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1 Introduction 

1.1 What can image processing be used for? 

The first step in answering this question is to structure the subject of digital image processing into its 
applications. Five typical areas of application are (Fig. 1.1): 

 

Defect!

Item

(a)

(b)

(d)

(e)

(c)

 

Fig. 1.1: 

Typical application areas of digital image 
processing are (a) computer graphics, (b) 
image transmission (c) image manipulation, 
(d) image analysis and (e) scene analysis. 

 
Computer Graphics deals with the generation of images in such domains as desktop publishing, 

electronic media and video games. 

Image Transmission describes the transportation of images via cable, satellite or any kind of data 
highway. One important topic of image transmission is image compression to reduce the 
enormous amount of data required for digital images. 
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Image Manipulation performs such tasks as the enhancement of noisy images, the enhancement of 
blurred images (e.g. caused by bad focussing or jumping), geometrical correction (especially of 
satellite images), the improvement of contrast, and changes for artistic purposes. 

Image Analysis is used for such tasks as identifying printed or handwritten characters, for checking 
the measurements of workpieces, for checking the accuracy of PCB manufacture, for 
classifying wooden panels with respect to surface failures, for inspecting the garnishment of 
cookies, for analyzing cellular substances (e.g. biopsies) and for detecting environmental 
pollution from aerial photographs. 

Scene Analysis is one of the most fascinating facets of image processing. A typical application is the 
„electronic eye“ of autonomous vehicles (i.e. exploratory robot space craft). Scene analysis is 
however particulary difficult to implement and is one of the topics the scientific community 
must continue to work hard on to obtain useful systems. 

Inevitably these areas of application are not clear cut and tend to overlap. Nevertheless, this book is 
devoted to the subjects image manipulation and image analysis. The examples of these subjects 
mentioned above are only a few typical areas of application. In principle, image analysis procedures 
are applicable in those tasks where human beings have to perform monotonous visual inspection 
duties or where accurate measurements at a glance are required. Moreover these procedures offer 
new functionalities for visual inspection. For instance they allow inspection problems to be solved with 
extreme speed. 

In contrast to the theoretical possibilities, many serious obstacles arise when practical implementation 
is called for. To estimate these requires adequate expert knowledge which can only be acquired from 
long standing experience. However, there are many books which introduce digital image processing. 
The reference list ([1.1] to [1.28]) is a selection of some recent books. 

1.2 Back to basics 

The aim of this section is to illustrate the special aspects of image analysis which (in contrast to image 
manipulation) tries to extract information from an image. This illustration is based on the roots of 
image analysis, namely the camera. Fig.1.2 (a) shows a light sensitive device as a very simple form of 
camera. This sensor only responds to “light” or “no light”. It provides a binary output. 

Fig. 1.2 (b) shows a more sophisticated light meter which measures the degree of brightness or 
intensity (which is called a graylevel in the context of image processing) of a light source. Simple 
animals (like snails) use such a light meter as a protective indicator of excessively sunlight which 
would dry them up. Thus biological as well as engineering systems are able to use such simple 
sensors in order to analyse their world. 
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Fig. 1.2: 

Different forms of light sensors: A light sensitive device (a), a light meter (b) and a 
camera (c). 

 
Bundling a lot of light meters together as shown in Fig. 1.2 (c) produces a camera or referring to 
biology, a retina. It is very important to understand that the measurements which this sensor provides 
is only the individual light intensities measured by each of the light meters together with their relative 
positions. Based on these measurements computers and brains have to extract useful information 
about the environment in which they are located. 

Humans easily derive and express information in symbolic qualitative statements such as “the tree in 
front of the cabriolet is an oak”. They do not easily produce precise numeric statements of the form 
“the rod at position (x,y) measures the light intensity z”. However, the latter form of statement is 
precisely that derived from artificial sensor systems. 

