class k0. The search continues, encountering the feature
vectors c, d, e and f. The distance between f and the center of k0 exceeds the rejection level and so it
is the center of a new class k1.

10 Pattern Recognition - 10.1 Foundations

Ad Oculos 232

Constrains

City block distance: d(x, y) = x - x + y - y
Rejection level: d = 6

Init

Procedure of classification

d(a, b)

d(a, c)

d(a, d)

d(a, e)

d(a, f)

=

=
=

=

=

3

2

3

6

14

z = {a}

z = {a, f}

k = {a, b}

k = {a, b, c}

k = {a, b, c, d}

k = {a, b, c, d, e}

d(a, g) = 14

d(f, g) = 2

d(a, h) = 16

d(f, h) = 2

d(a, i) = 10

d(f, i) = 10

}

}

}

k = {f, g}

k = {f, g, h}

z = {a, f, i}

d(a, j) = 12

d(f, j) = 10

2d(i, j) =

d(a, k) = 11

d(f, k) = 11

1d(i, k) =

}
}

k = {i, j}

k = {i, j, k}

0

0

0

0

max

1

1

2

2

0 1 0 1

Fig. 10.4:

This is the trace of the non-supervised
classification applied to the feature space
shown in Fig. 10.3.

Since two classes exist, the distance between the next feature vector g and the centers of both the
classes k0 and k1 have to be determined. The distance between g and f is less than the distance
between g and a. Thus, g belongs to class k1. Each of the remaining feature vectors is treated similarly
until every feature vector is assigned to a class.

The advantage of non-supervised classification is the avoidance of the training step. Such a
classification is thus able to process data without having any previous information. Obviously, a
prerequisite for a successful classification is a feature space in which classes do not overlap. Often
this condition is unrealizable.

If it is possible to previously take samples from the world to be classified, supervised classification
may be used. Suppose a teacher has access to the different types of fruit in the fruit world. The
teacher takes sample classes of fruit based on his or her knowledge about this world. For instance, the
teacher assigns everything which he or she thinks of as being an apple to the sample class „Apple“.
The sample classes composed in this way serve as a basis for enabling the teacher to train the
classifier.

10 Pattern Recognition - 10.2 AdOculos Experiments

Ad Oculos 233

a

b

c

d

e

2

4

2

3

5

13

12

11

11

10

0 1

Mean

16

3.2

57

5 11.4

10

9

10

6

7

5

29 18

9.7 6

f

3

i

j

k

g

h

3

5

3

4

4

3

3

11 11
3.73.7

0 1

Variance

(2-3.2)

(4-3.2)

(2-3.2)

(3-3.2)

(5-3.2)

(13-11.4)

(12-11.4)

(11-11.4)

(11-11.4)

(10-11.4)

2

2

2

2

2

2

2

2

2

2

4

2

2

6.8

1.7

5.2

1.3

(7-6)

(9-9.7)

(10-9.7)

2

2

(10-9.7)

(6-6)

(5-6)

2

2

2

0.335

0.67 2

1

(3-3.7)

(5-3.7)

(3-3.7)

2

2

2

(4-3.7)
2

(4-3.7)
2

(3-3.7)
2

1.335

2.67 0.67

0.335

K

K

K

1

0

2

Fig. 10.5:

This is the training result of the supervised classification applied to the
feature space shown in Fig. 10.3. The center of sample class k0 is (3.2;
11.4). The radius of the border of k0 is 1.7, since usually the greater value
of both the variances is taken. The parameters of the classes k1 and k2 are
obtained in a similar way.

With the aid of the example shown in Fig. 10.5 the procedure is simple to illustrate. Now the feature
vectors from a to k represent the samples taken by the teacher. Suppose this teacher composes the
sample classes k0 = {a,b,c,d,e}, k1 = {f,g,h} and k2 = {i,j,k}. During the training step the classifier
computes mean and variance of the features of the sample classes. The mean values represent the
centers of the sample classes, while the variances constitute the borders. Fig. 10.5 depicts the
training result of the current example. The center of sample class k0 is (3.2; 11.4). The radius of the
border of k0 is 1.7, since the higher value of the variances is usually taken. The parameters of the
classes k1 and k2 are obtained in a similar way.

The classification of a new feature vector comprises three steps:

• Determination of the distances between the new feature vector and the center of every sample
class.

• Provisional assignment of the new feature vector to the sample class with the shortest distance.

• Final assignment if the distance is within the rejection level of the sample class.

10.2 AdOculos Experiments

To become familiar with non-supervised classification realize the New Setup shown in Fig. 10.6 as
described in Section 1.6. The examples used in this section originate from remote sensing. Fig. 10.7
(CH0SRC.128), (CH1SRC.128) and (CH2SRC.128) show three LANDSAT pictures of Cologne, Germany.
These are loaded into the input images (1), (2) and (3) (Fig. 10.6). They represent the spectral channels
ranging from 0.45-0.52 µm (Blue), 0.76-0.90 µm (Infrared) and 2.08-2.35 µm (Infrared). The aim of
classification is to assign each pixel to a class like „Water“, „Coniferous Forest“ or „Urban Region“.
The three graylevels of a pixel yielded by the three spectral channels are the features on which the
classification of this pixel is based. Thus, the feature space is three-dimensional. The scaling of the

10 Pattern Recognition - 10.2 AdOculos Experiments

Ad Oculos 234

features corresponds to the range of the „spectral graylevels“ (in our case 0 to 255). Take a „water
pixel“ as an example. In each of the three channels the graylevel of such a pixel is low. The typical
„water pixel“ would thus be placed near the origin of the feature space.

Fig. 10.6:

The aim of the first experiment is to become familiar with the
Non-Supervised Class. function. This New Setup is realized
according to the steps described in Section 1.6. The results are
shown in Fig. 10.7.

Fig. 10.7:

The examples originate from remote sensing: (CH0SRC.128),
(CH1SRC.128) and (CH2SRC.128) show three LANDSAT
pictures of Cologne, Germany which are loaded into the input
images (1), (2) and (3) (Fig. 10.6). They represent the spectral
channels ranging from 0.45-0.52 µm (Blue), 0.76-0.90 µm
(Infrared) and 2.08-2.35 µm (Infrared). The aim of classification
is to assign each pixel to a class like „Water“, „Coniferous
Forest“ or „Urban Region“. (4), (5) and (6) show the result of
non-supervised minimum distance classification with rejection
levels of 20, 30 and 40. As mentioned above, the scaling
ranges from 0 to 255.

Note that a serious classification of satellite pictures requires considerably larger images. The
examples used in this section only serve to demonstrate the classification procedures.

10 Pattern Recognition - 10.2 AdOculos Experiments

Ad Oculos 235

The non-supervised minimum distance classification starts with the top left pixel in the three source
images. The three graylevels determine the center of the first class in the feature space. The
classification proceeds by scanning the subsequent pixels row by row and checking whether their
distance from the center of the first class is sufficiently small. The maximum distance (rejection level)
must be determined by the user. If the current distance does not exceed the rejection level, the
current pixel is assigned to the first class. Otherwise it is used as the center of the second class. Each
of the following pixels must be checked to determine whether it is closer to the center of the first or
the second class: it can then be classified accordingly. However, if both distances exceed the
rejection level, a third class must be established. The classification proceeds in this way until the end
of the image. Fig. 10.7 (4), (5) and (6) show the result of non-supervised minimum distance
classification with rejection levels of 20, 30 and 40. As mentioned above, the scaling ranges from 0 to
255.

A rejection level of 20 yields 26 classes. Obviously the threshold is too „strict“: too many small
fragmented regions appear. On the other hand a threshold of 40 is too lax. 10 classes result from this
classification. This is acceptable but parts of the industrial areas (especially the extensive railway
installation) are assigned to the same class as water. Using a threshold of 30 results in 20 classes.
Now the classification is satisfactory. Nevertheless, a supervised minimum distance classification (Fig.
10.8) yields better results.

Fig. 10.8:

The aim of the second experiment is to become familiar with the
Supervised Class. function. This New Setup is realized according
to the steps described in Section 1.6. The results are shown in
Fig. 10.10.

In this case a teacher who marks the regions of the image which belong to one class is needed, for
instance „Water“. The three mean values of the graylevels of these training areas determine the center
of the class (the „typical water pixel“). The graylevel variance establishes the rejection level of the
class. This threshold is usually manipulated by the user. In some cases the variance yields a rejection
level which is too strict, so that the user has to increase it.

In our example the minimum distance classifier is trained to detect „Water“. After the start of
Supervised Class. the dialog box shown in Fig. 10.9 appears. The user has to enter training regions by
pressing the CTRL key and clicking the left mouse button in the top left corner of the training region.
Holding the mouse button down and dragging the mouse changes the size of the region.

Fig. 10.10 (4) and (5) show the classification results using the original variance and twice the variance
as rejection levels. Obviously in this case the original variance yields a better result.

The outcome of a simple classification method depicted in Fig. 10.10 is quite satisfactory.
Nevertheless, the „water pixels“ are fairly easy to classify due to their homogeneity. Even for a
„human classifier“ the other classes are not that obvious.

10 Pattern Recognition - 10.3 Source Code

Ad Oculos 236

Fig. 10.9:

This window appears at the start of Supervised Class. (Fig. 10.8). The
example shows the choice of three training region for the class „Water“.
Training regions are entered by pressing the CTRL key and clicking the
left mouse button at the top left-hand corner of the training region.
Holding the mouse button down and dragging the mouse changes the
size of the region. The graylevel variance establishes the rejection level of
the class. This threshold may be manipulated by the user entering a
Variance Factor. In the current case the graylevel variance will not be
changed since the multiplyingfactor is 1.

Fig. 10.10:

The source images shown here are identical to those used in
Fig. 10.7. (4) and (5) show the results of the supervised
classification (Fig. 10.8) based on the training of „Water“ and
on the application of the original variance (4) and twice the
variance (5) as the rejection level (Fig. 10.9). Obviously in this
case the original variance yields a better result

10.3 Source Code

The procedures described in this section are designed for the classification of satellite images as
illustrated in Section 10.2.

Fig. 10.11 shows a procedure which realizes the supervised minimum distance classification. Formal
parameters are:

ImSize: image size

10 Pattern Recognition - 10.3 Source Code

Ad Oculos 237

MaxDist: rejection level

MaxCen: maximum number of classes (must not exceed 255)

Ch0,Ch1,Ch2: first, second and third input image

ClasIm: output image representing the extracted classes.

The procedure returns the number of classes found in the image. The first step of MinDist are
certain initializations:

10 Pattern Recognition - 10.3 Source Code

Ad Oculos 238

int MinDist (ImSize, MaxDist, MaxCen, Ch0, Ch1, Ch2, ClasIm)
int ImSize, MaxDist, MaxCen;
BYTE ** Ch0;
BYTE ** Ch1;
BYTE ** Ch2;
BYTE ** ClasIm;
{
 int r,c, i, NofCen, FitCent;
 int *Cent0, far *Cent1, far *Cent2;
 float Dist, MinDist, D0,D1,D2;

 NofCen = 1;
 for (r=0; r<ImSize; r++)
 for (c=0; c<ImSize; c++) ClasIm [r][c] = 0;

 Cent0 = malloc (MaxCen * sizeof(int));
 Cent1 = malloc (MaxCen * sizeof(int));
 Cent2 = malloc (MaxCen * sizeof(int));

 Cent0 [0] = Ch0 [0][0];
 Cent1 [0] = Ch1 [0][0];
 Cent2 [0] = Ch2 [0][0];

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 MinDist = (float)1.0e37;
 FitCent = 0;
 for (i=0; i<NofCen; i++) {
 D0 = (float) Ch0[r][c] - Cent0[i]; D0 *= D0;
 D1 = (float) Ch1[r][c] - Cent1[i]; D1 *= D1;
 D2 = (float) Ch2[r][c] - Cent2[i]; D2 *= D2;

 Dist = (float) sqrt ((double) D0 + D1 + D2);

 if (Dist < MinDist) {
 MinDist = Dist;
 FitCent = i;
 } }
 ClasIm [r][c] = (BYTE) FitCent+1;

 if ((int)MinDist > MaxDist) {
 Cent0 [NofCen] = Ch0 [r][c];
 Cent1 [NofCen] = Ch1 [r][c];
 Cent2 [NofCen] = Ch2 [r][c];
 NofCen++;
 if (NofCen >= MaxCen) {
 NofCen = -1;
 goto Leave;
 }
 ClasIm [r][c] = (BYTE) NofCen;
 } } }

Leave:
 return (NofCen);
}

Fig. 10.11:

C realization of a non-supervised minimum distance classifier.

• The variable counting the number of classes found, NofCen, is set to a start value of 1.

• Every pixel of the output image ClasIm receives the value 0. This value means „pixel not classified“.

• The three coordinates of the class centers NofCen are stored in the vector elements
Cent0[NofCen] Cent1[NofCen] Cent2[NofCen]. In preparation sufficient memory must be
allocated for the vectors.

• The center of the first class (Cent0[0], Cent1[0], Cent2[0]) is assigned as the graylevels
(spectral values) of the coordinate origin of the input images.

10 Pattern Recognition - 10.3 Source Code

Ad Oculos 239

The classification of the current pixel [r][c] is carried out in two steps. The first step compares the
Euclidean distances between the class centers (Cent0[i], Cent1[i], Cent2[i]) and the spectral
values (Ch0[r][c], Ch1[r][c], Ch2[r][c]) of the current pixel. The minimum distance is assigned
to MinDist. The index (FitCent) of the corresponding class center is stored in the output image
ClasIm. Since a zero in ClasIm indicates an unclassified pixel, FitCent must be incremented.

The second step checks the result of the first step. If MinDist exceeds the user-defined threshold
MaxDist the values (Ch0[r][c], Ch1[r][c], Ch2[r][c]) of the current pixel do not match those
of any existing class. Consequently a new class has to be established. To simplify matters the values
of the current pixel are used as the center of this new class. Thus, the former assignment of
FitCent+1 to the output image ClasIm has to be corrected.

Since the data type of the output image ClasIm is BYTE and the value zero means „not classified“
the number of classes must not exceed 255. Nevertheless, in practice a considerably lower maximum
value is useful. The user may determine this value with the assistance of parameter MaxCen. If
MaxCen is exceeded the procedure stops and returns the value -1.

The realization of supervised classifiers requires more effort. In preparation some „auxiliary
procedures“ are needed. Fig. 10.12 shows a procedure which computes the local mean. Formal
parameters are:

WinSize: size of the window to be processed

r0,c0: row and column coordinates which determine the top left corner of this window

Ch0,Ch1,Ch2: first, second and third input image

m0,m1,m2: mean of the values in the window for each of the three images.

void ChanMean (WinSize, r0,c0, Ch0,Ch1,Ch2, m0,m1,m2)
int WinSize, r0,c0;
BYTE ** Ch0;
BYTE ** Ch1;
BYTE ** Ch2;
float *m0,*m1,*m2;
{
 int r,c,N;

 N = WinSize*WinSize;
 *m0 = *m1 = *m2 = (float)0;
 for (r=r0; r<r0+WinSize; r++) {
 for (c=c0; c<c0+WinSize; c++) {
 *m0 += (float)Ch0 [r][c];
 *m1 += (float)Ch1 [r][c];
 *m2 += (float)Ch2 [r][c];
 } }
 *m0 /= N;
 *m1 /= N;
 *m2 /= N;
}

Fig. 10.12:

C realization for determining the local mean.

Fig. 10.13 shows a procedure which determines the local variance. Formal parameters are:

WinSize: size of the window to be processed

r0,c0: row and column coordinates which determine the top left corner of this window

Ch0,Ch1,Ch2: first, second and third input image

m0,m1,m2: local mean values

v0,v1,v2: corresponding variances.

Both procedures are used by a supervised minimum distance classifier the realization of which is
depicted in Fig. 10.14. Formal parameters are:

10 Pattern Recognition - 10.3 Source Code

Ad Oculos 240

ImSize: image size

VarFac: parameter which is used to manipulate the rejection level computed by the
 procedure

Ch0,Ch1,Ch2: first, second and third input image

ClasIm: output image which illustrates the extracted classes

TrainFile: name of the file containing position and size of the training areas for one class
 (e.g. „water“).

void ChanVar (WinSize, r0,c0, Ch0,Ch1,Ch2, m0,m1,m2, v0,v1,v2)
int WinSize, r0,c0;
BYTE ** Ch0;
BYTE ** Ch1;
BYTE ** Ch2;
float m0,m1,m2;
float *v0,*v1,*v2;
{
 int r,c,N;
 float d0,d1,d2;

 N = WinSize*WinSize;
 *v0 = *v1 = *v2 = (float)0;
 for (r=r0; r<r0+WinSize; r++) {
 for (c=c0; c<c0+WinSize; c++) {
 d0 = Ch0 [r][c] - (float)m0; *v0 += d0*d0;
 d1 = Ch1 [r][c] - (float)m1; *v1 += d1*d1;
 d2 = Ch2 [r][c] - (float)m2; *v2 += d2*d2;
 } }
 *v0 /= N-1;
 *v1 /= N-1;
 *v2 /= N-1;
}

Fig. 10.13:

C realization for determining the local variance.

The procedure starts by reading the parameters NofTrn (number of samples) and WinSize (window
size of the samples) from the file TrainFile. This file also contains the coordinates [r0] and [c0]
of the top left corner of the sample windows. Based on the data of these windows the following for
loop computes the mean values (M0, M1, M2) and variances (V0, V1, V2) of each window as well as the
total mean values (M0tot, M1tot, M2tot) and variances (V0tot, V1tot, V2tot). The total mean
values establish the center of the class (e.g. „water“) represented by the samples. The largest of the
three total variances determines the rejection level Border of the class. The rejection level may be
varied by the user with the assistance of parameter VarFac.