To get a feeling for the problems faced by specialists consider Fig. 1.3. It shows a satellite image of 
Cologne. Asking a geologist, a hydrologist and a botanist to deliver an interpretation of the satellite 
image would produce 3 fairly different results since the image has different meanings to each of these 
experts. But what does an image mean for a PC? Nothing! The image is only an array of numbers. 

 

 

Fig. 1.3: 

A satellite image of Cologne. Asking a geologist, a hydrologist and a botanist to deliver 
a line drawing of the image would yield 3 fairly different results since the image has 
different meanings to each of the experts. 

 
This problem is well-known in the technical community and it leads to the developement of so-called 
knowledge-based systems. The knowledge is entered (or better: is forced) into the system with the aid 
of a knowledge engineer, i.e. a person, who tries to put as much human knowledge and 
understanding into the computer as is necessary for the task (e.g. analyzing a scene). 
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Although such systems are sophisticated, they are not very successful comparison to biological 
systems. They suffer from what is known as the frame problem, i.e. they are engineered for a very 
specific set of circumstances and are not able to autonomously adapt themselves to other situations. 
They need to have explicit knowledge concerning an environment as well as their own possible 
behaviour (e.g. for obstacle avoidance).Their learning strategy is predetermined and externally 
controlled. Their understanding of the world is not their own, but only a small fraction of the 
knowledge engineer’s. 

To overcome these problems of this classic artificial intelligence approach, scientists have suggested 
new ones with names like Instinct-Based Systems, Motivational-Based Systems, Artificial Life and 
Animates (which is the short form of Animal-automate, see [1.17]). 

Summary: 

• Processing images with computers when precise measurements are needed (e.g. in the context of 
industrial image processing) is a good choice. Computers execute their tasks fast and precisely if 
the tasks are fully defined. This book has been written from this point of view, focussing on 
realizable systems. 

• Processing images with computers when these images are to be used to enable autonomous 
robots to „see“ has been much less succesful. Investigations to improve this situation often try to 
use autonomous biological systems (animals) as models. Autonomous in this sense is used to mean 
that the system is only controlled by internal parameters (ultimately pleasure and distress). 

1.3 The basic components of image processing systems 

Fig. 1.4 shows a typical scenario for an industrial image processing system the task of which is to 
inspect components and to classify them as complete or defective. 

 

Camera

Rejecter

Image

analysis

reject item!

 

Fig. 1.4: 

Typical scenario for an industrial image processing system. 

 
Illumination: The success of most existing industrial image processing systems is fundamentally 

based on adequate illumination. There are several standard alternatives for illumination (Fig. 
1.5): 

(a) Uncontrolled light is a particular challenge. 

(b) The object is positioned between camera and light so that the camera yields a silhouette of 
the object. 
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(c) The relative positions of object, light and camera play an important role: imagine inspecting 
a surface in order to check it for scratches (for instance a disc). Typically one orientates the 
object so that the scratches have a high contrast relative to their background. 

(d) Surfaces may be illuminated homogeneously or with with special patterns of light 
(structured light). 

(e) In the case of moving scenes flashing strobe light is used to “freeze” the image. 

 

(b)

(c)

(d)

(a)

(e)

 

Fig. 1.5: 

These are examples of typical forms of illumination: 
(a) Uncontrolled light (typical for outdoor scenes), (b) 
analysis of an object’s silhouette, (c) checking a disc 
for scratches, (d) 3D analysis with the aid of light 
strips, structured light (e) freezing movement by a 
flashing strobe. 

 
Besides visible light other types of radiation such as X-rays, infra-red light and ultrasonic sound 
sources may be used. 

Acquisition: As we have seen in the previous section, it all starts with rays of light. They are reflected 
by the object, go through the lens and finally encounter the CCD. And it is there, on the chip, 
that the image is created. From a programmer's point of view this image is already digital. 
Section 1.4 describes how to transfer this image into the computer. 
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Processing: The task for the computer is to acquire and process images and, should the occasion 
arise, to control any kind of actuator. In a simple case, the computer is a PC with interfaces to a 
camera and to an actuator. However, special image processing computers are often used. 
These computers need not be expensive, because it is often possible to realize a sophisticated 
configuration with the aid of standard components (hardware and software). Alternatively, 
using components which have to be custom developed for special applications (e.g. in the 
context of real-time image processing) leads to drastic cost increase. 

In the context of a complex production process, the image processing computer is usually part 
of a large computer network and its integration may require considerable effort. 

In an industrial environment “turn-key” systems which lack a keyboard and a monitor are often 
found. However, use of video monitors is advisable for diagnostic purposes such as checking 
the system’s image acquisition capability. 

A typical software development system for image processing algorithms consists of a library of 
standard procedures, tools for realizing new algorithms (high-level language, debugger, etc.) 
and a comfortable user interface. 

Action: The type of actuator is highly dependent on the type of application. Actuators range from 
simple systems which control valves to complex robots. In any case, the image processing 
computer must be able to control the actuator(s) efficiently. 

The description of these four components illustrate, that “pure” image processing plays only a minor 
role in the context of visual inspection in an industrial environment. This is a fact which is often 
ignored or underestimated. 

This book focuses on the algorithms of image processing. Thus, one only needs a PC running 
AdOculos (Section 1.6) to become familiar with this subject. For further experiments it is advisable to 
use a frame grabber supported by AdOculos in order to obtain images from a standard video source. 

1.4 Image Acquisition 

Let us imagine you would like to buy a piece of image processing software and take a look at the 
minimum system requirements on its box. In the system requirements list, you would expect to see 
the minimal processor speed, minimal RAM etc. Now imagine, that in that very same list was 
specified that only a mouse from manufacturer XYZ may be used with the software.  

Would you buy the software? Obviously, if you had no other choice because no other solution existed, 
you would. However, you would be breaking one of the golden rules of professional programmers: 
You would be making yourself dependant on a software manufacturer that does not respect the 
standards. 

Professional programmers never access a driver or even hardware directly, but they use APIs 
(Application Programming Interface) provided by the operating system. In our case, that would be the 
so-called "mouse API". 

In line with such standardization, mouse manufacturers offer an interface that does not fit specific 
application software, but the operating system. Thus, one of the main tasks of a modern operating 
system is to strictly separate application software and hardware. As long as we consider the humble 
mouse, every programmer of image processing software follows this golden rule. 

Going back to the system requirement list on the software box, we would never find the specification 
of a mouse, however, we would encounter a list of frame grabbers and more recently FireWire 
cameras that are supported by the software. The existence of such a list means nothing else than the 
violation of the golden rule. 

This situation of unacceptable incompatibility leads to complicated setups for the most basic part of 
image processing – the "image acquisition" step. 

Let us look for a solution to this problem, by starting right at the very beginning. 
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1.4.1 A short review 

The pioneers of image processing started their first attempts with the help of tube-based cameras 
("Vidicons"), video monitors and so-called "mini computers" – such as the famous PDP-11. With these 
components, however, our pioneers had two typical problems: 

The first problem was the video standard-based (for instance CCIR) output signal of these cameras. 
These analog signals, coming from the world of television, had to be connected somehow to a digital 
computer. 

The second problem was quite simply the enormous amount of data that makes us a video stream. 
Let us take a CCIR signal as an example. With a resolution of 768 x 576 pixels and 25 images per 
second, we have to deal with 10 MByte of data per second. Even by today’s standards, this is not a 
trivial data rate. In the old days, this went beyond the resources of a common computer. 

The solution to both problems was the development of a so-called "image memory" which consisted 
of 3 parts: 

• an A/D converter to digitize the video signal, 

• the memory itself and 

• a D/A converter to visualize the memory's content on an (analog) video monitor. 