After these preparations the actual classification is carried out. For each pixel the distance Dist
between the center (M0tot, M1tot, M2tot) of the trained class and the three values of the current
pixel are determined. If the distance does not exceed the rejection level Border the current pixel of
the output image ClasIm[r][c] is given the (arbitrary) value 255. Otherwise the current pixel does
not belong to the trained class and therefore obtains the value zero.

10 Pattern Recognition - 10.4 Supplement

Ad Oculos 241

void SupMD (ImSize, VarFac, Ch0,Ch1,Ch2, ClasIm, TrainFile)
int ImSize;
float VarFac;
BYTE ** Ch0;
BYTE ** Ch1;
BYTE ** Ch2;
BYTE ** ClasIm;
char TrainFile[];
{
 int r,c, r0,c0, i,NofTrn, WinSize;
 float M0,M1,M2, D0,D1,D2, V0,V1,V2;
 float M0tot,M1tot,M2tot, V0tot,V1tot,V2tot;
 float Dist, Border;
 FILE *Stream;

 Stream = fopen (TrainFile, “r”);
 fscanf (Stream, “%d%d”, &NofTrn, &WinSize);

 M0tot = M1tot = M2tot = (float)0;
 V0tot = V1tot = V2tot = (float)0;

 for (i=0; i<NofTrn; i++) {
 fscanf (Stream, “%d%d”, &r0,&c0);
 ChanMean (WinSize, r0,c0, Ch0,Ch1,Ch2, &M0,&M1,&M2);
 ChanVar (WinSize, r0,c0, Ch0,Ch1,Ch2, M0,M1,M2, &V0,&V1,&V2);
 M0tot += M0; V0tot += V0;
 M1tot += M1; V1tot += V1;
 M2tot += M2; V1tot += V2;
 }
 fclose (Stream);
 M0tot /= NofTrn; V0tot /= NofTrn;
 M1tot /= NofTrn; V1tot /= NofTrn;
 M2tot /= NofTrn; V2tot /= NofTrn;

 Border = max (V0tot, max(V1tot,V2tot));
 Border *= (float)VarFac;

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 D0 = M0tot - Ch0[r][c]; D0 *= D0;
 D1 = M1tot - Ch1[r][c]; D1 *= D1;
 D2 = M2tot - Ch2[r][c]; D2 *= D2;

 Dist = (float) sqrt ((double) D0 + D1 + D2);

 if (Dist <= Border) ClasIm [r][c] = 255;
 else ClasIm [r][c] = 0;
} } }

Fig. 10.14:

C realization of a supervised minimum distance classifier.

10.4 Supplement

Section 10.1 describes supervised and non-supervised minimum distance classifiers. These are so-
called geometrical classifiers.

An alternative to this approach is numerical classification. As an example this section describes the
maximum likelihood approach. Let us start with a simple example: the classification problem is to
assign a piece of music either to category C „Classical“ or P „Punk“. The decision is based on only one
feature, namely the volume (v). Let the decision rule of the classifier be: assign a piece of music the
volume of which is below a threshold V to „Classical“. Otherwise it is „Punk“.

The obvious question concerns the calculation of V. To obtain this value a teacher who is able to
identify classical or punk music is needed. A lot of pieces of music have to be analyzed in order to
determine the frequency of appearance of classical hC(v) and punk music hP(v) depending on the

10 Pattern Recognition - 10.4 Supplement

Ad Oculos 242

volume in question v. This produces a histogram similar to the example shown in Fig. 10.15 (a). After
this training period the classifier proceeds according to the decision rule: if hC(v) > hP(v) is valid for the
current piece of music with volume v, it is classical music, otherwise it is punk.

Unfortunately if the teacher does not like punk music then he or she will mainly listened to classically
oriented radio stations or recordings and therefore the histogram has to be corrected by dividing the
absolute frequencies hC(v) and hP(v) by the respective number of samples listened to, in order to
obtain the relative frequencies HC(v) and HP(v). Now the histogram may be similar to the example
shown in Fig. 10.15 (b).

This more or less general form of classifying music may be varied to allow a more detailed procedure.
A useful variation is to include the „sources“ of the music. For instance, it is clear from the start (a
priori) that Radio Bremen 2 (RB2, a station devoted to „people of culture“) rarely (if ever) presents punk
music while Radio Bremen 4 (RB4, a station for the „young“) avoids classical music. Mathematically
expressed: the a priori probabilities p(P|RB2) (probability of Punk given that the music is broadcasted
by Radio Bremen 2) and p(C|RB4) are low while the a priori probabilities p(C|RB2) and p(P|RB4) are
high. Accordingly modified histograms are shown in Fig. 10.15 (c) and Fig. 10.15 (d). Now the decision
rule for Radio Bremen 2 is: if the volume of a piece of music is v and if

() () () ()C Pp C | RB2 H v p P | RB2 H v<

then it is classical music, otherwise it is punk. If this rule is considered separately from the music
example, it represents the basic maximum likelihood decision rule.

10 Pattern Recognition - 10.4 Supplement

Ad Oculos 243

(b)

(c)

(d)

(a)

Absolute frequency

Relative frequency

Relative frequency RB 4

Relative frequency RB 2

VolumeV

V

V

V

v

Volume v

Volume v

Volume v

hC
v()

hp v()

Hp v()

HC v()p I RB 4 C ()

H v()p RB 4 ()P p

H v)RB 2 C ()

H v()p RB 2 ()P p

hC
v()

C(p I

I

I

Fig. 10.15:

The classification problem for this simple example is to assign a piece of music either to
category „Classical“ (c) or to „Punk“ (P). The decision is based on only one feature, namely the
volume (v). Let the decision rule of the classifier be: assign a piece of music the volume of
which is below a threshold V to „Classical“, otherwise it is „Punk“.

A more detailed description requires the following definitions:

(a) Starting point is a sample of n classes k0, k1 to kn-1. For instance, k0 may represent „Classical“, k1
„Punk“ and k2 „Jazz“.

(b) The data obtained by any sensor are represented by a feature vector g consisting of m elements.
Possible musical features are „Volume“, „Rhythm“ or „Harmonic Structure“.

(c) Furthermore the a priori probability p(ki) of the appearance of class ki is available. This probability is
assessable by experiment.

(d) p(g|ki) is the probability of the appearance of the feature vector g provided that class ki exists. In
other words: p(g|ki) determines the probability distribution that a class ki yields measurement g.

10 Pattern Recognition - 10.4 Supplement

Ad Oculos 244

This distribution is assessable on the basis of a histogram similar to the examples shown in Fig.
10.15.

(e) p(ki|g) is the probability of the appearance of class ki provided that the feature vector g exists. The
decision process is based on this value.

(f) The normalization parameter p(g) is defined as follows:

 () ()n 1

i
i 0

p g p g | k
−

=
= ∑

Based on these definitions the so-called Bayes decision rule is: a feature vector g is to be assigned to
that class ki for which p(ki|g) is a maximum.

This rule is intuitive but he merit of Bayes is to have backed it up theoretically. The starting point of the
idea is the minimization of classification error. Unfortunately several kinds of errors may occur which
are „bad“ in different ways. To simplify matters consider all the errors to be identical.

The decisive question is how to obtain p(ki|g). Again the answer originates from Bayes. He found that:

() () ()
()
i i

i

p g | k p k
p k | g

p g
=

Thus, Bayes’ decision rule is:

() ()
()
i ip g | k p k

max
p g

→

Since this is a maximization problem the rule may be expressed more briefly:

() () ()i i id g p g | k p k max= →

Against the background of Bayes’ decision rule, the pattern recognition procedure is realized by the
following steps:

(1) Training:

(a) Define the desired classes ki (i=0,1,...,n-1) (e.g. „Classical“ and „Punk“).

(b) Define features and the structure of the feature vector g={g0, g1, ..., gm-1} (e.g. „Volume“).

(c) Take samples (e.g. measure volume of known pieces of music).

(d) Produce a histogram for the m-dimensional feature space and normalize this histogram. In the
context of the example shown in Fig. 10.15 this would be, for instance, HC(v). In a general sense
this is p(g|ki).

(e) Determine the a priori probabilities p(ki) for each class and weight the histogram accordingly (Fig.
10.15).

(2) Classification:

(a) Ensure that the feature vector g to be classified exists.

(b) Interpret the values of the features as coordinates of the histogram and thus address the „location“
of these features.

(c) Determine the histogram entries (corresponding to di(g)) for each class i at these locations.

(d) Apply Bayes’ decision rule: assign the current feature vector g to the class associated with the
maximum di(g).

The advantages of this approach are obvious:

• The classification is fast, since only addressing and comparing operations have to be carried out.

• Assuming a sufficient training the classification is very exact.

Unfortunately these advantages are confronted with the striking disadvantage of a

• „data explosion“.

10 Pattern Recognition - 10.4 Supplement

Ad Oculos 245

The following two examples illustrate the problem: Let the number of classes n be four and the
number of features m be two. The features are quantized into 16 steps. Hence, the feature space
comprises 162 = 256 entries. Suppose the frequencies to be entered in the histogram do not exceed
256 (represented by a byte). Therefore, the amount of data required by the histogram is 256 bytes * 4
classes. For this example the training and classification procedures as discussed above are obviously
useful.

The case of the classification of satellite pictures as presented in Section 10.2 requires n = 16 classes,
m = 3 features and 256 quantization steps. Now the feature space comprises 2563 = 16 Mbyte
entries. Further consideration is unnecessary: this amount of data is only manageable at tremendous
expense.

\The so-called parametric classifiers offer a solution to this problem. This approach approximates the
histogram entries by a known function (Fig. 10.15). Usually this function is a multi-dimensional
Gaussian distribution. Now p(g|ki) is no longer determined by the frequencies retained in the
histogram (like HC(v)), but by (Appendix F):

()
1T

i ii
1

- (g z) C (g z)
2

i i m / 2
i

1
d (g) p k exp

(2) detC

−− −
=

π

In most cases it is sufficient to use the exponent:

1T
i ii(g z) C (g z)−− −

instead of the whole Gaussian function. This expression is known as the Mahalanobis distance and
consequently one talks about a Mahalanobis classifier.

z i i ii
T -1

0 1 2

Ci

zi

s i C i
-1

g

-
(g - z)i

d = s C s

i i i i
T

d = (g - z) C (g - z)
-1

j

j

i

z j

j

Inversion

Training
areas

Feature
vector

Vector of
center
means

Co-

Matrix

Assign g to class k if

d d for all i = j and

d d

Deviation

Channel 0 Channel 1 Channel 2

varaiance

Fig. 10.16:

Supervised Mahalanobis classification used in an example of satellite pictures.

The classification of satellite pictures as described in Section 10.2 proceeds as follows (Fig. 10.16):

(1) Training:

10 Pattern Recognition - 10.4 Supplement

Ad Oculos 246

(a) Define the desired classes ki (i = 0,1,...,n-1) In the context of satellite pictures a pixel has to be
assigned to a class, such as „Water“.

(b) Define features and the structure of the feature vector g = {g0, g1, ..., gm-1} In the case of the
satellite pictures, three features are available for each pixel. These are the graylevels of the
spectral channels.

(c) Take samples. For the current example this means choosing training areas which typically
represent the classes.

(d) Determine the mean values of the features in the samples and put them together to form a vector
zi. In the current case these are the mean values m0, m1 and m2 of the graylevels of all „Water“
samples. Thus

0

1i

2

m

z m

m

 =

(e) Generate the covariance matrix Ci. In the current case the training areas are based on three spectral
channels. This leads to the 3 * 3 covariance matrix:

00 01 02

10 11 12i

20 21 22

v v v

C v v v

v v v

 =

(f) Invert the covariance matrix
1

iC−
.

(g) Determine a deviation vector si. The covariance matrix yields this vector:

00

11i

22

v

s v

v

 =

(h) Compute the rejection level
izd based on the Mahalanobis distance:

i

T 1
z i i id s C s−=

(2) Classification:

(a) Ensure that the feature vector g to be classified exists. In the current case the feature vector
consists of the three „spectral graylevels“ of a pixel.

(b) Compute the deviations from the mean values (g-zi).

(c) Determine the Mahalanobis distance di

 1T
i i iid (g z) C (g z)−= − −

(d) For all values of i search for the minimum Mahalanobis distance di. If this distance is less than the

rejection level ()ii zd d< , ki is the class to which the pixel should be assigned.

Finally the procedure of Mahalanobis classification is demonstrated with the assistance of the
example shown in Fig. 10.3: Suppose the entries of the feature space a to e are the samples for class
k0. Now the training yields:

10 Pattern Recognition - 10.4 Supplement

Ad Oculos 247

0

0

0

1
0

0

z

3.20
z

11.40

1.70 0.85
C

0.85 1.30

0.87 0.57
C

0.57 1.14

1.70
s

1.30

d 4.64

−

=

−
= −

=

 =

=

The Mahalanobis distance d0 between the mean vector z0 and the entry e (coordinate pair (5, 10)) is
2.2. The distance between z0 and coordinate pair (6, 9) is 5.7 and thus already exceeds the rejection
level

0zd = 4.64 . The „strictness“ of the Mahalanobis distance may be illustrated with the assistance

of entry i (coordinate pair (3, 4)): now d0 is 64.

Exceptionally, the section „Supplement“ uses a procedure in order to promote the understanding of
the Mahalanobis classifier. In preparation this procedure needs some „auxiliary procedures“. Fig.
10.17 shows such a procedure which calculates the covariance matrix. Formal parameters are:

WinSize: size of the window to be processed

r0,c0: row and column coordinates determining the top left corner of this window

Ch0,Ch1,Ch2: first, second and third input image

m0,m1,m2: mean of the values in the window for each of the three images

CoVar: resulting covariance matrix.

void ChanCoVar (WinSize, r0,c0, Ch0,Ch1,Ch2, m0,m1,m2, CoVar)
int WinSize, r0,c0;
BYTE ** Ch0;
BYTE ** Ch1;
BYTE ** Ch2;
float m0,m1,m2;
float CoVar[3][3];
{
 int r,c,N;
 float cv01,cv02,cv12;

 N = WinSize*WinSize;

 ChanVar (WinSize, r0,c0, Ch0,Ch1,Ch2, m0,m1,m2,
 &CoVar[0][0], &CoVar[1][1], &CoVar[2][2]);

 cv01 = cv02 = cv12 = (float)0;
 for (r=r0; r<r0+WinSize; r++) {
 for (c=c0; c<c0+WinSize; c++) {
 cv01 += ((float)Ch0[r][c] - (float)m0) * ((float)Ch1[r][c] - (float)m1);
 cv02 += ((float)Ch0[r][c] - (float)m0) * ((float)Ch2[r][c] - (float)m2);
 cv12 += ((float)Ch1[r][c] - (float)m1) * ((float)Ch2[r][c] - (float)m2);
 } }
 CoVar[0][1] = CoVar[1][0] = cv01/(N-1);
 CoVar[0][2] = CoVar[2][0] = cv02/(N-1);
 CoVar[1][2] = CoVar[2][1] = cv12/(N-1);
}
Fig. 10.17:

C realization for computing the covariance matrix.

Fig. 10.18 shows a procedure which inverts the covariance matrix. Formal parameters are:

CoVar: covariance matrix

10 Pattern Recognition - 10.4 Supplement

Ad Oculos 248

CoInv: inverted covariance matrix.

void InvCoVar (CoVar,CoInv)
float CoVar[3][3];
float CoInv[3][3];
{
 float D;

 D = CoVar[0][0] * CoVar[1][1] * CoVar[2][2] + CoVar[0][1] * CoVar[1][2] *
CoVar[2][0] +
 CoVar[0][2] * CoVar[1][0] * CoVar[2][1] - CoVar[0][2] * CoVar[1][1] *
CoVar[2][0] -
 CoVar[0][0] * CoVar[1][2] * CoVar[2][1] - CoVar[0][1] * CoVar[1][0] *
CoVar[2][2];

 CoInv[0][0] = (CoVar[1][1] * CoVar[2][2] - CoVar[1][2] * CoVar[2][1]) / D;
 CoInv[1][0] = (CoVar[1][2] * CoVar[2][0] - CoVar[1][0] * CoVar[2][2]) / D;
 CoInv[2][0] = (CoVar[1][0] * CoVar[2][1] - CoVar[1][1] * CoVar[2][0]) / D;

 CoInv[0][1] = (CoVar[0][2] * CoVar[2][1] - CoVar[0][1] * CoVar[2][2]) / D;
 CoInv[1][1] = (CoVar[0][0] * CoVar[2][2] - CoVar[0][2] * CoVar[2][0]) / D;
 CoInv[2][1] = (CoVar[0][1] * CoVar[2][0] - CoVar[0][0] * CoVar[2][1]) / D;

 CoInv[0][2] = (CoVar[0][1] * CoVar[1][2] - CoVar[0][2] * CoVar[1][1]) / D;
 CoInv[1][2] = (CoVar[0][2] * CoVar[1][0] - CoVar[0][0] * CoVar[1][2]) / D;
 CoInv[2][2] = (CoVar[0][0] * CoVar[1][1] - CoVar[0][1] * CoVar[1][0]) / D;
}

Fig. 10.18:

C realization for inverting the covariance matrix.

A procedure which determines the Mahalanobis distance is depicted in Fig. 10.19. Formal parameters
are:

d0,d1,d2: deviations from the mean values of the three channels

CoInv: inverted covariance matrix.

float MahaDist (d0,d1,d2,CoInv)
float d0,d1,d2;
float CoInv[3][3];
{
 return(
 (float)d0 * (CoInv[0][0] * (float)d0 + CoInv[1][0] * (float)d1 + CoInv[2][0] *
(float)d2) +
 (float)d1 * (CoInv[0][1] * (float)d0 + CoInv[1][1] * (float)d1 + CoInv[2][1] *
(float)d2) +
 (float)d2 * (CoInv[0][2] * (float)d0 + CoInv[1][2] * (float)d1 + CoInv[2][2] *
(float)d2)
);
}

Fig. 10.19:

C realization for computing the Mahalanobis distance.