Such image memory was located outside the computer and was connected to the computer via - from 
the today's point of view – a slow digital interface. 

Obviously, such products were extremely expensive and therefore only used by a few specialists. This 
situation changed with the spread of the famous IBM PC and thus the PCI bus. With this new 
infrastructure, the external image memory became an ISA card (called a "frame grabber"). This resulted 
in price cuts and the base for an enormous spread of image processing. 

Today, we naturally work with PCI frame grabbers, while the image memory is usually part of the 
computers memory. The PCs graphics system replaces the "old" video monitor. 

From the point of view of the interfaces, things have not changed very much. This is especially true for 
software, as every grabber manufacturer develops their proprietary method of accessing the grabber. 
Therefore, any piece of application software that is to become widespread has to be adapted to 
various different grabbers. This situation results in long lists of "supported grabbers" which we find in 
the system requirements of image processing software. 

The birth of CCD cameras 

In parallel to the development of frame grabbers, camera manufacturers have substituted tubes with 
CCD chips. The idea of a CCD is simple. We can imagine it as a memory chip without a "top". Thus, the 
memory cells can be reached by rays of light. Due to the so called "photo effect", these rays of light 
create negative charge (electrons) in these cells. 

After exposure, this charge may be accessed to be used for further processing steps. In the eyes of a 
programmer, that image is already digital (Fig. 1.6). Therefore, the programmer may think that s/he is 
able to access the memory (called "CCD") directly. 

 

CCD

PROGRAMM Image_acquisition
.

Image : ARRAY [Row] [Col] OF BYTE
.

BEGIN
.

Image <- get_ccd_content
.

END

 

Fig. 1.6: 

Following the abstract view of a 
programmer the content of a 
CCD chip is already a digital 
image. 
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But actually the majority of CCD cameras are not produced for programmers, but for the world of 
television and video. Therefore, instead of its digital nature, at its output, a CCD camera has to behave 
like an old tube-based camera. Thus, almost all CCD cameras in the world are based on an analog 
video standard such as CCIR for instance. 

So also here things have not really changed since the old times of the pioneers - at least concerning 
the interfaces. However, regarding the prices today, the cameras are by no means devices that are 
used by a few specialists only. 

1.4.2 The 4 steps towards an improvement 

Fig. 1.7 depicts the consequences of the situation described in the section above. At the beginning of 
the chain, we have a camera which is based on a digital sensor (the CCD) but yields an analog video 
signal. Therefore, we need a frame grabber to digitize (or better re-digitize) the analog signal. The 
grabber manufacturer also provides a proprietary driver and an SDK (Software Development Kit). Using 
these tools, programmers can develop their application software. In this way, the application software 
and the frame grabber are more or less one unit. If this application software is to run with frame 
grabbers from other manufacturers, it has to be adapted to this frame grabber using the SDK of its 
manufacturer. 

 

Cable: coax Analog

grabber

Application software

Driver: proprietary

SDK: proprietary

Analog

camera

A

D
D

A

 

Fig. 1.7: 

The status quo of proprietary in-
terfaces. 

 

First step 

The first improvement is the use of a camera with a digital output which thereby yields the CCDs 
content directly (Fig. 1.8). The improvement is due to avoidance of any interference caused by the D/A 
conversion (in the camera), the analog transmission and the A/D conversion (in the frame grabber). But 
although we now have a digital camera, we still need a grabber - a so-called "digital frame grabber". 
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Cable:
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CameraLink

Digital

grabber
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Analog

camera

or

 

Fig. 1.8: 

Digital systems do not neces-
sarily solve the problem of 
prorietary interfaces. 

 
We need such a grabber, since when the first digital cameras have been developed there was no 
standard for digital interfaces that met the requirements of measurement oriented image processing. 

Therefore, at the hardware level - as well as at the SDKs level - all problems of proprietary interfaces 
remain. 

Second step 

The second improvement is the use of the FireWire bus (alias "IEEE 1394", Fig. 1.9). Contrary to 
popular opinion, the IEEE 1394 standard describes a "real" bus which has been developed among 
others by Apple to overcome certain problems of the SCSI bus. 

 

Protocol:
proprietary

Bus:FireWire

FireWire
card

Application software

Driver: proprietary

SDK:proprietary

 

Fig. 1.9: 

Even the use of FireWire cameras 
is often based on proprietary In-
terfaces. 
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Thus the camera, as well as the computer, requires an IEEE 1394 interface. Due to the widespread 
nature of this standard, very reasonable chips implementing the interfaces are available. Therefore 
today several motherboards are already equipped with an IEEE 1394 interface. If, however, an upgrade 
should be necessary, a 1394 PCI card costs only about 50 Euro.  

The improvement is due to the avoidance of any special and therefore expensive frame grabber. On 
the other hand, all problems of proprietary drivers and SDKs remain. At this point we have to discuss a 
severe misunderstanding concerning the term "FireWire". At first glance, it seems to be easy to 
replace one FireWire camera by another. But actually - since we have to deal with a bus - two devices 
connected to this bus are only able to exchange data, if they use the same protocol. Such protocols 
are usually not part of a bus specification. 

Third step 

Therefore, the third improvement is the standardization of protocols which define the exchange of 
data between FireWire devices (Fig. 1.10). In case of an uncompressed transfer of image streams, this 
protocol is "DCAM". It was initiated by Sony and Hamamatsu and is supported by the international 
organization IIDC today. 

 

Protocol:
DCAM / IIDC

Bus: FireWire

FireWire
card

Application software

Driver:DCAM

SDK:proprietary

 

Fig. 1.10: 

Using FireWire cameras which 
exchange data based on the 
DCAM protocol is the first step 
towards a consitent use of 
standardized interfaces. 

 
In this way, we do no longer have a proprietary driver, but a DCAM driver. Typical examples for this are 
the DCAM driver for Linux which can be download for free from the Internet and the DCAM driver 
from The Imaging Source which is based on the Windows Driver Modell. As a result, we finally have 
reached our goal of interchangeability between cameras of different manufacturers. The one and only 
remaining issue is the proprietary SDK. 

Fourth step 

Therefore, the fourth and last improvement serves to overcome proprietary SDKs. We reach this goal 
by applying the golden rule already mentioned in the introduction. According to this rule, application 
software is not to directly access any hardware, but should access the APIs (Application Programming 
Interface) provided by the operating system. 
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Application software

API:

DirectX/DirectShow

Driver:

WDM Stream Class

Protocol:

DCAM / IIDC

Bus:FireWire

FireWire
card

Windows
2000

XP

 

Fig. 1.11: 

The last step towards a 
standardization is the inte-
gration of the DCAM proto-
col in an operating system 
interface (API). In case of 
Windows this API is 
DirectX®. 

 
But what is the API in case of image streams? In case of the widest spread operating system - 
Windows - this API is "DirectX®" (Fig. 1.11). If any video source is to be compatible to DirectX®, it has 
to provide a so-called "WDM Stream Class" driver driver (WDM means "Windows Driver Model"). In our 
case of a FireWire camera, this driver obviously has to "talk" DCAM (see "Third step"). In this way the 
camera becomes an "entire" operating system device (Fig. 7). 
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Fig. 1.12: 

The simplest and fastest way of developing 
software that is compatible to DirectX® is the use 
of the SDK IC Imaging Control. 

1.4.3 The next steps with DirectX® 

Up to now, we have just looked at boring theory. However, before we jump into a real life example, 
we should ask ourselves three questions: 

• Why will the standard DirectX® be successful? 

• Does this standard meet our requirements? 

• How are such software applications developed? 