The „auxiliary procedures“ ChanCoVar, InvCoVar and MahaDist are used by the procedure realizing
the supervised maximum likelihood classifier (Fig. 10.20). Formal parameters are:

ImSize: image size

BorderFac: parameter which is used to manipulate the rejection level computed by the
 procedure

Ch0,Ch1,Ch2: first, second and third input image

ClasIm: output image which illustrates the extracted classes

10 Pattern Recognition - 10.4 Supplement

Ad Oculos 249

TrainFile: name of the file containing position and size of the training areas for one class
 (e.g. „water“).

The procedure starts by reading the parameters NofTrn (number of samples) and WinSize (window
size of the samples) from the file TrainFile. Furthermore, this file contains the coordinates [r0]
and [c0] of the top left corner of the sample windows.

After initializing the total mean values M0tot, M1tot and M2tot as well as the covariance matrix
CoVarTot and the inverted covariance matrix CoInvTot these parameters are determined with the
aid of the procedures ChanMean (Fig. 10.12), ChanCoVar and InvCoVar. The results are used by
procedure MahaDist which computes the Mahalanobis distance MahaSample of the samples. Thus,
MahaSample is the rejection level.

10 Pattern Recognition - 10.4 Supplement

Ad Oculos 250

void MaxLike (ImSize, BorderFac, Ch0,Ch1,Ch2, ClasIm, TrainFile)
int ImSize;
float BorderFac;
BYTE ** Ch0;
BYTE ** Ch1;
BYTE ** Ch2;
BYTE ** ClasIm;
char TrainFile[];
{
 int r,c, y,x, r0,c0, i,NofTrn, WinSize;
 float M0,M1,M2, CoVar[3][3], CoInv[3][3];
 float M0tot,M1tot,M2tot, CoVarTot[3][3], CoInvTot[3][3];
 float MahaSample, Maha;
 FILE *Stream;

 Stream = fopen (TrainFile, “r”);
 fscanf (Stream, “%d%d”, &NofTrn, &WinSize);

 M0tot = M1tot = M2tot = (float)0;
 for (y=0; y<3; y++)
 for (x=0; x<3; x++) CoVarTot[y][x] = CoInvTot[y][x] = (float)0;

 for (i=0; i<NofTrn; i++) {
 fscanf (Stream, “%d%d”, &r0,&c0);
 ChanMean (WinSize, r0,c0, Ch0,Ch1,Ch2, &M0,&M1,&M2);
 ChanCoVar (WinSize, r0,c0, Ch0,Ch1,Ch2, M0,M1,M2, CoVar);
 InvCoVar (CoVar,CoInv);
 M0tot += M0;
 M1tot += M1;
 M2tot += M2;
 for (y=0; y<3; y++) {
 for (x=0; x<3; x++) {
 CoVarTot[y][x] += CoVar[y][x];
 CoInvTot[y][x] += CoInv[y][x];
 } } }

 M0tot /= NofTrn;
 M1tot /= NofTrn;
 M2tot /= NofTrn;
 for (y=0; y<3; y++) {
 for (x=0; x<3; x++) {
 CoVarTot[y][x] /= NofTrn;
 CoInvTot[y][x] /= NofTrn;
 } }

 MahaSample = MahaDist (BorderFac * sqrt(CoVarTot[0][0]),
 BorderFac * sqrt(CoVarTot[1][1]),
 BorderFac * sqrt(CoVarTot[2][2]),
 CoInvTot);

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 Maha = MahaDist (Ch0[r][c] - M0tot,
 Ch1[r][c] - M1tot,
 Ch2[r][c] - M2tot,
 CoInvTot);
 if (Maha < MahaSample) ClasIm[r][c] = 255;
 else ClasIm[r][c] = 0;
} } }

Fig. 10.20:

C realization of a maximum likelihood classifier.

The actual classification is very simple: the first step determines the Mahalanobis distance Maha
between the class center (M0tot, M1tot, M2tot) and the graylevels of the current pixels. If Maha is
less than the rejection level MahaSample, the current pixel of the output image ClasIm[r][c] is
assigned the (arbitrary) value 255. Otherwise this value is 0.

10 Pattern Recognition - 10.5 Exercises

Ad Oculos 251

Numerous books and papers are devoted to the subject of „Pattern Recognition“. Horn [10.1],
Niemann [10.3], Pao [10.5], Schalkoff [10.4], Shirai [10.6] as well as Young and Fu [10.7] offer various
surveys and application notes. Nagy [10.2] gives some remarkable hints concerning the practical
implementation of pattern recognition. Of course, pattern recognition applications are not confined to
digital image processing. The above reference list contains example in domains such as speech
recognition, medical data analysis etc.

10.5 Exercises

Exercise 10.1:

Apply a non-supervised minimum distance classification according to the example shown in Fig. 10.4
to the feature space shown in Fig. 10.21 representing a collection of coins. Use rejection levels 2, 3, 4,
5 and 6.

25

15

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1

1

1

11

1

1

5

510

10 2025

Francs

2

2
Francs

Franc

Franc

Pound

Mark

Mark

Krone

Mark Quarter

CentimesrePfennig

Penny

Centimes

1010

Cent

re

Cent

1/2

[N]

m

[mm]

Fig. 10.21:

This feature space represents a collection of coins in terms of their weight (m)
and their diameter (d).

Exercise 10.2:

Suppose an experimental world consists of 37 objects of type ‘a’ and 33 objects of type ‘b’. Fig. 10.22
illustrates this world in terms of two features x and y. Train a supervised minimum distance classifier
to distinguish between ‘a’ and ‘b’.

(a) Use as samples for ‘a’ (x=3, y=10), (x=4, y=13) and (x=3, y=10), for ‘b’ (x=9, y=3), (x=12, y=6)
and (x=14, y=3). Compute the center and the border of the sample classes.

(b) Find examples for good and bad samples.

(c) Compare the sample results (center and border) with center and border of the whole population of
‘a’ and ‘b’.

10 Pattern Recognition - 10.5 Exercises

Ad Oculos 252

a

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Feature x

Feature y

a a a

a a a a a

aaaaaaa

a a a a a

a a a a a

aa aa a

a

a

a

a

a

a

b

b

b

b

b

b

b

bb b b b

b b b b b

b b b b b bb

bbbb

b b

bb

Fig. 10.22:

This feature space depicts an experimental world consisting of 37 objects of type
‘a’ and 33 objects of type ‘b’. Exercise 10.2 demonstrates the choice of sample
classes for training a supervised minimum distance classifier.

Exercise 10.3:

Become familiar with every aspect of pattern recognition offered by AdOculos (see AdOculos Help).

Exercise 10.4:

Find and discuss everyday examples of pattern recognition.

Exercise 10.5:

The programs described in Section 10.3 and delivered with AdOculos are devoted to the analysis of
satellite pictures. Write a program which realizes a more general form of supervised minimum
distance classifier and a supervised Mahalanobis classifier.

10 Pattern Recognition - References

Ad Oculos 253

References

[10.1] Horn, B.K.P.:
Robot vision.
Cambridge, London: MIT Press 1986

[10.2] Nagy, G.:
Candide’s practical principles of experimental pattern recognition.
IEEE Trans. PAMI-1 (1983) 199-200

[10.3] Niemann, H.:
Pattern analysis.
Berlin, Heidelberg, New York, Tokyo: Springer 1981

[10.4] Schalkoff, R.J.:
Digital image processing and computer vision.
New York, Chichester, Brisbane, Toronto, Singapore: Wiley 1989

[10.5] Pao, Y.-H.:
Adaptive pattern recognition and Neural Networks.
Reading MA, London: Addison-Wesley 1987

[10.6] Shirai, Y.:
Three-dimensional computer vision.
Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1987

[10.7] Young, T.Y.; Fu, K.S. (Eds.):
Handbook of pattern recognition and image processing.
New York: Academic Press 1986

11 Image Sequence Analysis

11.1 Foundations

The requirements of understanding this chapter are:

• to be familiar with terms like derivative, gradient, convolution and correlation

• to be familiar with basic calculus of variations (to understand the supplement section; see also
Appendix B)

• to have read Chapter 1

Analysis of image sequences is one of the most exciting areas of digital image processing, but it is
also one of the most difficult. The enormous amount of data mentioned in Section 1.5 has already
hinted at this fact.

0 1Source image at time t Source image at time t

Velocity field

Fig. 11.1:

This is an example of a velocity field. The velocity vectors
(needles) describe the direction and the velocity of displacement
of each pixel in the source image pair.

The main topic of this chapter is the extraction of velocity fields. Fig. 11.1 depicts an example: the
velocity vectors describe the direction and the speed of displacement of each pixel in the source
image pair. When trying to calculate these vectors correctly two fundamental problems are
encountered (Fig. 11.2):

The correspondence problem: How does a pixel under consideration at time t1 „know“, to which pixel
it corresponded at time t0? At first glance the answer seems to be easy: consider a
neighborhood of sufficient size around the pixel in one image and search for the best fitting
neighborhood in the other image. This procedure creates another problem: how to choose the
size of this neighborhood? The neighborhood shown in Fig. 11.2 (visualized by the zoomed
circles) is certainly too small. It is not at all clear whether the vertical edge of the basket is
positioned near the top or near the bottom. There is alternatively no such problem at a corner
of the basket. In this case the size of the neighborhood shown in Fig. 11.2 is sufficient to find
the corresponding corner.

The aperture problem: The search for corresponding image parts is a local operation (Chapter 3). The
search algorithm „looks“ through a (more or less) small aperture (zoomed in Fig. 11.2) at the
image pair. An inconvenient consequence of this approach is shown by the example depicted
in Fig. 11.2: it is not possible to determine the vertical component of the movement. The
basket seems to move only horizontally from left to right. Again, the problem does not occur at
the corners of the basket. Thus, the aperture problem is eased by avoiding small apertures.

11 Image Sequence Analysis - 11.1 Foundations

Ad Oculos 255

Fig. 11.2:

This is an example of the correspondence problem and
the aperture problem. The question „How does a pixel
under consideration at time t1 know, to which pixel it
corresponded at time t0?” reflects the correspondence
problem. The search for corresponding image parts is a
local operation. The search algorithm „looks“ through a
(more or less) small aperture (zoomed part of the figure)
at the image pair. As a consequence the basket only
seems to have move horizontally from left to right.

On the other hand, the computing time rises rapidly if the size of the neighborhoods is increased.
Therefore, incorrect velocity vectors are unavoidable in practice and the errors have to be corrected by
a subsequent correction procedure.

To summarize: procedures which extract velocity fields basically need two steps:

• A local displacement detector determines the initial vector field.

• A correction procedure corrects the errors in the initial vector field.

An obvious procedure for the local detection of velocity vectors is a correlation algorithm. An example
of such a procedure is depicted in Fig. 11.3. Consider a small neighborhood (matching window)
around the current pixel (r0, c0) in the left image. The right image is then scanned with a window of the
same size in order to find the best match. However, scanning the whole image would be extremely
time-consuming. Therefore the search is limited to a window around the current pixel (r0, c0). For each
pixel in this search window the graylevels of the small matching windows have to be compared. The
comparison, which yields the least square error, provides the displacement data, i.e. direction and
velocity.

At this point another fundamental problem which has not been mentioned so far is encountered: the
determination of the spatial parameter velocity vector is based on the comparison of graylevels.
Therefore, the illumination has to remain constant, otherwise the relationship between graylevel
variations and movement is no longer predictable. Imagine a source of light, the intensity of which
increases. Exactly the same effect occurs if a source of light of constant intensity moves towards the
observer.

11 Image Sequence Analysis - 11.1 Foundations

Ad Oculos 256

c

r

0

0

c0

r0

LSE

c1

r1

r = r - r01

01c = c - c

Search window

Matching window

Fig. 11.3:

An obvious procedure for local detection of velocity vectors is a
correlation algorithm as shown here. Consider a small neighborhood
(matching window) around the current pixel (r0, c0) in the image on the
left. The image on the right is then scanned with a window of the same
size in order to find the best match. However, scanning the whole image
would be extremely time-consuming. Therefore the search is limited to a
search window around the current pixel (r0, c0). For each pixel in this
search window the graylevels of the small matching windows have to be
compared. The comparison which yields the least square error, provides
the displacement data, i.e. direction and velocity.

Correlation procedures must be followed by a procedure which corrects the correspondence and
aperture errors. Such correction procedures are not discussed in this book. Instead an alternative will
be described which merges the initial detection of velocity vectors with the correction procedure: the
classic algorithm introduced by Horn and Schunk [11.3] [11.4]. To explain their idea some
mathematical derivation is needed. Therefore, this section only outlines the procedure (Fig. 11.4),
while Section 11.4 is devoted to its mathematical derivation.

In the first step the partial derivatives space and time are taken from the source images
()0tE and

()1tE :

x y t
E E E

E E E
x y t

∂ ∂ ∂= = =
∂ ∂ ∂

11 Image Sequence Analysis - 11.1 Foundations

Ad Oculos 257

E
(t)

0 E
(t)

1

Compute

Ex

Compute

E

Compute

Ey t

Ex E Ey t

Init

Load

Init

Load

u
(n) (n)

v

Compute

u

Compute

v

u
(n+1) (n+1)

v

Velocity field

Fig. 11.4:

Flowchart scheme of Horn’s and Schunk’s procedure: In the first step the
components of the velocity vector u and v are calculated based on the partial
derivatives of space (Ex, Ey) and time (Et) which are taken from the source images

()0tE and ()1tE . The second step is an iterative procedure which corrects these
components. The iteration ends if a criteria for stopping (ε) is met. At the end of
this process the velocity field is obtained.

The components of the velocity vector u and v are defined as follows:

dx dy
u v

dt dt
= =

The second step is an iterative procedure which corrects these components. The iteration ends if a
criteria for stopping (ε in Fig. 11.4) is met. At the end of this process the velocity field is obtained. As
will be shown in Section 11.4, the correction procedure is based on the minimization of a global error
which represents two single errors. A parameter α determines the influence of these single errors on
the global error.

The new values u(n+1) and v(n+1) are obtained following the (n+1)-th iteration from the local mean values
()n

u and
()n

v and the results of the preceding iteration (u(n) and v(n)), using the following formulas (for
derivation see Section 11.4):

11 Image Sequence Analysis - 11.2 AdOculos Experiments

Ad Oculos 258

() ()
() ()

() ()
() ()

n n
x x y tnn 1

22 2 2
x y

n n
y x y tnn 1

22 2 2
x y

E E u E v E
u u

E E

E E u E v E
v v

E E

+

+

 + +
 = −

α + +

 + +
 = −

α + +

11.2 AdOculos Experiments

To become familiar with Horn’s and Schunk’s procedure realize the New Setup shown in Fig. 11.5 as
described in Section 1.6. The example uses two images of an apple (Fig. 11.6 (ASRC0-32.IV) and
(ASRC1-32.IV)). (ASRC1-32.IV) is slightly reduced in size with the aid of camera zoom. The format of
the source images was chosen to be only 32 * 32 due to the time-consuming iterative procedure.
Moreover, the representation of the needle diagram (Fig. 11.7) is more satisfactory if the resolution of
the image is low.

Fig. 11.5:

This chain of procedures is the basis for experiments concerning the Horn and Schunk algorithm. The New Setup is
realized according to the steps described in Section 1.6. The results are shown in Fig. 11.6.

11 Image Sequence Analysis - 11.2 AdOculos Experiments

Ad Oculos 259

Fig. 11.6:

This example uses two images of an apple (ASRC0-32.IV) and (ASRC1-32.IV)). The second image has been slightly
reduced in size with the aid of the camera zoom. The format of the source images was chosen to be only 32 * 32
due to the time-consuming iterative procedure. (3), (4) and (5) show the partial derivatives Ex, Ey and Et of the
source images. Dark areas represent negative values, the light parts represent positive values and values which are
approximately zero are represented by a medium gray color. (6) and (7) are the result of the first iteration of the
enhancement procedure. Satisfactory results are obtained after 10 ((8) and (9)) and 50 ((10) and (11)) iterations. The
needle image is shown in Fig. 11.7. The parameters used by Iterative Enhancement were No. of Iterations: 1, 10
and 50 and for Alpha Value: 50. This parameter may be varied by clicking the right mouse button on the function
symbol.

In preparation for the iterative part of the procedure the partial derivatives Ex, Ey and Et of the source
images is needed. The results for the apple example are shown in Fig. 11.6 (3), (4) and (5). In these
figures the dark areas represent negative values, the light parts represent positive values and values
which are approximately zero are represented by a medium gray color.

The results of the first step of the iteration procedure are (6) and (7). The direction of movement (7) is
according to the palette. The necessity for a correction is obvious considering the irregularities
(especially of the direction). Already after 10 iterations a nearly faultless result is obtained ((8 and (9)).

11 Image Sequence Analysis - 11.3 Source Code

Ad Oculos 260

Fig. 11.7:

This needle image combines the velocity and direction images (10) and (11)
shown in Fig. 11.6.

After 50 iterations no further improvement is discernible ((10) and (11)).

The movement direction of all pixels points to the center of the apple. The remaining inhomogeneities
of the velocity field are mainly due to the small graylevel variations in the lower parts of the source
images. Fig. 11.7 combines the velocity and direction images (10) and (11) to form a needle diagram.

The parameters used by Iterative Enhancement were:

No. of Iterations: 1, 10 and 50

Alpha Value: 50.

This parameter may be varied by clicking of the right mouse button on the function symbol.

11.3 Source Code

Fig. 11.9 shows a procedure which computes the partial derivates Ex, Ey and Et. Formal parameters
are:

ImSize: image size

In0,In1: first and second input image

Ex,Ey,Et: output image of the partial derivatives Ex, Ey and Et.

The procedure starts with initialization of the output images Ex, Ey and Et. The following part realizes
the computation, of the three derivatives, which has to be carried out for each pixel. r and c are the
coordinates of the current pixel.

11 Image Sequence Analysis - 11.3 Source Code

Ad Oculos 261

-1

-1

-1-1

-1

-1 -1

-1-1 -1 -1

-1 -1

+1+1

+1

+1

+1 +1 +1

+1+1

+1 +1

+1 +1

1/ 1/ 1/

1/ 1/

1/1/1/

12 6 12

12 12

6 6

6

-1

Fig. 11.8:

Masks to approximate partial derivatives and the
Laplace operator.

The problem of approximating partial derivatives has already been discussed in Chapter6. For the
current case, the time-consuming procedures described in Chapter6 are unnecessary. For the present
case the two spatial derivatives Ex and Ey are computed with the aid of the graylevel differences in a 2
* 2 neigborhood (Fig. 11.8). Since there are two source images, the differences are computed for each
of these images separately. The mean of the two resulting differences is utilized as the spatial
derivative. The temporal derivative Et is obtained by the difference between the source images.

void GenDerivates (ImSize, In0,In1, Ex,Ey,Et)
int ImSize;
BYTE ** In0;
BYTE ** In1;
int ** Ex;
int ** Ey;
int ** Et;
{
 int r,c;

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 Ex[r][c] = 0;
 Ey[r][c] = 0;
 Et[r][c] = 0;
 } }

 for (r=0; r<ImSize-1; r++) {
 for (c=0; c<ImSize-1; c++) {
 Ex[r][c] = (int) In0[r][c+1] - In0[r][c] + In0[r+1][c+1] - In0[r+1][c] +
 In1[r][c+1] - In1[r][c] + In1[r+1][c+1] - In1[r+1][c];
 Ey[r][c] = (int) In0[r+1][c] - In0[r][c] + In0[r+1][c+1] - In0[r][c+1] +
 In1[r+1][c] - In1[r][c] + In1[r+1][c+1] - In1[r][c+1];
 Et[r][c] = (int) In1[r][c] - In0[r][c] + In1[r+1][c] - In0[r+1][c] +
 In1[r][c+1] - In0[r][c+1] + In1[r+1][c+1] - In0[r+1][c+1];
 Ex[r][c] /= 4;
 Ey[r][c] /= 4;
 Et[r][c] /= 4;
} } }

Fig. 11.9:

C realization for computing Ex, Ey and Et.

The procedure shown in Fig. 11.10 realizes the algorithm by Horn and Schunk. Formal parameters are:

ImSize: image size

Alpha: parameter which determines the ratio of errors (Section 11.1 and Section 11.4

Ex, Ey, Et: input image containing the partial derivatives Ex, Ey and Et

Un1,Vn1: (n+1)-th iteration of the output images representing the horizontal and vertical
 components of movement

Un,Vn: n-th iteration of the output images representing the horizontal and vertical
 components of movement.

11 Image Sequence Analysis - 11.3 Source Code

Ad Oculos 262

void GenFlow (ImSize, Alpha, ExIm,EyIm,EtIm, Un1,Vn1, Un,Vn)
int ImSize, Alpha;
int ** ExIm;
int ** EyIm;
int ** EtIm;
float ** Un1;
float ** Vn1;
float ** Un;
float ** Vn;
{
 int r,c, Ex,Ey,Et, Alpha2;
 float u,v, um,vm, a,b;

 for (r=0; r<ImSize; r++) {
 for (c=0; c<ImSize; c++) {
 Un[r][c] = Un1[r][c];
 Vn[r][c] = Vn1[r][c];
 } }
 Alpha2 = Alpha*Alpha;

 for (r=1; r<ImSize-1; r++) {
 for (c=1; c<ImSize-1; c++) {
 um = (Un[r-1][c] + Un[r][c+1] + Un[r+1][c] + Un[r][c-1]) /6 +
 (Un[r-1][c-1]+ Un[r-1][c+1]+ Un[r+1][c+1]+ Un[r+1][c-1]) /12;
 vm = (Vn[r-1][c] + Vn[r][c+1] + Vn[r+1][c] + Vn[r][c-1]) /6 +
 (Vn[r-1][c-1]+ Vn[r-1][c+1]+ Vn[r+1][c+1]+ Vn[r+1][c-1]) /12;

 Ex = ExIm[r][c];
 Ey = EyIm[r][c];
 Et = EtIm[r][c];

 a = Ex*um + Ey*vm + Et;
 b = (float)Alpha2 + Ex*Ex + Ey*Ey;
 u = um - (Ex*a)/b;
 v = vm - (Ey*a)/b;

 Un1[r][c] = u;
 Vn1[r][c] = v;
} } }

Fig. 11.10:

C realization of the Horn and Schunk algorithm.

The procedure starts by moving the results of the preceding (n+1)-th iteration (Fig. 11.4) into the data
array Un and Vn which retains the n-th iteration. Furthermore, in order to save computing time, the
product Alpha2 = Alpha*Alpha is computed in advance.

The procedure which determines the new iteration of the movement components is embedded in the

following two for loops. At the beginning of this procedure the mean values um (for u) and vm (for v)
are computed. They are used to realize an approximation of the Laplace operator according to the

formula ()2u u u∇ ≈ − . Here u represents a weighted mean. The weights for a 3 * 3 mask are shown

in Fig. 11.8. Note that the central pixel is not included. This pixel is represented by the parameter u.

The variables Ex, Ey and Et serve merely for better readability. Now all the parameters are present for
running the iteration formulas:

() ()
() ()

() ()
() ()

n n
x x y tnn 1

2 2 2
x y

n n
y x y tnn 1

2 2 2
x y

E E u E v E
u u

E E

E E u E v E
v v

E E

+

+

 + +
 = −

α + +

 + +
 = −

α + +

11 Image Sequence Analysis - 11.4 Supplement

Ad Oculos 263

Obviously large parts of these formulas are identical, and are therefore represented by new variables a
and b. Then the iteration formulas reduce to u = um - (Ex*a)/b; and v = vm - (Ey*a)/b;

To keep this section short the software implementation of the iteration control based on the stopping
criterion ε (Fig. 11.4) is not described.

The original representation of the movement components is Cartesian. A polar representation (i.e.
velocity and direction of movement) can be obtained using the algorithm introduced in Section 6.3.1.
Algorithms for plotting needle diagrams are not part of image sequence analysis, they depend on the
graphics environment being used and are therefore not discussed in this book.

11.4 Supplement

The main topic of the following section is a derivation of the algorithm by Horn and Schunk which was
introduced in Section 11.1. The notation used is similar to that of the original work [11.3]. The
algorithm basically aims to interpretat graylevel changes as movement. The fundamental problems of
this approach have already been described in Section 11.1.

The idea behind Horn’s and Schunk’s algorithm originates from a moving graylevel pattern. The scene
must obey three constraints:

• The illumination is constant. Therefore, all temporal changes of graylevels are caused by the
movement of graylevel patterns.

• The changes are smooth. Hence, the graylevel function is differentiable.

• The moving objects must not overlap.

Let the graylevel of a pixel the coordinates of which are (x,y) at time t be E(x,y,t). Relating the position
of this pixel to the origin of the image function, it will be seen that ist graylevel will have changed in
the event of pixel movement. However, if the position of the pixel is related to a pattern which has
moved (the pixel under consideration is part of this pattern), then its graylevel does not change. The
graylevel is described by:

() ()E x, y, t E x x, y y, t t= + δ + δ + δ

δx, δy and δt represent the spatial and temporal displacement of the pattern. A Taylor expansion of the
right term around the point (x,y,t) yields (Appendix D)

() () E E E
E x, y, t E x, y, t x y t R

x y t

∂ ∂ ∂= +δ +δ +δ +
∂ ∂ ∂

.

Thus

E E E
x y t R 0

x y t

∂ ∂ ∂δ +δ +δ + =
∂ ∂ ∂

Disregarding the remaining part R and dividing by δt it follows:

x E y E E
0

t x t y t

δ ∂ δ ∂ ∂+ + =
δ ∂ δ ∂ ∂

If δt becomes infinitesimally small, the equation which describes the spatial and temporal changes of
graylevels is obtained:

E dx E dy E
0

x dt y dt t

∂ ∂ ∂+ + =
∂ ∂ ∂

or in short form:

x y tE u E v E 0+ + =

The partial derivatives of the graylevel (Ex, Ey and Et) can be obtained without problems. However, for
determination of the two unknown parameters u und v more than one differential equation is needed.
The second equation is based on the so-called „Smoothness Constraint“. The idea which leads to this
constraint is that single points in the image do not move irregularly. Adjacent pixels are very likely to

11 Image Sequence Analysis - 11.4 Supplement

Ad Oculos 264

move similarly. In order to describe this idea Horn and Schunk use the spatial change of the
movement components:

2 22 2
u u v v

and
x y x y

 ∂ ∂ ∂ ∂ + + ∂ ∂ ∂ ∂

Now the smoothness constraint has to be joined with the differential equation. For this purpose two
errors are defined as follows:

b x y tE u E v Eε = + +

2 22 2
2
c

u u v v

x y x y

 ∂ ∂ ∂ ∂ ε = + + + ∂ ∂ ∂ ∂

These errors are computed for each pixel of the source images and the overall error:

()2 2 2 2
b cb dxdyε = ε + α ε∫∫

is to be minimized. α controls the ratio of the influence of the single errors on the overall error.

Minimizing the overall error

The classic tool used to solve minimization problems like this one is the calculus of variations
(Appendix B). The function to be integrated is structured as follows:

()x y x yF x, y,u,v,u ,u ,v ,v dxdy∫∫

Hence we have the following two Euler equations:

x y

x y

F F F
0

u x u y u

F F F
0

v x v y v

 ∂ ∂ ∂ ∂ ∂ − − = ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂
 − − = ∂ ∂ ∂ ∂ ∂

With

() ()2 2 2 2 2 2
x y t x y x yF E u E v E u u v v= + + +α + + +

the partial derivatives of the first Euler equation are

()2
x x y x t

2
x

x

2
y

y

2
xx

x

2
yy

y

F
2 E u E E v E E

u
F

2 u
u

F
2 u

u

F
2 u

x u

F
2 u

y u

∂ = + +
∂

∂ = α
∂
∂ = α

∂

 ∂ ∂ = α ∂ ∂
 ∂ ∂ = α
 ∂ ∂

The derivatives of the second Euler equation are determined in the

same manner. Substituting the partial derivatives in the Euler

equations we obtain:

11 Image Sequence Analysis - 11.5 Exercises

Ad Oculos 265

()
()

2 2 2
x x y x t xx yy

2 2 2
y x y y t xx yy

2 E u E E v E E 2 u 2 u 0

2 E v E E u E E 2 v 2 v 0

+ + − α − α =

+ + − α − α =

or with ∇2u = uxx+uyy

2 2 2
x x y x t

2 2 2
y x y y t

E u E E v E E u 0

E v E E u E E v 0

+ + − α ∇ =

+ + − α ∇ =

Using the approximation
2u u u∇ ≈ − the equation system becomes

()
()

2 2 2
x x y x t

2 2 2
x y x y t

E u E E v u E E

E E u E v u E E

α + + = α −

+ α + = α −

Isolation of u and v makes it possible to apply the Gauss-Seidel iteration, and thereby solving the
equations (Appendix E):

()
() ()

()
() ()

n n2
x t x yn 1
2 2

x

n n2
y t x yn 1
2 2

y

u E E E E v
u

E

v E E E E u
v

E

+

+

α − −
=

α +

α − −
=

α +

In their original work Horn and Schunk isolate u and v, ending up with the well-known formulas
(Section 11.1):

() ()
() ()

() ()
() ()

n n
x x y tnn 1

22 2 2
x y

n n
y x y tnn 1

22 2 2
x y

E E u E v E
u u

E E

E E u E v E
v v

E E

+

+

 + +
 = −

α + +

 + +
 = −

α + +

These expressions allow the computing time to be reduced since large parts of the formulas are
identical.

Besides this classic algorithm by Horn and Schunk, there are several alternative approaches.
Unfortunately, little work surveying „Image Sequence Analysis“ has been published. Jähne [11.5]
however provides a detailed consideration of this topic. Early survey work has been largely due to
Nagel [11.7] [11.8]. Schalkoff [11.9] also describes image sequence analysis fairly intensively.

11.5 Exercises

Exercise 11.1:

Fig. 11.11 and Fig. 11.12 show a sequence of two images representing a moving block. Apply a 3 * 3
matching window according to the example shown in Fig. 11.3. Omit a search window. Determine for
every moving pixel in Fig. 11.11 the corresponding pixel in Fig. 11.11. Sketch a needle image based on
these results.

11 Image Sequence Analysis - 11.5 Exercises

Ad Oculos 266

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

c

r

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

555

5

5

555

10 10

10 10

555

5

5

5

5

5 5 5 5 5 5

5

5

5

5

10

10

10 10 10 10

10

10

101010

10

10

10

10

10

555

Fig. 11.11:

Exercise 11.1 demonstrates the application of the correlation procedure
for analyzing image sequences. The second image is shown in Fig.
11.12.

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

c

r

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

555

5

5

555

5 5 5 55 5

5

5

5

5

555555

5

5

5

5

10 10

10 10

10

10

10

10 10 10 10

10

10

1010

10

10 10

10

10

Fig. 11.12:

See Fig. 11.11.

11 Image Sequence Analysis - 11.5 Exercises

Ad Oculos 267

Exercise 11.2:

Acquire image sequences the graylevels of which vary due to illumination changings. Analyze the
„pseudo motion“ with the procedures demonstrated in Section 11.2.

Exercise 11.3:

Write a program which realizes the correlation procedure demonstrated in Fig. 11.3.

Exercise 11.4:

Write a program which is able to track small moving objects. Acquire sequences of several images (for
instance showing a moving light) to test your program. Alternatively generate artificial sequences.

Exercise 11.5:

Become familiar with every aspect of image sequence analysis offered by AdOculos (see AdOculos
Help).

11 Image Sequence Analysis - References

Ad Oculos 268

References

[11.1] Aggarwal, E. and Nadhakumar, R.:
On the computation o motion from sequences of images - a review.
Proc. IEEE, Vol. 76, pp. 917-935, 1988

[1.2] Haralick, R.M.; Shapiro, L.G.:
Computer and Robot Vision, Vol. 2.
Reading MA: Addison-Wesley 1992

[11.3] Horn, B.K.P.; Schunck, B.G.:
Determining optical flow.
Artificial Intelligence 17 (1981) 185-203

[11.4] Horn, B.K.P.; Schunck, B.G.:
Horn, B.K.P.:
Robot vision.
Cambridge, London: MIT Press 1986

[11.5] Jähne, B.:
Digital Image Processing. Concepts, Algorithms, and Scientific
Applications.
Berlin, Heidelberg, New York, London, Paris, Tokyo: Springer 1991

[11.6] Murray, D.W. and Buxton, B.F.:
Experiments in the machine interpretation of visual motion.
Cambridge MA: MIT Press 1990

[11.7] Nagel, H.H.:
Image sequence analysis: what can we learn from applications?
In: Huang, T.S. (ed.): Image sequence analysis.
Berlin, Heidelberg, New York: Springer 1981

[11.8] Nagel, H.H.:
Image sequences—ten (octal) years—from phenomenology
towards a theoretical foundation.
Proc 8th Int. Conf. Pattern Recognition (1986) 1174-1185

[11.9] Schalkoff, R.J.:
Digital image processing and computer vision.
New York, Chichester, Brisbane, Toronto, Singapore: Wiley 1989

[11.10] Sonka, M.; Hlavac, V. and Boyle R.:
Image processing, analysis and machine vision.
London: Chapman and Hall 1993

[11.11] Weng, J.; Huang, T.S. and Ahuja, N.:
Motion and structure from image sequences.
Berlin, Heidelberg, New York: Springer 1992

A General Purpose Procedures

A.1 Definitions

Fig. A.1 shows a list of data types used in the context of the Realization sections of this book.

Since the „classic“ graylevel image is based on an unsigned 8 bit data type, the definition of a
corresponding type BYTE is useful.

The handling of region features (Section 5.3.3) requires some special data structures: CGStruc
combines the coordinates of centers of gravity while PolStruc is used during the evaluation of polar
distances.

To represent a chain of contour points (Section 6.3.3) we need a data type which combines the
coordinates of a contour point and its index for indicating its position in the chain. This is the purpose
of the structure ChnStruc. The approximation of such chains by segments (Section 6.3.4) yields the
coordinates of the segment terminating points. The points of one segment are determined with the
aid of the structure SegStruc. The representation of a segment on a discrete grid is a basic problem
of computer graphics. A well-known algorithm for solving this problem will be described in Appendix
A.5. The handling of the pixels representing such a segment requires a data type which combines the
coordinates of these pixels. The structure LinStruc serves this purpose.

A General Purpose Procedures - A.1 Definitions

Ad Oculos 270

#define 3.1415
#define BYTE unsigned char

struct CGStruc {
 int r;
 int c;
};

struct PolStruc {
 float Min;
 float Max;
};

struct ChnStruc {
 int r;
 int c;
 int i;
};

struct SegStruc {
 int r0;
 int c0;
 int r1;
 int c1;
};

struct LinStruc {
 int r;
 int c;
};

struct StrucStrucBin {
 int r;
 int c;
};

struct StrucStrucGrey {
 int r;
 int c;
 int g;
};

struct EvalStruc {
 float Energy;
 float Contrast;
 float Entropy;
 float Homogen;
};

typedef struct CGStruc CGTyp;
typedef struct PolStruc PolTyp;
typedef struct LinStruc LinTyp;
typedef struct ChnStruc ChnTyp;
typedef struct SegStruc SegTyp;
typedef struct StrucStrucBin StrTypB;
typedef struct StrucStrucGrey StrTypG;
typedef struct EvalStruc EvalTyp;

Fig. A.1:

Definition of non-standard data types.