Standards only lead to the desired success (i.e. cost reduction) when there is a wide spectrum of 
applications. Two great examples are the video standard CCIR and EIA. They were developed half a 
century ago for the mass market of consumer electronics. Today, we are still successfully working 
with them in the field of metrology orientated digital image processing. 

When we are looking at the standardization of image acquisition, we should therefore not only look at 
our niche of industrial and metrology orientated digital image processing, but also cast our glance a 
little further a field into the modern consumer electronics market. In doing so, we end up with the 
DirectX® standard as we discussed in the previous section (at least, as long as we are dealing with 
Windows based PCs, that is). 

So, why will this standard be successful? Because it has already been introduced and is being used in 
a wide spectrum of applications. How would it otherwise be possible to get such good image quality 
from a USB camera, costing only 50 Euro in the multimedia department of most shopping malls? 
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Does the standard meet our requirements? 

Of course we cannot perform metrology orientated digital image processing with a low cost USB 
camera. This, however, does not have anything to do with DirectX®, rather with the camera's optics, 
the quality of the CCD chip and the compression of image data. 

Industrial cameras, on the other hand, excel with their high resolution, progressive scan sensors. 
Furthermore, it must be possible to commence image acquisition from a remote trigger and of course, 
the resulting image data must be transferred uncompressed. 

All of these properties are available in the DirectX® standard. We must not confuse nor compare 
DirectX® with other interfaces such as "Video for Windows" or "TWAIN". To put it bluntly, you could say 
that the latter two are interfaces that have been added to the operating system as an afterthought, 
where as DirectX® represents the operating system itself. 

Everyday work with DirectX® 

So far we have been just discussing boring theory. For use in our daily work, three questions come to 
mind: 

• Are there already DirectX® conform image sources that can be used for industrial image processing 
applications? 

• Is there any application software available which accesses DirectX®? 

• Is it possible to develop our own application software under DirectX®? 

Indeed the answer to all of these three questions is "Yes" (see Fig. 7): 

Image sources: For image processing applications, FireWire cameras are the preferred choice. They 
are easy to handle and transfer video data digitally. However, currently not all FireWire cameras 
offer the standard protocol DCAM, nor are shipped with a WDM Stream Class driver. Therefore, 
they are not "visible" to DirectX®. The positive example in this regard are the DCAM-based 
FireWire cameras from The Imaging Source.  

Application software: Whereas in the multimedia world, just about all software acquires its images 
using WDM, in the field of image processing the choice is somewhat limited. For image 
acquisition purposes, The Imaging Source offers the program "IC Capture". It mainly addresses 
users of DCAM-based FireWire cameras. 

Development tools: For developers of professional multimedia software, the direct access that 
DirectX® offers is parts of their daily work. However, for a system engineer who does not use 
DirectX® every day, the way of getting accustomed to the direct access is not acceptable. The 
acquisition SDK "IC Imaging Control" from The Imaging Source covers this complexity, 
suggesting that DirectX® is a frame grabber which the developer accesses via a .NET 
component, an ActiveX and a C++ Class Library. In this way, the system engineer is able to 
develop software which conforms to the operating system without being forced to get used to 
the new environment. 

 

1.5 Digital images 

Fig. 1.13 shows a typical digital image. It is represented by an array of N rows and M columns. 
Usually, the row index and the column index are labeled with y and x, or r and c.In many (but not all) 
cases the image array is square i.e. N=M. Typical values for N and M are 128, 256, 512 or 1024. 
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Fig. 1.13: 

Basic structure of a digital image. 

 
The elements of the image array are called pixels (picture elements). In the simplest case the pixels 
merely take either the value 0 or 1. Such pixels constitute a binary image. Usually, the values 1 and 0 
represent light and dark regions or object and background, respectively. In order to obtain a finer 
quantization of the video image’s light intensity, it is usual to use one byte per pixel leading to integer 
values ranging from 0 (black) to 255 (white). Between these limits the values are gray and therefore, 
the integer value associated with a pixel is called its graylevel. 

Clearly it is also possible to process color images. In this case, an image requires a N*M array for each 
of the primary colors red, green and blue. Thus, the “graylevels” of each of the arrays determine the 
“strength” of the red, green and blue components of the image at the position of the pixel in question. 

Processing real colors must not be confused with the pseudo-color visualization of images which were 
originally gray. Pseudo-color representation is sometimes useful to emphasize graylevels or graylevel 
ranges of interest, in order to facilitate image analysis by a human observer. 

Digital image processing usually requires large resources of computing power and memory. A typical 
graylevel image of 512 * 512 pixels and 256 graylevels (8 bits) per pixel needs 256K bytes of memory. 
This is approximately equivalent to 100 typewriten pages. Suppose that one has to deal with real-time 
processing of 10 images per second. Then the amount of data to cope with exceeds 150M bytes or 
60,000 typed pages per minute. This corresponds to a heap of paper 3 meters (10 feet) high. 

Fig. 1.14 shows a graylevel image of 128*128 pixels, each with 256 graylevels. It represents the image 
of simple geometrical objects cut out of cardboard. A black piece of cardboard serves as the 
background, while the objects are gray or white. A human observer is able to identify the objects and 
their position in the image without any problems (Section 1.2) but the computer only “sees” an array, 
the elements of which are integers within the range 0 to 255. This fact is illustrated by a section of the 
source image shown in Fig. 1.15. Algorithms which enable a computer to identify the contents of an 
image are the main subject of this book. 

 

 

Fig. 1.14: 

Example of a graylevel image. 
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Fig. 1.15: 

Hexadecimal representation of a section of the graylevel image shown in Fig. 1.14. 

 
This example image (Fig. 1.14) highlights two other fundamental problems which occur in the context 
of digital images:  

• The elliptic object in the middle of the image was originally a circular area. Its distortion is due to the 
geometry of the pixels. Usually a pixel has the form of a rectangle. In a standard video system the 
ratio of the size of the pixel edges is four to three. This leads to the distortion shown in Fig. 1.14. 

• The edges of the objects are not smooth, but have “digital teeth”. This problem decreases with 
higher image resolution. However, in the example shown the ratio of pixel size to the size of the 
objects are such that problems may arise with some applications such as measuring the size of the 
object. 

Fig. 1.13 shows the pixels as an arrangement of tiles. This common representation of an image is 
inconvenient from the point of view of signal processing. Thinking in terms of signal processing a 
digital image is a rectangular array of sampling points. Fig. 1.16 shows a circle in an “analogue” image 
with an overlay of a 4*4 sampling grid. If the circle and the background are uniform (e.g. the 
background may be black while the circle is white or vice-versa). Then the corresponding 4*4 digital 
image is shown in Fig. 1.17. Note that in practice the sampling grid of a CCD-camera consists neither 
of infinitly fine “needles” nor of tiles with infinitly fine joints but of tiles and joints processing similar 
dimensions. 

 
x

y  

Fig. 1.16: 

This is a circle in an “analogue” image (an image not yet sampled). To get 
a 4*4 digital image the image has to be sampled at the marked points. 
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The previous example dealt with the arrangement of the samples of a digital image. But what about 
the “behavior” of the individual samples? Fig. 1.18 (a) depicts a cut through an image the intensity of 
which varies as a sinusoidal signale. Fig. 1.18 (b) shows 8 samples taken at the individual position. 
Extending this sample over the whole sample space leads to the “tile representation” in Fig. 1.18 (c). 

 
c

r  

Fig. 1.17: 

Digitized circle image (Fig. 1.16) with a resolution of 4*4 pixels. 