The heart of morphological image processing (Section 8.3) is the structuring element. The shape of a
structuring element is represented by coordinates relating to the origin of this structuring element. In
the case of the morphological processing of graylevel images, the coefficients („graylevel“ of the
structuring element) are added. The handling of the structuring elements is based on the data
structures StrucStrucBin and StrucStrucGrey.

A General Purpose Procedures - A.2 Memory management

Ad Oculos 271

The evaluation of various textures (Section 9.3) with the aid of a co-occurrence matrix yields different
texture features. The structure EvalStruc combines four features which are used in Section 9.3.

A.2 Memory management

A basic problem underlying of the procedures described in this book is memory management. Since
the realization of memory management functions depends on the operating system, only the purpose
of the functions used in the Realization sections is described:

ImAlloc: serves to allocate memory for an image. The data type of a pixel (usually BYTE)
 and the image size must be defined before the allocation is carried out

ImFree: frees the memory previously allocated with the aid of ImAlloc

GetMem: extends a list by an element of any data type.

A.3 The procedures MaxAbs and MinAbs

Fig. A.2 shows two functions returning the minimum (or maximum) absolute value of the two input
values x and y. They are mainly used to support a fast transformation from Cartesian to polar
representation (for an instance see Section 6.3.1). Both functions are self-explanatory.

int MinAbs (x,y)
int x,y;
{
 int ax,ay;
 ax = (x<0) ? -x : x;
 ay = (y<0) ? -y : y;
 return ((ax<ay) ? ax : ay);
}

int MaxAbs (x,y)
int x,y;
{
 int ax,ay;
 ax = (x<0) ? -x : x;
 ay = (y<0) ? -y : y;
 return ((ax<ay) ? ay : ax);
}

Fig. A.2:

C realization of procedures for calculating absolute values.

A.4 The discrete inverse tangent

The standard implementation of trigonometrical functions usually requires a lot of computing time.
Image processing algorithms rarely depend on high-accuracy trigonometry. For instance, the gradient
direction is mainly quantisized only by 3 (0 to 7 „degree“) 4 (0 to 15 „degree“), or 8 (0 to 255 „degree“)
bits. The 4 bit quantization is illustrated in Fig. A.3: 16 where partitions divide the circle into segments
of 22.5°. The partition borders are 11.25°, 33.75°, ..., 348.75°. The corresponding values of the inverse
tangent are depicted in the boxes. A typical application for such an inverse tangent is the fast
transformation from Cartesian to polar representation (Section 6.3.1).

Fig. A.4 shows a procedure which derives the polar direction (quantized in 16 steps) from the
Cartesian coordinates dy and dx. The calculation of the inverse tangent is required for only one
quadrant. Therefore the procedure starts by calculating the absolute values of dy and dx. Using these

A General Purpose Procedures - A.4 The discrete inverse tangent

Ad Oculos 272

values the special cases of horizontal and vertical lines are checked and if necessary a corresponding
value returned.

0

1

2

345

6

7

8

9

10

11 12 13

14

15

y

x

101,25 -5,03

123,75 -1,50

146,25 -0,67

168,75 0,20

131,25 0,20

223,75 0,67

236,25 1,50

258,75 5,03 281,25 -5,03

303,75 -1,50

326,25 -0,67

348,75 -0,20

11,25 0,20

33,75 0,67

56,25 1,50

78,75 5,03

Fig. A.3:

Strategy for the realization of the discrete inverse tangent.

However, if none of the coordinates is zero, we need the quotient Ady/Adx. To avoid floating-point
arithmetic in further steps the quotient is mutiplied by 100. This value is due to the following
pragmatic approach: the accuracy of the quotient quo is sufficient while the range of Ady is large
enough in the context of the current application. Please note that Ady is a long variable.

The actual calculation of the inverse tangent is based on a comparison of the quotient quo and the
partition borders (obviously also multiplied by 100) shown in Fig. A.3. This comparison yields angle
values ranging from 0 to 4 for the first quadrant (Fig. A.4). The actual quadrant is determined by the
signs of the coordinates dy and dx. Consequently the basic angle value must be corrected (by a type
of shifting operation; see last return statement in Fig. A.4) according to the actual quadrant.

A General Purpose Procedures - A.5 Generation of a Digital Segment

Ad Oculos 273

int DiscAtan16 (dy,dx)
int dy,dx;
{
 int phi;
 long quo, Adx, Ady;

 Adx = (long) abs (dx);
 Ady = (long) abs (dy);

 if (Adx==0 || Ady==0)
 return ((Adx==0 && Ady==0) ? 0 :
 ((Adx==0) ?
 ((dy < 0) ? 12 : 4) :
 ((dx < 0) ? 8 : 0)));
 else{
 quo = (100*Ady) / Adx;

 phi = ((quo < 20) ? 0 :
 ((quo < 67) ? 1 :
 ((quo < 150) ? 2 :
 ((quo < 503) ? 3 : 4))));

 return ((dy > 0) ?
 ((dx > 0) ? phi : 8-phi) : /* 1.quad : 2.quad */
 ((dx < 0) ? 8+phi : /* 3.quad */
 ((phi==0) ? 0 : 16-phi))); /* 4.quad */
} }

Fig. A.4:

C realization of the discrete inverse tangent.

This realization of the inverse tangent is easily extended to any angle range. Only the comparison
algorithm need to be changed. In the case of a range of 256 angle values (leading to 64 comparisons)
this algorithm does not seem very elegant but the approach is straightforward and yields a fast and
robust solution.

A.5 Generation of a Digital Segment

The representation of an ideal segment by a discrete grid is not as simple as it seems. However, since
this is a very basic problem of computer graphics several algorithms for solving it are available. The
realization of one of these algorithms is shown in Fig. A.5. Its input values are the coordinates of the
terminating points y0, x0, y1 and x1. Those pixels which represent the segment are collected by
vector Line. The procedure returns the length of this vector. Note that the vector consumes memory
which must be allocated at the right time (GetMem(Line); Appendix A.2).

A General Purpose Procedures - A.5 Generation of a Digital Segment

Ad Oculos 274

int GenLine (y0,x0,y1,x1, Line)
int y0,x0,y1,x1;
LinTyp * Line;
{
 static int Step [2] = {-1,1};
 int XDiff, YDiff, XStep, YStep, Sum, i;

 XStep = Step [x0<x1]; XDiff = abs (x0-x1);
 YStep = Step [y0<y1]; YDiff = abs (y0-y1);

 GetMem (Line);
 Line[0].r = y0;
 Line[0].c = x0;
 i=1;

 if (XDiff > YDiff) {
 Sum = XDiff >> 1;
 while (x0 != x1) {
 x0 += XStep;
 Sum -= YDiff;
 if (Sum < 0) {
 y0 += YStep;
 Sum += XDiff;
 }
 GetMem (Line);
 Line[0].r = y0;
 Line[0].c = x0;
 i++;
 }
 }else{
 Sum = YDiff >> 1;
 while (y0 != y1) {
 y0 += YStep;
 Sum -= XDiff;
 if (Sum < 0) {
 x0 += XStep;
 Sum += YDiff;
 }
 GetMem (Line);
 Line[0].r = y0;
 Line[0].c = x0;
 i++;
 } }
 return (i++);
}

Fig. A.5:

C realization of segment generation. The procedure GetMem and the data type LinTyp are defined in
Fig. A.1.

Since the procedure is based on a standard algorithm no further explanation concerning its details is
given here. For more information check the specialized literature for computer graphics.

B Calculus of Variations

An important mathematical tool used, for instance, in image sequence analysis (Section 11.4) is the
calculus of variations. The following sections offer a short and tool-oriented introduction to this topic.

A typical application of the well-known differential calculus is the search for maxima or minima of a
function. Such a function may describe a system (of any kind),the optimum states of which are
represented by the extrema of the function. Unfortunately, we are frequently confronted with system
optima which are not so simply defined. Assume a rocket is to transport a payload into orbit. The aim
is to maximize the payload with regard to certain constraints. The optimum trajectory is not
describable by simple extrema. It must be a function. The calculus of variations is a tool for finding
such functions.

Our everyday experience tells us that a straight line is the shortest distance between two points.
However, what is the correct formal verification of this experience? To answer this question let us
assume that two points (x0, y(x0)) and (x1, y(x1)) (with x0 < x1) are defined in a Cartesian system. As Fig.
B.1 shows, these points can be connected by a smooth curve. This curve consists of infinitely short
segments ds. The length l of the curve is:

1

0

x

x
l ds= ∫

y

y
1

y
0

0
x x

1

x

ds
dy

dx

Fig. B.1: On the determination of the minimum
distance between two points.

With

() ()
2

2 2 dy
ds dx dy 1 dx

dx
 = + = +

the length is

()1

0

x 2

x
l 1+ y dx′= ∫

Our aim is to find the function y(x) for which the integral yields the mimimum of l. In the context of
calculus of variations such integrals are called functionals I:

()() ()1

0

x 2

x
I y x 1+ y dx′= ∫

Thus a functional is a function depending on another function. Generally an integral takes the form

B Calculus of Variations

Ad Oculos 276

()() ()()1

0

x n
x

I y x F x, y, y ,..., y dx′= ∫

Calculation of simple functionals

The procedure of finding the optimum function y(x) is shown, as follows, with the aid of the simplest
functional, namely:

()() ()1

0

x

x
I y x F x, y, y dx′= ∫

Let us assume that y(x0) and y(x1) are known. Now we „vary“ the functional with a function ()y x in the

„neighborhood“ of y(x) which is defined as follows:

()y x y(x) n(x)= + α

α is a parameter which may become infinitely small. n(x) is a continuous differentiable function which

is defined in the interval x0 ≤ x ≤ x1. The values ()0y x and ()1y x must be identical to y(x0) and y(x1).

Imagine the function y(x) as a string in a neutral position which is fixed at its terminating points (x0,

y(x0)) and (x1, y(x1)). In terms of this example the neighborhood function ()y x is a string which is

plucked gently and not released.

The functional of the neighborhood function is

()() ()
() ()()

1

0

1

0

x

x

x

x

I y x F x, y, y dx

F x, y n x , y n x dx

′=

′ ′= + α + α

∫

∫

Suppose the optimum function y(x) is already known. Furthermore assume the function ()y x is in

such close proximity to y(x) that the functional ()()I y x is simply describable as a function of α:

()() ()I y x = Φ α

Due to this „trick“ the variation problem is reduced to the well-known optimization problem, namely
the minimization of the function Φ(α). For this purpose we need the first derivative as follows:

() ()1

0

x

x

d d
F x, y, y dx

d d

Φ α
′=

α α ∫

According to the rules of the differentiation of integrals (Appendix C) we are allowed to put the
differential quotient into the integral:

() ()1

0

x

x

d d
F x, y, y dx

d d

Φ α
′=

α α∫

Shortening ()F x,y,y′ to F, the according total differential (Appendix D) is

F F F
dF dx dy dy

x y y

∂ ∂ ∂ ′= + + →
∂ ′∂ ∂

and

dF F dx F dy F dy

d x d d dy y

′∂ ∂ ∂= + +
α ∂ α α α′∂ ∂

Due to () () ()()F x, y, y F x, y n x , y n x′ ′ ′= + α + α we get

B Calculus of Variations

Ad Oculos 277

() ()dF F F
n x n x

d y y

∂ ∂ ′= +
α ′∂ ∂

Thus, the integral becomes

() () ()1 1

0 0

x x

x x

d F F
n x dx n x dx

d y y

Φ α ∂ ∂ ′= +
α ′∂ ∂∫ ∫

With the aid of partial integration (Appendix C) the second integral is

() () ()
1

1 1

0 0

0

x
x x

x x
x

F
d

F F y
n x dx n x n x dx

dxy y

∂
 ′∂ ∂ ∂′ = −

′ ′∂ ∂
∫ ∫

The term ()
1

0

x

x

F
n x

y

 ∂

′∂
 is zero, since n(x0) = n(x1) = 0. Thus the whole integral becomes

() ()1

0

x

x

d F d F
n x dx

d dxy y

 Φ α ∂ ∂
 = − α ′∂ ∂

∫

At the optimum point dΦ(α)/dα is zero. If, at the same time, α is forced to zero, we get (due to

()y x y(x) n(x)= + α and ()y x y (x) n (x)′ ′ ′= + α)

()1

0

x

x

F d F
n x dx 0

dxy y

 ∂ ∂
 − = ′∂ ∂

∫ (B.1)

Now the Trojan horse α has served its purpose. However, the neighborhood function n(x) must also be
eliminated. This elimination is based on the fundamental lemma of the calculus of variation:

Let n(x) be a continuously differentiable function with n(x0) = n(x1) = 0 and let G(x) be another
continous function which is defined in the interval x0 ≤ x ≤ x1. If the integral

() ()1

0

x

x
n x G x dx∫

becomes zero, then G(x) becomes zero too.

The proof of this lemma is given in [B.1]. Applied to integral (B.1) the lemma means that the integral
vanishes. The remaining part is

F d F
0

y dx y

 ∂ ∂− = ′∂ ∂
(B.2)

The solution to this differential equation optimizes the functional I(y(x)) with respect to the constraints
y(x0) and y(x1). The application of the total differential (Appendix D) to the term (∂F/∂y’) yields

F F F F
d dy dy dx

y y y y y x y

 ∂ ∂ ∂ ∂ ∂ ∂ ∂′= + + ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂

Thus the differential equation (B.2) takes the following form:

2 2 2

2

F F F F
y y 0

y y y y xy

∂ ∂ ∂ ∂′′ ′− − − =
′ ′∂ ∂ ∂ ∂ ∂′∂

This equation is known as the Euler equation. It is one of the most important tools of the calculus of
variations. To familiarize ourselves with this tool, let us apply it to the example of the search for the
shortest distance between two points. The functional corresponding to this problem was

()() ()1

0

x 2
x

I y x 1+ y dx′= ∫

Thus

B Calculus of Variations

Ad Oculos 278

() ()2
F x, y, y 1+ y dx′ ′=

Since this equation only depends on y’ the following terms become zero:

2 2F F F
0

y y y y x

∂ ∂ ∂= = =
′ ′∂ ∂ ∂ ∂ ∂

The remaining differential quotient is

()()
2

2 3
2 2

F 1

y
1 y

∂ =
′∂

′+

Thus, the Euler equation reduces to

()()
3

2 2

1
y 0

1 y

′′ =

′+

So it is sufficient to solve the differential equation y” = d2y/dx2 = 0. As expected the solution is
obvious:

1 2y c x c= +

Calculation of functionals with several functions

The calculation of functionals with several functions

() () ()() ()1

0

x
1 2 p 1 2 p 1 2 px

I y x , y x ,..., y x F x, y , y ,..., y , y , y ,..., y dx′ ′ ′= ∫

the limits (y1(x0), y1(x1), y2(x0), y2(x1), etc.) of which are known, proceeds by variation of the single
functions

()
()

()

1 1 1 1

2 2 2 2

p p p p

y x y (x) n (x)

y x y (x) n (x)

y x y (x) n (x)

= + α

= + α

•
•

= + α

Function Φ depends on α1, α2, ..., αp. So

() ()1

0

x
1 2 p 1 2 p 1 2 px
, ,..., F x, y , y ,..., y , y , y ,..., y dx′ ′ ′Φ α α α = ∫

Thus we must realize p partial derivates of Φ and force them to zero. In the end we get p Euler
equations (i = 1,2,...,p):

i

2 2 2

i2
i i i ii

F F F F
y y 0

y y y y xy

∂ ∂ ∂ ∂′′ ′− − − =
′ ′∂ ∂ ∂ ∂ ∂′∂

Calculation of functionals with two independent functions

Let the function y depend on two independent variables x1 and x2. Now the functional is

()() ()1 21 2 1 2 x x 1 2
R

I y x ,x F x ,x , y, y , y dx dx= ∫∫

with
1 2x 1 x 2y y / x , y y / x= ∂ ∂ = ∂ ∂ and the limits determined by region R. The variation takes the form

B Calculus of Variations

Ad Oculos 279

() () ()1 2 1 2 1 2y x ,x y x ,x n x ,x= + α

Except for a few details the remaining procedure is equivalent to those discussed above. This
procedure yields the Euler equation

1 21 x 2 x

F d F d F
0

y dx y dx y

 ∂ ∂ ∂ − − =
 ∂ ∂ ∂

or:

x x x x x x x x x 1 x 21 1 1 2 2 2 1 2 1 2

2 2 2

y y y y y y y y y y y x y x y2 2
1 2 1 21 2

y y y y y
F 2F F F F F F F 0

x x x xx x

∂ ∂ ∂ ∂ ∂+ + + + + + − =
∂ ∂ ∂ ∂∂ ∂

B Calculus of Variations

Ad Oculos 280

References

[B.1] Miller, M.:
Variationsrechnung (In German).
Leipzig: Teubner 1959

[B.2] Pike, R.W.:
Optimization for engineering systems.
New York: Van Nostrand Reinhold 1986

[B.3] Salvadori, M.G.; Baron M.L.:
Numerical methods in engineering.
Englewood Cliffs, N.J.: Prentice-Hall 1961

[B.4] Weinstock, R.:
Calculus of variations.
New York: Dover Publications 1974.

C Rules for Integration

For your convenience there follows some integration rules which are applied in Appendix B.

Differentiation of an Integral

The differentiation of an integral according to the rule of Leibnitz:

()()
() ()()

() () ()() () ()()b x b x

a x a x

b x a xd
f x, t dt f x, t dt f x,b x f x,a x

dx x dx dx

∂= + −
∂∫ ∫

If the limits are constant the last two terms vanish. There remains

() ()b b

a a

d
f x, t dt f x, t dt

dx x

∂=
∂∫ ∫

Partial Integration

Partial integration is based on the rule

() () () () () ()u x v x dx u x v x u x v x dx′ ′= −∫ ∫

D Taylor Series Expansion/Total Differential

To understand the calculus of variations described in Appendix B, basic knowledge of the Taylor series
expansion is required. This mathematical tool is widely known but to aid understanding the following
description is adapted to the desciptive style used in Appendix B.

Taylor series expansion

A function f(η) is approximated at point η by the following Taylor polynomial:

() () () () () ()20 0
0 0 0

f f
f f ... R

1! 2!

′ ′′η η
η = η + η − η + η − η + +

R is the remainder of the approximation. Assume the following example: the function f(x+δx) is to be
approximated at point x using the Taylor polynomial to the first derivative. In this case we get η =
x+δx, η0 = x and f’(η0) = f’(x) = df(x)/dx. The desired approximation is

() () ()df x
f x x f x x R

dx
+ δ = + δ +

In the case of a function which depends on multiple variables f(η) = f(η1, η2, ..., ηn) we approximate at

point () ()0 0 01 2 nf f , ,...,η = η η η :

() () () () () ()0 0

2n n 20
i i i i0 0

i ii 1 i 1

f 1
f f f ... R

2!= =

∂ η ∂η = η + η − η + η − η η + + ∂η ∂η
∑ ∑

Take the function f(x+δx, y+δy, t+δt) as an example. This function is to be approximated at point (x,y,t).
Now we get 1 2 3x x, y y, t tη = + δ η = + δ η = + δ ,

0 0 01 2 3x, y, tη = η = η = and

() ()0 0 0

0

1 2 3

1

f , , , f x, y, t f

x x

∂ η η η ∂ ∂= =
∂η ∂ ∂

We get ∂f/∂y and ∂f/∂t in a similar way. The result of the approximation is:

() () f f f
f x x, y y, t t f x, y, t x y t R

x y t

∂ ∂ ∂+ δ + δ + δ = + δ + δ + δ +
∂ ∂ ∂

Total differential

In some cases it is sufficient to base the approximation merely on the first derivative of the Taylor
polynomial:

() () () ()
0

n
0

i i0
ii 1

f
f f R

=

∂ η
η = η + η − η +

∂η∑

Of special interest is the difference between the values f(η) and f(η0):

() ()
0

0

i i i

u f f∆ = η − η

∆η = η − η

Thus

D Taylor Series Expansion/Total Differential

Ad Oculos 283

()n
0

i
ii 1

f
u R

=

∂ η
∆ = ∆η +

∂η∑

The transition from differences to differentials and a vanishing remainder R leads to the total
differential

()n
0

i
ii 1

f
u d

=

∂ η
∆ = η

∂η∑

As application example assume that the total differential has the function u = f(η0, η1, η2):

0 1 2
0 1 2

u u u
u d d d

∂ ∂ ∂∆ = η + η + η
∂η ∂η ∂η

Interpreting the differentials dη0, dη1, dη2 as unit vectors of a Cartesian system we get the gradient:

u u u
gradu e e ex y z

0 1 2

∂ ∂ ∂= + +
∂η ∂η ∂η

E Gauss-Seidel Iteration

The Horn and Schunk procedure analyzing image sequences is based on a linear system (Chapter
11.4). A well-known method for a numerical solution is the Gauss-Seidel iteration. It is characterized by
a robust convergence and insensitivity to computational errors. However, it suffers from a serious
drawback: it is known that in some cases the iteration does not converge.

Fortunately the convergence is secure if the system is diagonal [E.1]. The following example illustrates
the procedure (adapted from [E.1]):

1 2 3

1 2 3

1 2 3

10x x x 12

2x 10x x 13

2x 2x 10x 14

+ + =
+ + =
+ + =

The system is solved starting with the equation possessing the greatest coefficient:

1 2 3

2 2 3

3 2 3

x 1.2 0.1x 0.1x

x 1.3 0.2x 0.1x

x 1.4 0.2x 0.2x

= − −
= − −
= − −

To solve the first equation we start the iteration with any start value for x2 and x3. With x2 = x3 = 0, x1 is
1.2. With x1 = 1.2 and x3 = 0 the second equation yields x2 = 1.06. x3 is then calculated to be 0.95.
Thus the whole procedure is carried out according to the following scheme:

2 3 1

1 3 2

1 2 3

x x 0 x 1.20

x 1.2 x 0 x 1.06

x 1.2 x 1.06 x 0.95

= = → =
= = → =

= = → =

These values are then the basis for the second iteration:

2 3 1

1 3 2

1 2 3

x 1.06 x 0.95 x 0.99

x 0.99 x 0.95 x 1.00

x 0.99 x 1.00 x 1.00

= = → =
= = → =
= = → =

The third iteration proceeds accordingly and yields x1 = 1, x2 = 1 und x3 = 1. The differences of these
results compared to those of the second iteration are slight. Thus the iteration procedure can now be
stopped.

E Gauss-Seidel Iteration - References

Ad Oculos 285

References

[E.1] Salvadori, M.G.; Baron M.L.:
Numerical methods in engineering.
Englewood Cliffs, N.J.: Prentice-Hall 1961.

F Multivariate Normal Distribution

The parametric classifiers discussed in Section 10.4 use normal distribution to describe feature
spaces. The one-dimensional normal distribution is well-known:

2

2

(x)
-

21
f (x) exp

2

−µ
σ=

πσ

Since feature spaces are usually multi-dimensional we need a corresponding normal distribution:

With

()

2

m / 2

x x : Vector of independent variables

: Mean vector

C : n * n-Covariance matrix

: Normalizing factor2 2

→
µ → µ

σ →

π → π

the one-dimensional normal distribution becomes m-dimensional:

1T1
- (x) C (x)
2

m / 2

1
f (x) exp

(2) detC

−−µ −µ
=

π

The multivariate normal distribution is a fairly specialized topic and might not be found in basic
mathematical literature. However, a detailed discussion is offered by Moran [F.1].

Multivariate normal distribution

Ad Oculos 287

References

[F.1] Moran, P.A.P:
An introduction to probability theory.
Oxford, England: Oxford University Press 1984.

G Solutions to Exercises

Chapter 1 Introduction

Exercise 1.1:

A pixel represents an area of 20*20 m.

Exercise 1.2:

512*512*8 = 2,097,152 bits have to be sent. Thus the transmission takes 218 seconds. Note that in
practice the transmission protocol of the serial link consumes additional time.

Exercise 1.3:

A single image has 1280*1024*24 = 31,457,280 bits. The transmission of 25 such images per second
requires 786,432,000 baud (750M bits/second or approximately 100M bytes. Note that in practice the
transmission protocol of the serial link consumes additional time.

Exercise 1.4:

Fig. G1.1 and Fig. G1.2 show the sampling grids and digitized images with a resolution of 8*8 and
16*16 pixels.

x

y

c

r

Fig. G1.1:

Sampling grid and digitized image with a resolution of 8*8 pixels.

x

y

c

r

Fig. G1.2:

Sampling grid and digitized image with a resolution of 16*16 pixels.

G Solutions to Exercises - Chapter 1 Introduction

Ad Oculos 289

Exercise 1.5:

Fig. G1.3 shows that a structure which is finer than the sampling grid disappears.

c

r

Fig. G1.3:

The answer to the question posed in Fig. 1.20 is: the structure disappears.

G Solutions to Exercises - Chapter 1 Introduction

Ad Oculos 290

Exercise 1.6:

Fig. G1.4 shows the complete sample and tile representation.

(c)

(b)

(a)

x

Intensity

x

x

Fig. G1.4:

This is the result of Exercise 1.6.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 291

Chapter 2 Point Operations

Exercise 2.1:

The mapping function is shown in Fig. G2.1, the look-up table in Fig. G2.2, the resulting image in Fig.
G2.3 and the two histograms in Fig. G2.4 and Fig. G2.5.

50 100 150 200 250

50

100

150

200

250

GV

GVin

out

Fig. G2.1:

This is the mapping function for Exercise 2.1.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 292

160 250

120 250

250

250

70

61

60

40

20

0

238

125

0

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

GVGV outin

GV

GV

out

out= 250

= 1.5 * GV + 1.4
in

0

0

0

0

13

*
*
*

59

79

80

81

*
*
*

*
*
*

GVout= 0

Fig. G2.2:

This is the look-up table for Exercise 2.1.

250

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 250

250 250

125

125

125

125125125125

125

125

125 125 125

Fig. G2.3:

This is the resulting image for Exercise 2.1.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 293

5

10

15

20

50 100 150 200 250

Graylevel
Occurrence

Graylevel

25

30

35

40

45

50

Fig. G2.4:

This is the histogram for Exercise 2.1.

5

10

15

20

50 100 150 200 250

Graylevel
Occurrence

Graylevel

25

30

35

40

45

50

55

60

65
Cumulative

Fig. G2.5:

This is the cumulative histogram for Exercise 2.1.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 294

50 100 150 200 250

50

100

150

200

250

GV

GV in

out

Fig. G2.6:

This is the mapping function for Exercise 2.2.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 295

Exercise 2.2:

The mapping function is shown in Fig. G2.6, the look-up table in Fig. G2.7, the resulting image in Fig.
G2.8 and the two histograms in Fig. G2.9 and Fig. G2.10.

160 250

120 240

230

230

70

61

60

40

20

0

220

130

0

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

GVGV outin

GVout=

= 10 * (GV - 1.4)
in

40

*
*
*

59

79

80

81

*
*
*

*
*
*

GVout=

30

30

20

10

* GV + 2101
4 in

* GV1
2 in

GVout

Fig. G2.7:

This is the look-up table for Exercise 2.2.

10 10 10 10 10 10 10 20

20

20

20

20

20

2030

30

30

30

30

303030303030

30

30

30

30

30 3030 30 30

250

250

250

250

250

250

250 240 240 240 240 240 240 240

130

130

130

130

130 130 130

130

130

130130130

230

230

230

230

Fig. G2.8:

This is the resulting image for Exercise 2.2.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 296

5

10

15

20

50 100 150 200 250

Graylevel
Occurrence

Graylevel

Fig. G2.9:

This is the histogram for Exercise 2.2.

5

10

15

20

50 100 150 200 250

Graylevel
Occurrence

Graylevel

25

30

35

40

45

50

55

60

65
Cumulative

Fig. G2.10:

This is the cumulative histogram for Exercise 2.2.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 297

Exercise 2.3:

The mapping function is shown in Fig. G2.11, the look-up table in Fig. G2.12, the resulting image in
Fig. G2.13 and the two histograms in Fig. G2.14 and Fig. G2.15.

50 100 150 200 250

50

100

150

200

250

GV

GVin

out

Fig. G2.11:

This is the mapping function for Exercise 2.3.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 298

160

120

70

61

60

40

20

0 0

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

*
*
*

GVGV outin

GV

GV

out

out

= 250

= * GV
in

*
*
*

59

79

80

81

*
*
*

*
*
*

20

10

30

35

250

250

250

250

41

60

80

1
2

GVout
= * GV

in

1
2

Fig. G2.12:

This is the look-up table for Exercise 2.3.

10

250

10 10 10 10 10 2010

20

20

20

20

20

20

6060606060606080

80

80

80

80

80

80 30 30 30 30 30 30

30

30

30

30

30 30 30 30 30 30

30

30

30

30250 250 250

250 250 250 250

250 250 250 250

250 250 250 250

Fig. G2.13:

This is the resulting image for Exercise 2.3.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 299

5

10

15

20

50 100 150 200 250

Graylevel
Occurrence

Graylevel

Fig. G2.14:

This is the histogram for Exercise 2.3.

5

10

15

20

50 100 150 200 250

Graylevel
Occurrence

Graylevel

25

30

35

40

45

50

55

60

65
Cumulative

Fig. G2.15:

This is the cumulative histogram for Exercise 2.3.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 300

Exercise 2.4:

The cumulative histogram (Fig. 2.3) of the source image (Fig. 2.1) yields the first mapping step:

20 7

40 14

60 34

70 46

80 50

120 57

160 64

→
→
→
→
→
→
→

Since the graylevels should range from 0 to 250 the mapping is as follows:

7 0

14 31

34 118

46 171

50 189

57 219

64 250

→
→
→
→
→
→
→

The resulting image and its histograms are shown in Fig. G2.16, Fig. G2.17 and Fig. G2.18.

31

250

250

250

250

250

250

250

0 00 0 0 0 0

31

31

31

31

31

31

219 219 219 219 219 219219

118 118 118 118 118 118

118

118

118

118

118 118 118 118 118 118

118

118

118

118

171171171171

171

171

171171171171

171

171 189 189

189 189

Fig. G2.16:

This is the resulting image for Exercise 2.4.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 301

5

10

15

20

50 100 150 200 250

Graylevel
Occurrence

Graylevel

Fig. G2.17:

This is the histogram for Exercise 2.4.

5

10

15

20

50 100 150 200 250

Graylevel
Occurrence

Graylevel

25

30

35

40

45

50

55

60

65
Cumulative

7

14

34

46

50

57

64

Fig. G2.18:

This is the cumulative histogram for Exercise 2.4.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 302

Exercise 2.5:

The complete slices are shown in Fig. G2.19.

1 1 1

1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

1

0 0 0 0 00 0 0

0 0 0 0 00 0 0

0 0 0 0 00 0 0

0 0 0 0 00 0 0

0

0

0

0

0

0

0

0

000

00

0

0

0 0

0

0

0

0

1

1

1 1 1 1 1

1

1

1

1

0 0 0 0 00 0 0

0 0 0 0 00 0 0

0 0 0 0 00 0 0

0 0 0 0 00 0 0

0 0 0 0 00 0 0

0 0 0 0 00 0 0

0 0 0 0 00 0 0

0 01 1 1 11

1

0 0 0 0 00 0 0

1

1

1

111111

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0

0

0

0

0

0

0 0

0

0

0

0

0

0

Slice 3 Slice 2

Slice 0Slice 1

0 0 0 0 0 0 0 0

SFig. G2.19:

These are the complete slices of the image shown in Fig. 2.16.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 303

Exercise 2.6:

The graylevel mapping results are shown in Fig. G2.20. Fig. G2.21 depicts the corrected image.

50 100 150 200 250

50

100

150

200

250

GV

GVin

out

50% 60% 70% 80% 90%

Fig. G2.20:

These are the graylevel mappings to correct the inhomogeneous illumination
shown in Fig. 2.17.

10 10 101010101010

10 10 101010101010

10 10 101010101010

10 10 101010101010

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100100

100

100

100

100

100

10

10

10

10

10

10 10

10

10

101010

1010

10

Fig. G2.21:

This is the result of applying the mappings shown in Fig. 2.20 to the source
image shown in Fig. 2.29.

Exercise 2.7:

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 304

The resulting images are shown in Fig. G2.22 and Fig. G2.23.

1

10

+ /2

11 111

1

1

1

1

1

1

1 11 11

1 1 1 11 1

1

1

1

1

11

1

1

1

1

1

1

116

6

6

6 6

6

66

6 6

6

6

1

610 10

10

10

10

10 10 10

106

6 6

6

6

6

6

1 1 1 1 1 1

1

1

1

1

1

1 1 1 1 1

1

1

1

1

1

1111

1 1 1 1

1

1

1

1

1

1

10

10 10 10

1010 10

4 4 4

4 4

4

4

4

48

8

88

8

8

6

10

4

1 1 1 11111

1

1

1

1

1

1

1

1 1 1

1

1

1

1

1

1

1

1

1

111111

1

1

1 1

1

1 1

1

1

1

1

1

11

10 10 10 10

10 10 10 10

10

1010

10

10 10

10

10

10

Fig. G2.22:

On the right hand side the result of adding the noisy image in Fig. 2.30 to
the resulting image in Fig. 2.18 is shown.

G Solutions to Exercises - Chapter 2 Point Operations

Ad Oculos 305

1

10

+ /2

11 111

1

1

1

1

1

1

1 11 1

1 1 11 1

1

1

1

11

1

1

1

1

1

1

11

6

8

8

6

6

4

1

410 10

10 10

10 10

6

4 4

6

6

1 1 1 1 1 1

1

1

1

1

1

1 1 1 1

1

1

1

1

111

1 1 1 1

1

1

1

1

1

1

10

10 10 10

10 10

3

9

88

9 10

3

1 1 1 11111

1

1

1

1

1

1

1 1 1

1

1

1

1

1

1

1

1

1

111111

1

1

1

1

1 1

1

1

1

1

1

11

10 10 10 10

10 10 10 10

10 10

10

10

10 10

10

10

8

88

8

10

4

44

4 44

6

3

3

9 4

99

9 6 3

333 6

4

33 4
1

10

10

Fig. G2.23:

On the right hand side the result of adding the noisy image in Fig. 2.31 to
the resulting image in Fig. 2.22 is shown.

G Solutions to Exercises - Chapter 3 Local Operations

Ad Oculos 306

Chapter 3 Local Operations

Exercise 3.1:

The output image resulting from the application of a Gaussian mean is shown in Fig. G3.1.

0

0

0

0

0

0

0

00000 000

0

0

0

0

0

0

0 0 0 00 0 0 0

2 2

2 2

2

2

2

2

1 1

1 1

4

4

3

3

3

6 9 9 9

9

9

9

9

9

8 8

8

87

7

7

7 9

10

Fig. G3.1:

Result of the application of a 3 * 3 Gaussian low-pass filter to the input image
shown in Fig. 3.2.

Exercise 3.2:

The result of the max operator is shown in Fig. G3.2.

0

10

10

10

10

10

1010

10

10

10

10

1010

10

10

10

10

1010

10

10

0

0

0

0

0

0

0

000 0000

0

0

0

0

0

0

0 0 0 0 0 0 0

4 4

44

44

6

6

6

6

6

6 9

8

10

Fig. G3.2::

Complementary to the min operator (Fig. 3.5) is the 3 * 3 max operator. It cleans
the light region of the input image (Fig. 3.2) but destroys the dark region.

Exercise 3.3:

The result of the median operator is shown in Fig. G3.3.

0

10

10

10

10

10

10 0

0

0

0

0

0

0

000 0000

0

0

0

0

0

0

0 0 0 0 0 0 0

10

10

10

10

10

10

10

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

9

9

9

9

8

Fig. G3.3:

The median operator has cleaned both the dark and the light regions of the
input image (Fig. 3.2) without flattening the steep graylevel step between these
regions. The median operator is especially successful at removing black and
white spots (salt-and-pepper noise) from an image.

G Solutions to Exercises - Chapter 3 Local Operations

Ad Oculos 307

Exercise 3.4:

The result of the nearest neighbor operator (k=6) is shown in Fig. G3.4.

0

10 0

0

0

0

0

0

0

000 0000

0

0

0

0

0

0

0 0 0 0 0 0 0

1010

10

10

10

1010

10

10

1

1

1

1

1

1

1

1

1

1

2 2

2

2 2 8

9

9

9

9 92

1

7

1010

Fig. G3.4:

This is the result of a 3 * 3 nearest neighbor operator with k=6 (including the
current pixel) applied to the input image shown in Fig. 3.2. Compared to the
result for k=3 (Fig. 3.7) the smoothing effect is enhanced without the
corresponding disadvantage of a flattened graylevel step.

Exercise 3.5:

Fig. G3.5 shows the result of applying min and max operations to emphasize graylevel steps.

1 10

1

1

1

1

1 1

1

1

1

1

1

1

1

1

3

3

3

3

2

2 5

5

6 8

8

8

8

8

9

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

8

8

8

8

8

9

5

5

3

3

3

6

3

2

2

1

1

1

1

1

2

2

2

2

2

2

2

2

2

0

0

0

0

0

0

0

00

5

4

4

4

7

7

7

7

6

6

6

7

7

5

7

1

Fig. G3.5:

This is an alternative to the procedure shown in Fig. 3.13. Left: Results
of a second lowest (top) and a second highest (bottom) operation
applied to the source image (Fig. 3.8). Right: The absolute difference
between the second lowest and the second highest graylevels yields
the emphasized graylevel step between the dark and the light regions.

G Solutions to Exercises - Chapter 3 Local Operations

Ad Oculos 308

Exercise 3.6:

Fig. G3.6 shows the result of the second iteration of the closest of min and max operator.

101

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

1010

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Fig. G3.6:

The second iteration of the 3 * 3 closest of min and max operator (applied to the
result of the first iteration shown in Fig. 3.15) yields the steepest possible
graylevel step between the dark and the light region.

Exercise 3.7:

Fig. G3.7 shows the application of a 5 * 5 closest of min and max operator. Apart from a small peak
the 5 * 5 operator provides a good result. The peak may be removed by a median operator (Section
3.1.1).

101

10

10

10

10

10

10

10

10

10

10

10

10

10

10

1010

10

10

10

10

10

10

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3

1

1

3

Fig. G3.7:

This is the result of a 5 * 5 closest of min and max operator applied to the new
input image (Fig. 3.16).

G Solutions to Exercises - Chapter 4 Global Operations

Ad Oculos 309

Chapter 4 Global Operations

Exercise 4.1:

In Section 4.4 the DFT was separated into its real and imaginary part as follows:

M 1
1

k m mM
m 0

M 1
1

k m mM
m 0

2 mk 2 mk
A a cos b sin

M M

2 mk 2 mk
B b cos a sin

M M

−

=
−

=

π π= +

π π= −

∑

∑

To simplify the equations we first use real input signals only (bm=0). Furthermore only 8 samples

(M=8) are used. Hence

M 1
1

k m8
m 0

M 1
1

k m8
m 0

2 mk
A a cos

M
2 mk

B a sin
M

−

=

−

=

π= ∑

π= − ∑

G Solutions to Exercises - Chapter 4 Global Operations

Ad Oculos 310

Exercise 4.2:

The spectrum representing the second harmonic is shown in Fig. G4.1.

DFT

0
20 6 751

A
3 4A A A A A A A

0 0 0 0 0 0 0 0
20 6 751

B
3 41

0 0 0 0 0
B B B B B B B

-
2

- 1-
2

0
0

0.50 0 0 0 00.5 0
20 6 751 3 4

0 0 0 0 0-90
o o

90

CART

POL

x

a(x)

1

-1

0
a

0 0 1-1
2

2
- 2

2
- 2

2
-- 2

2
--

a a a a a a a
1 2 3 4 5 6 7

1 2 4 5 63 7

Fig G4.1:

Solution to Exercise 4.2.

G Solutions to Exercises - Chapter 4 Global Operations

Ad Oculos 311

Exercise 4.3:

The spectrum representing the cosinusoidal signal is shown in Fig. G4.2.

DFT

0
20 6 751

A
3 4A A A A A A A

0 0 0 0 0 0
20 6 751

B
3 41

0 0 0 0 0
B B B B B B B

-
2

0 00 0 00 0 0 0 0 0 0
o

CART

POL

001 -1
2

2
- 2

2
- 2

2
-- 2

2
--

x

a(x)

1

-1

00
1-
2

1-
2

1-
2 0 0

o

0
a a a a a a a a

1 2 3 4 5 6 7

0 1 2 4 5 63 7 20 6 751 3 4

Fig G4.2:

Solution to Exercise 4.3.

G Solutions to Exercises - Chapter 4 Global Operations

Ad Oculos 312

Exercise 4.4:

The spectrum representing the DC signal is shown in Fig. G4.3.

DFT

1
20 6 751

A
3 4A A A A A A A

0 0 0 0 0 0
20 6 751

B
3 4

0 0 0 0 0
B B B B B B B

1 00 0 00 0 0 0 0 0 0
o

CART

POL

1

x

a(x)

1

-1

00

0 0

1 1 1 1 1 1 1

00

00

0
a a a a a a a a

1 2 3 4 5 6 70
a a a a a a a a

1 2 3 4 5 6 7

0 1 2 4 5 63 7 20 6 751 3 4

Fig G4.3:

Solution to Exercise 4.4.

G Solutions to Exercises - Chapter 4 Global Operations

Ad Oculos 313

Exercise 4.5:

The spectrum representing the pulse is shown in Fig. G4.4.

DFT

1
20 6 751

A
3 4A A A A A A A

0 0
20 6 751

B
3 4

0
B B B B B B B

o

CART

POL

1

x

a(x)

1

-1

1 0

0

0 0 0 0 0

8
1
8

2
16

2+ 2
16

2 - 2
16

2 - 1
8

2
16

2+ 2
16

1
8

1
8

2
16

2
16

2
16

- --

0.23 0.18 0.1 0 0.1 0.18 0.23 -22.50 -45 -67.5 0 67.5 45 22.5
o o o o o20 6 751 3 4

0
a a a a a a a a

1 2 3 4 5 6 70
a a a a a a a a

1 2 3 4 5 6 7

0 1 2 4 5 63 7

Fig G4.4:

Solution to Exercise 4.5.

G Solutions to Exercises - Chapter 4 Global Operations

Ad Oculos 314

Exercise 4.6:

Fig. G4.5 shows the 2-dimensional sinusoidal signal (first harmonic) and its spectrum.

DFT

0 0 0 0

00

0 0 0 0

00

1 1

-1 -1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 0 0 0

00

0 0 0 0

00

1 1

-1 -1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0.25 0.25

0.25

0.25

-90

-90

90

90

mag ang

Fig G4.5:

Solution to Exercise 4.6.

G Solutions to Exercises - Chapter 4 Global Operations

Ad Oculos 315

Exercise 4.7:

Fig. G4.6 shows the 2-dimensional sine signal (second harmonic) and its spectrum.

DFT

0 0

0

0

0

-1

2
4

1
2

1
2

0

0 1

0

1
2

0.25 0.25

0.25

0.25

-90

-90

90

90

2
4

2
4

_ 2
4

_

2
4

2
2

2
42

__ 2
2

2
4 0

2
42+

1
2

2
42

__ 2
42

__ 1
2

2
42+ 2

42+_

0
2
4

2
42

__ 2
2

2
4 0

2
42+

0 0
2
4

1
2

1
2

2
4

2
4

_ 2
4

_

0
2
4

_
2
42+_ 2

4

_ 2
2

_ 2
2

_
2
42

_

2
42+ 2

42+ 1
2

2
42

_ 2
42

_

2
4

_
2
42+_

0
2
4

_ 2
2

_ 2
2

_
2
42

_

mag ang

Fig G4.6:

Solution to Exercise 4.7.

G Solutions to Exercises - Chapter 4 Global Operations

Ad Oculos 316

Exercise 4.8:

Fig. G4.7 shows the superposition of a sinusoidal signal (second harmonic) and a cosinusoidal signal
as well as the spectrum of the 2-dimensional signal.

DFT

0

0

1
2

0

0-1

0

0.25 0.25

0.25

0.25

-90

0

90

2
4

2
2

2
42

__ 2
2

2
4 0

2
42+

1
20

2
4

0
2
4

_
2
42+_ 2

4

_ 2
2

_ 2
2

_
2
42

_

2
42

_

2
4

2
42+_

0

2
4

2
2

mag ang

2
42+ 2

42+ 1
2 1

2
42

_

00
2
4

_
2
42+_ 2

4

_ 2
2

_ 2
2

_
2
42

_

1
2

2
42

__ 2
42

__

2
4 0

2
4

_ 1
2

2
4

_

1
2

2
42+_ 2

42+_

2
4

1
2

2
4

_ 2
4

_2
4

1
2

2
2 0 0

2
42+

0

Fig G4.7:

Solution to Exercise 4.8.

G Solutions to Exercises - Chapter 4 Global Operations

Ad Oculos 317

Exercise 4.9:

Fig. G4.8 shows the 2-dimensional sinusoidal signal (second harmonic) and its spectrum.

DFT

0 0-1
2
2

1
2

0.25 0.25 -90 90

2
2

2
2

_ 2
2

_

2
2

0

2
2

2
4

2
2

0

2
2

mag ang

0.25 0.25 -90 90

0

0

0

0

0

0

0

0

0

0

0

0

0 0 000

0 0 0 000

1
2

1

1
2

1
2

2
2

_

2
2

_ 1
2

1
2

1
2

1
2

2
2

1
2
2

_
-1

1
2

2
2

1
2

1
2

1
2

02
2

1
2

1
2

1
2

1
2

2
2

2
2

_

Fig G4.8:

Solution to Exercise 4.9.

G Solutions to Exercises - Chapter 4 Global Operations

Ad Oculos 318

Exercise 4.10:

The 4 resulting images are shown in Fig. G4.9.

.114 .114 .114 .114

.1141.114.114

.114.114

.114.114.114.114

.099 .099 .099 .099

.099 .099 .099 .099

.099 .099

.099 .099 .099 .099

.099 .099

.099

.099

.099

.099

.099.099.099.099

.188.188.188.188

.188 .188

.188

.188.188.188.188

.188 .812 .812

.812 .812

.901

.901

.901.901

.901

.901

.901 .901

1.114

1.114 1.114

.011 .011.026.026 .078.078 .114.114

.011 .011.026.026 .078.078 .114.114

.026.026 .063.063 .188.188 .276.276

.026.026 .063.063 .188.188 .276.276

.078.078 .188.188 .526.526 .828.828

.078.078 .188.188 .526.526 .828.828

.114.114 .276.276 .828.828 1.2181.218

.114.114 .276.276 .828.828 1.2181.218

.354.354 .177.177 .073.073 .250.250

.354.354 .177.177 .073.073 .250.250

.177.177 .250.250 00 .427.427

.177.177 .250.250 00 .427.427

.250.250 .500 .500.677 .677 .073.073

.250.250 .500 .500.677 .677 .073.073

.250.250 .427.427 .677.677 .854.854

.250.250 .427.427 .677.677 .854.854

.250 .250 .250.250 .250.250 .250 .250 .250

.250 .250 .250.250 .250.250 .250 .250 .250

.250 .250 .250.250 .250.250 .250 .250 .250

.250 .250 .250.250 .250.250 .250 .250 .250

.250 .250 .250.250 .250.250 .250 .250 .250

.250 .250 .250.250 .250.250 .250 .250 .250

.250 .250 .250.250 .250.250 .250 .250 .250

.250 .250 .250.250 .250.250 .250 .250 .250

Fig G4.9:

Solution to Exercise 4.10.

G Solutions to Exercises - Chapter 4 Global Operations

Ad Oculos 319

Exercise 4.11:

No, as Fig. G4.10 shows the magnitude is not invariant to rotation.

10

0

00.625

0.408

0.169

180

-112.5

112.5

22.5

-157.567.5

-22.5

-67.5 157.5

DTF

10

10

10

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0.408 0.4080.408 0.408 0.408 0.408 0.408

0.408 0.408 0.4080.408 0.408 0.408 0.408 0.408

0.169 0.169 0.169 0.169 0.169 0.169 0.169

0.169 0.169 0.169 0.169 0.169 0.169 0.169 0.169

0.625 0.625 0.625 0.625 0.625 0.625 0.625

-112.5-112.5-112.5 22.5 22.5 22.5

0 0 0

0 0 0 00 0 0 0

180 180 180

67.5 -157.5-157.5 -157.567.5 67.5

0 0 0 00 0 0 0

0 0 0 00 0 0 0

-67.5 157.5 -67.5 157.5 -67.5 157.5

112.5 -22.5 112.5 -22.5 112.5 -22.5

Fig G4.10:

Solution to Exercise 4.11.

G Solutions to Exercises - Chapter 4 Global Operations

Ad Oculos 320

Exercise 4.12:

No, as Fig. G4.11 shows the magnitude is not invariant to rotation.

10

0

0.625

0.408

DTF

10

10

10

0.169

-112.50 67.5

-67.5

112.5

0.625

0.625

0.625

0.625

0.625

0.625

0.625

0.408 0.408

0.408

0.408

0.408

0.408

0.408

0.408

0.408

0.169

0.169

0.169 0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0.169

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.408

0.408

0.408

0.408

0.408

0.408 0

0

0

0

-112.5

-112.5

-112.5

-112.5

-112.5

-112.5

-112.5

-62.5

67.5

67.5

67.5

-62.5

-62.5

-62.5

-62.5

-62.5

112.5

112.5

112.5

112.5

112.5

112.5

112.5

67.5

67.5

67.5

67.5 -67.5

00 0

0 0 0 0

0 0 0 0

0 00 0

0 0 0 0

0 0 0 0

0000

0 0 0 0

Fig G4.11:

Solution to Exercise 4.12.

G Solutions to Exercises - Chapter 5 Region-Oriented Segmentation

Ad Oculos 321

Chapter 5 Region-Oriented Segmentation

Exercise 5.1:

The result of applying the "wrong" thresholds 2.5 and 8.5 are shown in Fig. G5.1 and Fig. G5.2.

10

5

10

10 10

10

10

10

10

10

10

10

15

15

15

15

15

15

15

15

15

15

15

1515

15

15

15

15

15

151515

20

20

20 20

20

20

1010 10

10 10 10 12

12

12

12

12

12

12

12

12

125 5 5 7

71111

Fig G5.1:

A threshold of 2.5 applied to the source image shown in Fig. 5.2 yields a '1'
region which is larger than that obtained by the threshold defined by the
procedure shown in Fig. 5.2.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Fig G5.2:

A threshold of 8.5 applied to the source image shown in Fig. 5.2 yields a '1'
region which is smaller than that obtained by the threshold defined by the
procedure shown in Fig. 5.2.

Exercise 5.2:

The manipulated histogram is shown in Fig. G5.3. Fig. G5.4 shows the new label image.

Graylevel

Occurrence

Graylevel5 10 15 20 25

20

10

30

40

0

39

18

7

2 4

26

19

28

16

9
5 31 43 3 4 3 3

1 2

Fig G5.3:

Averaging the original histogram shown in Fig. 5.4 fills the valley at graylevel 19 up.
Thus only 2 thresholds have to be applied.

G Solutions to Exercises - Chapter 5 Region-Oriented Segmentation

Ad Oculos 322

0 00 0 0 0 0 0 0 0 00 0 0 0 0

0 00 0 0 0 0 0 0 0 00 0 0 0 0

0 00 0 0 0 0 0 0 0 00 0 0 0 0

0 00 0 0 0 0 0 0 0 00 0 0 0 0

0 00 0 0 0 0 0 0 0 00 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11

1

1 1 1 1 1

1

1

2 2 2

2 2 2 2 2

2222

2222

2222

Fig G5.4:

The thresholds found in the manipulated histogram (Fig. 5.3)
applied to the source image (Fig. 5.3) yield the correct
segmentation.

Exercise 5.3:

Fig. 5.5 shows the label and mark image.

33 3

33

3 3

2

2

2

222

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 1

1

1

1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 11 1 1

1 1 1 11

00000

00000

a a

a a

a a

b

b

b

bbb

bb

b

b

b

b

bb

b

b

b

b

b

b

b

c c c

c c c

c c c

c c c

c c cc c c

c c c c c

e e

e e

Label image Mark image

Fig G5.5:

This is the result of Exercise 5.3. The label image is obtained segmenting
the source image shown in Fig. 5.35 using the thresholds 8, 13 and 17. The
connectivity analysis yields 5 different regions plus background. Note that
region 'b' is superfluous if we interpret its original graylevel (Fig. 5.35) as
transition between region 'a' and 'c'.

G Solutions to Exercises - Chapter 6 Contour-Oriented Segmentation

Ad Oculos 323

Chapter 6 Contour-Oriented Segmentation

Exercise 6.1:

The results of the application of the gradient masks shown in Fig. 6.35 to the source image (Fig. 6.3)
are shown in Fig. G6.1 and Fig. G6.2.

5

5

5

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0

0

10

5

5

5

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0

0

7

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

7

77

77

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0

0

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

0 0

0 0

0 0

0 0

0 0

-5 -5

-5 -5

-5-5

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0

0

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

00

0

0

0

0

0

90 90

90 90

90 90

90 90

45 45

45 45

4545

Magnitude

Direction

x

y

1

-1

1-1

10

10

1010

10

1010

10

1010

00

10 10

14

1010

14

10 10

14

1010

00

45

45

45

00

-10

-10

-10

1

-1

1-1

Fig G6.1:

In comparison to the result of the simple gradient operator shown in Fig. 6.4
the improvement of this 2 * 2 mask is negligible.

G Solutions to Exercises - Chapter 6 Contour-Oriented Segmentation

Ad Oculos 324

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0

5

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

0

0

000

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0

0

7

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

000

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0

0

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

000

0 0

0 0

-5 -5

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0

0

0 0

0

0

0

0

0

0

00

0

0

0

0

0

0

000

63 68

Magnitude

Direction

x

y

1-1

25

10

10

00

22

00

45

00

-10

1-1

00

1020

2025 5

5

25

1020 25

20

5 25 1020

10 2025 5

00

27 11

11 27 22 7

7 22 27 11

11 27 22 7

7 22 27 11

11 27 22 7

00

63

63 6368 45

63 6845 63

63 6368 45

63 6845 63

63 6368 45

-10

-5 -5-10 -10

-5 -5-10 -10

-5 -5-10 -10

-5 -5-10 -10

-5 -5-10 -10

1-1 0

0

0

1

0

-1

1

0

-1

1

0

-1

Fig G6.2:

Compared to the results shown in Fig. 6.4 and Fig. 6.1, this 3 * 3 gradient
operator yields superior results.

Exercise 6.2:

The neighborhood relations and the local maxima are shown in Fig. G6.3, the results of the similarity
check are depicted in Fig. G6.4.

0

Neighbors Local maxima

0 0

0

0

000

38 25

45 44 31

3953580

0 65 65 52

45 68 70 66 38 343

346

346

342

325 329

326

333

335

332

325

318 321

329

335

335

329

323

23

13

56

62

68

70

72

73 73

73

7375

69

59

59

52

0

336

70

0

7

223

234

229

228

231 197 208 243

Fig G6.3:

This is the result of the first step of a non-maxima suppression applied to
the source image shown in Fig. 6.36.

G Solutions to Exercises - Chapter 6 Contour-Oriented Segmentation

Ad Oculos 325

223

234

229

208

223

234

229

228

208 243

223

234

229

228

231 208 243

5+- 10+-

15+-

Fig G6.4:

This is the result of the similarity check applied to the local maxima image
shown in Fig. G6.3.

Exercise 6.3:

Fig. G6.5 shows the result of the 4-to-8 transform starting bottom right.

Start Result

Fig G6.5:

In this variation of the example shown in Fig. 6.13 the
processing starts bottom right. Note that the results
differ.

G Solutions to Exercises - Chapter 6 Contour-Oriented Segmentation

Ad Oculos 326

Exercise 6.4:

Fig. G6.6 shows the result of the refined 4-to-8 transform applied to the chain of contour points shown
in Fig. 6.37.

Start

Result

Fig G6.6:

The application of the refined 4-to-8 transform on the chain shown in Fig.
6.37 yields a convincing result.

G Solutions to Exercises - Chapter 6 Contour-Oriented Segmentation

Ad Oculos 327

Exercise 6.5:

The result of the linking procedure is shown in Fig. G6.7.

a a a

a

a

a

a

a

a

aaa

d

d d

d

d

d

d

bb

c

c

c

c

Fig G6.7:

This is the result of the linking procedure applied to the image shown in Fig.
6.38.

G Solutions to Exercises - Chapter 7 Hough Transform

Ad Oculos 328

Chapter 7 Hough Transform

Exercise 7.1:

Because in the accumulator parallel lines are indicated by equal θ values.

Exercise 7.2:

The accumulator resulting from the application of the Hough transform to Fig. 7.18 is shown in Fig.
G7.1.

0

0

0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

00

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

1

0

1

1

1

4

4

44

4

5

6

7

8

3

2

1

0

-1

-2

-3

-4

0 45 90 135

r

Fig G7.1:

This is the result of the Hough transform applied to the gradient image shown in Fig.
7.18. The four 4-entries are caused by the 16 vertically and horizontally oriented
contour points representing the borders of the square, while the four 1-entries
represent its corners.

Exercise 7.3:

Fig. G7.2 shows the straight lines obtained from the accumulator shown in Fig. G7.1.

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0
x

y

r= 1
= 90

r= 1
= 45

r= 1
= 0

r= 4
= 135

r= 6
= 90

r= 6
= 0

r= -4
= 135

r= 8
= 45

Fig G7.2:

The diagonal straight lines extracted from the
accumulator (Fig. 7.1) are displaced by one pixel. This
is due to the quantization effects calculating r and the
intersection points at the image border.

G Solutions to Exercises - Chapter 7 Hough Transform

Ad Oculos 329

Exercise 7.4:

The correctly placed straight lines are shown in Fig. G7.3.

0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

Fig G7.3:

Avoiding quantization leads to an exact placement of the straight lines.

G Solutions to Exercises - Chapter 8 Morphological Image Processing

Ad Oculos 330

Chapter 8 Morphological Image Processing

Exercise 8.1:

The result shown in Fig. G8.1 demonstrates the duality of erosion and dilation.

Dilation

Erosion

Fig G8.1:

The solution to Exercise 8.1 demonstrates the duality of erosion
and dilation.

Exercise 8.2:

The procedure is depicted in Fig. G8.2.

Erosion Dilation

Dilation

Erosion

Fig G8.2:

The solution to Exercise 8.2.

G Solutions to Exercises - Chapter 8 Morphological Image Processing

Ad Oculos 331

Exercise 8.3:

The result of contour extraction is shown in Fig. G8.3.

Erosion

XOR

XOR

Erosion

Fig G8.3:

The solution to Exercise 8.3.

G Solutions to Exercises - Chapter 8 Morphological Image Processing

Ad Oculos 332

Exercise 8.4:

The results shown in Fig. G8.4 and Fig. G8.5 demonstrate that the skeleton procedure described in
this chapter has to be applied carefully since it may be destructive.

Start

Erosion Dilation

Erosion Dilation

XOR

XOR

OR

Fig G8.4:

This is the first part of the solution to Exercise 8.4. See also Fig. G8.5.

G Solutions to Exercises - Chapter 8 Morphological Image Processing

Ad Oculos 333

Start

Erosion Dilation

Erosion Dilation

XOR

XOR

OR

Fig G8.5:

This is the second part of the solution to Exercise 8.4.

G Solutions to Exercises - Chapter 9 Texture analysis

Ad Oculos 334

Chapter 9 Texture analysis

Exercise 9.1:

The graylevel mean (5) and variance (25) is identical for both images.

Exercise 9.2:

The results of the local graylevel mean and variance operations are shown in Fig. G9.1.

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0000000

3

3

3

3

3

37

7

7

7

7

7

10

10

10

10

10

10

10

10

10

10

10

10

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0000000

6

6

6

6

6

6 4

6

6

6

6

6

6

6

6

6

6

6

6

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0000000

0

0

0

0

0

0

0

0

0

0

0

0

22

22

22

22

22

22

22

22

22

22

22

22

0 0 0 0 0 0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0000000

25 25 25 25 25 25

25 25 25 25 25 25

25 25 25 25 25 25

25 25 25 25 25 25

25 25 25 25 25 25

25 25 25 25 25 25

(a) Mean (b) Mean

(b) Variance(a) Variance

Fig G9.1:

Solution to Exercise 9.2.

G Solutions to Exercises - Chapter 9 Texture analysis

Ad Oculos 335

Exercise 9.3:

The co-occurrence matrices are shown in Fig. G9.2, Fig. G9.3 and Fig. G9.4.

000

0 0 0

00 1

4

4

7

7 4 426

000

0 0 0

00 2

4

4

5

7 4 221

300

0 3 0

05 2

1

239

1

1 1

2

00

0 0

0

19 4

7

0

0

0

0

4

4

4

7

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

a

b

a

b

a

b

a

b

a b

a

b

a

b

a

b

Fig G9.2:

Solution to Exercise 9.3 (a).

G Solutions to Exercises - Chapter 9 Texture analysis

Ad Oculos 336

00

0

0

0

0

37

000

0 0 0

00

4

4

7 419

3 0 0

0 0

0

1

627

4

7

0

0 0

0

21 4

0

0

0

0

4

4

7

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

a

b

a

b

a

b

a

b

a b

a

b

a

b

a

b

1

1

1 1

2

2

3

3

5

7

4

0

4 4

00

0

5

2 2

Fig G9.3:

Solution to Exercise 9.3 (b).

G Solutions to Exercises - Chapter 9 Texture analysis

Ad Oculos 337

00

0 0

0

30

00

0 3 0

05

132

3 0 0

0 0

0

1

627

4

7

0

0 3

3

27

0

0

0

0

1

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

a

b

a

b

a

b

a

b

a b

a

b

a

b

a

b

4

2

6

0

4 4

00

0

6

2

0

0

0

4

4

4

1 1

1

1

1 3

1

0

1

3

3

Fig G9.4:

Solution to Exercise 9.3 (c).

G Solutions to Exercises - Chapter 10 Pattern recognition

Ad Oculos 338

Chapter 10 Pattern recognition

Exercise 10.1:

For rejection level 2 the class centers are z = {10 Francs, 5 Marks, 1 Pound, 2 Francs, 1 Krone, 1 Mark,
5 Cents, 10 Pfennings, 1 Pence, 10 Øres}. The following classes were generated:

k0 = {10 Francs},

k1 = {5 Marks},

k2 = {1 Pound},

k3 = {2 Francs, 2 Marks},

k4 = {1 Krone, 1 Franc},

k5 = {1 Mark, 1 Quarter},

k6 = {5 Cents, 1/2 Franc},

k7 = {10 Pfennings, 25 Øres, 20 Centimes},

k8 = {1 Pence, 10 Centimes},

k9 = {10 Øres, 1 Cent}.

For rejection level 3 the class centers are z = {10 Francs, 5 Marks, 1 Pound, 2 Francs, 1 Krone, 1 Mark,
5 Cents, 10 Pfennings, 10 Øres}. The following classes were generated:

k0 = {10 Francs},

k1 = {5 Marks},

k2 = {1 Pound},

k3 = {2 Francs, 2 Marks},

k4 = {1 Krone, 1 Franc},

k5 = {1 Mark, 1 Quarter},

k6 = {5 Cents, 1/2 Franc},

k7 = {10 Pfennings, 25 Øres, 20 Centimes, 1 Pence},

k8 = {10 Øres, 10 Centimes, 1 Cent}.

For rejection level 4 the class centers are z = {10 Francs, 2 Francs, 1 Franc, 5 Cents, 25 Øres, 10
Øres}. The following classes were generated:

k0 = {10 Francs, 5 Marks, 1 Pound},

k1 = {2 Francs, 2 Marks, 1 Krone},

k2 = {1 Franc, 1 Mark, 1 Quarter},

k3 = {5 Cents, 1/2 Franc, 10 Pfennings, 1 Pence},

k4 = {25 Øres, 20 Centimes},

k5 = {10 Øres, 10 Centimes, 1 Cent}.

For rejection level 5 the class centers are z = {10 Francs, 2 Francs, 1 Franc, 5 Cents, 20 Centimes, 10
Øres}. The following classes were generated:

k0 = {10 Francs, 5 Marks, 1 Pound},

k1 = {2 Francs, 2 Marks, 1 Krone},

k2 = {1 Franc, 1 Mark, 1 Quarter},

k3 = {5 Cents, 1/2 Franc, 10 Pfennings, 25 Øres, 1 Pence},

k4 = {20 Centimes},

k5 = {10 Øres, 10 Centimes, 1 Cent}.

G Solutions to Exercises - Chapter 10 Pattern recognition

Ad Oculos 339

For rejection level 6 the class centers are z = {10 Francs, 2 Marks, 1 Mark, 1 Pence}. The following
classes were generated:

k0 = {10 Francs, 5 Marks, 1 Pound, 2 Francs},

k1 = {2 Marks, 1 Krone, 1 Francs},

k2 = {1 Mark, 1 Quarter, 5 Cents, 1/2 Franc, 10 Pfennigs, 25 Øres, 20 Centimes},

k3 = {1 Pence, 10 Øres, 10 Centimes, 1 Cent}.

Exercise 10.2 (a):

The center for the sample class ‘a’ is (x=4.7, y=11.3) the radius of its close border is 2.3 the radius of
the wider border is 4.3. Sample class ‘b’ is positioned at (x=11.7, y=4.0). The borders are 3.0 and 6.3.

G Solutions to Exercises - Chapter 11 Image sequence analysis

Ad Oculos 340

Chapter 11 Image sequence analysis

Exercise 11.1:

Tab. G11.1 shows the movement of the pixels whilst the needle image is shown in Fig. G11.1.

r0 c0 r1 c1

2 2

2

2

2

2

8 8

8 93

4

5

8

2

10

10

11

8

6

12272

23 9 8

9 93 3

3

3

4 9 10

10

11

9

33

5

6

3 37 12

10 824

4 10 93

4 4 10

10

10

10

10

10

12

13

4

4

4

5

6

7

r0 c0 r1 c1

8

10

10

10

9

25

5 3

5

5

4

5

10

10 10

10 125 6

5 7 10 13

1226 8

912

12

12

10

10

36

6

6

6

6

4

5

6

7

4

4

11

12

132 8

13

13

13

13

13

7

7

7

7

7

7 3

4

5

6

7

9

10

10

11

12

Tab. G11.1:

This table shows the movement of the pixels asked for in Exercise
11.1.

G Solutions to Exercises - Chapter 11 Image sequence analysis

Ad Oculos 341

0

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. G11.1:

This is the needle image asked for in Exercise 11.1.

Index

4-connected 169
4-connected neighborhood

162
6-connected neighborhood

162

A
accumulator 198
actuator 8
aperture problem 278
area 124

B
background 222
Bayes 268
binary image 8, 119
bit-plane slicing 36
blob coloring 123, 165
bounding rectangle 163
box filter 53

C
camera 3
CCD camera 7
center of gravity 124
central pixel 52
chain of contour points

169, 176
circle-to-point transform

216
closest of min and max 59
closing 222
color image 8
compactness 124, 256
component labelling 123
component marking 123
computer graphics 1
computer network 8
connectivity analysis 165,

175
contour linking 175
contour point linking 165
contrast 245
contrast enhancement 28
contrast histogram 162
co-occurrence matrix 245
correlation 279

correspondence problem
278

crack edges 192
cross-correlation 74
current pixel 52

D
desktop publishing 1, 74
DFT 78
dilation 221
discrete Fourier transform

78
distance-versus-angle

signature 124

E
eccentricity 163
energy 245
entropy 245
equivalence list 143
erosion 221
Euler equation 299

F
feature 119, 256, 257
Fourier analysis 78, 252
Fourier transform 78, 245
frame grabber 7
frame problem 4
functional 297
fundamental frequency 79

G
Gaussian 269
Gaussian low-pass 53
geometrical 266
global linking 191
gradient 189
gradient direction 165
gradient magnitude 165
gradient operation 57, 165
gradient operator 62, 165
gray scale modification 28
graylevel 3, 8
graylevel histogram 28,

119, 120
graylevel pattern 52

H
high-pass 108
histogram equalization 33
Homogeneity 245
Hough transform 197

I
ideal gradient operation

167
illumination techniques 5
image acquisition 7
image analysis 2
image initialization 53
image manipulation 1, 74
image transmission 1
industrial image processing

4
inhomogeneous

illumination 37
interpixel model 192

K
k nearest neighbor filter 54
knowledge engineer 4
knowledge-based systems

4

L
label 119
Laplace operator 189
Laplacian operator 55, 56,

62
light meter 3
light sensitive device 3
line scan camera 37
line-scan camera 7
line-to-point transform 197
local convolution 74, 189
look-up table 30
low-pass 108

M
Mahalanobis 269
mark 119
mask 52
max operator 54, 60, 76
mean operator 60
meaning 119
meanings 4
median operator 54, 60
min operator 54, 60
minimum 258
morphing 221
Multivariate 269

N
non-maxima absorption

190
non-maxima suppression

168, 190

Index

Ad Oculos 343

non-supervised 258
normal representation 197
numerical 266
Nyquist frequency 81

O
opening 222
orientation 163

P
parametric 269
perimeter 124
picture element 8
pixel 8
pixel clock 7
pixel value mapping 28
polar distance 124
Prewitt operator 55, 56, 62
pseudo-color representation

8

R
rank filter 74
real-time image processing

8
region growing 162

rejection 256
relaxation 190
retina 3
robot 8

S
salt-and-pepper noise 61,

320
sampling 10
scene analysis 2
segmentation 119
shading 37
skeleton 226
smoothness constraint 287
Sobel operator 168
spatial domain 78
spatial frequency domain

78
spatial graylevel

dependence matrix 245
split-and-merge 162
structural description 165
structural features 176
structured light 7, 7
structuring 241
structuring element 221
supervised 258
symmetry 163

T
thinning 168
thresholding 36, 119
time domain 78
top surface 240
tracking 199
turn-key system 8

U
umbra 240

V
velocity field 278
visual inspection 3

W
weighted mean 53

Z
zero-crossing 189
zero-crossing operator 190