 
The subject of “digital images” has already been fully discussed more fully by many authors. E.g., 
Ballard and Brown [1.1], Jähne [1.12], Jain [1.13], Netravali/Haskell [1.19], and Schalkoff [1.24] deal with 
many of the detailed problems presented by digital images. These problems range from the geometry 
of a single pixel to Moiré effects. 
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Fig. 1.18: 

This is a cut through an image the intensity of which varies as a sinusoidal signal (a). (b) 
shows 8 samples at an infinitely small width. Extending this sample over the whole 
sample space leads to the ‘tile representation’. 
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1.6 Getting started with AdOculos 

Please start AdOclus...

...the following screenshot shows the AdOculos startup screen:

Toolbar

Setup window

 

 
Create a new image window...

...by selecting the "New Picture" icon in the toolbar.

Image window

Image icon
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Now double click the image window...

...and select the image file Pliers.128.

After pressing Enter or clicking the
open button, the file will be
displayed in the image window.

 

 
Please now open another image window...

...in the way desribed earlier.

Your desktop will now
display a second image
window.
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Create a new function...

...by selecting the "New Function" icon in the toolbar.

The setup window will now
display a new function icon

 

 
Double click the function icon...

...to open a pop-up window where
you can choose the desired function.

 

 
Please choose the function "Median Operator"...

...by scrolling with the vertical scrollbar
to the desired position.

 

 
Select the image windows...

...which are associated with the
input and the output image.

1. Click into the "Input" textfield

2. Select the image icon "Pliers"

3. Repeat the procedure 1 & 2 with the
"Output" textfield and the image
icon "0".  
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Either press "Enter" or click OK to confirm.

The image icons are
automatically connected
via lines.

 

 
You may rearrange the image icons...

...to create a more organized
view of the setup window.

 

 
Start the function chain...

...by selecting the "Start all functions" icon in the toolbar.

The symbol window "0"
will now show the resulting
image of the selected
function chain

 
 



1 Introduction - 1.7 Remarks on the example procedures 

Ad Oculos 22

1.7 Remarks on the example procedures 

Each of the succeeding chapters contains a section with example procedures. Concerning these 
procedures, the following remarks are appropriate: 

• The example procedures are intended to be a means of knowledge transfer. They may only be used 
as a core for applications if they are “wrapped up” well. Usually this “wrapping up” is the most 
expensive part of programming. The authors disclaim any responsibility for the use of the example 
procedures used in any of the applications. 

• The example shown in Fig. 1.19 uses function prototypes. For the sake of simplicity they are omitted 
in all succeeding examples. 

• In Appendix A “service procedures” which are often used, as well as some special data types are 
defined. 

• The example procedures are independent of any hardware or operating system. 

Usually the development of image processing algorithms is based on high-level programming 
languages. Fig. 1.19 shows a simple C program which may serve as a frame for further developments. 
For the sake of simplicity the input image INFILE and the output image OUTFILE are predefined. 
Furthermore, they are assummed to be squares of size IMSIZE. The main procedure main merely 
consists of a sequence of subroutines. The procedures ImAlloc and ImFree organize the memory 
management required for the images. They are described in Appendix A. GetImage reads an image 
file from the disk, while PutImage writes an image to the disk. ShowImage is a procedure which 
manages the presentation of an image. The realization of the last three procedures depends on the 
respective host machines. Therefore, they have not been described in this book. 

ProcessImage serves as an example to demonstrate the basic elements of an image processing 
procedure. Such a procedure starts with the initialization of the output image (here OutIm). Actually, 
this would not be necessary in the current example since the following operation only works on single 
pixels. However it is a good working habit to always initialize any variable. The operation already 
mentioned above scales the graylevel down by 50%. Since this is a pixel operation, the output could 
be written directly to the input. However, this is a rare exception: usually the result of an image 
processing procedure must not be rewritten into the input image. To do so would destroy data which 
are required in their original form. Surprisingly this error is made by many beginners in the image 
processing field, even when they have been previously warned. An obvious explanation for the 
phenomenon might be the early experience of “image processing” with pencil and eraser, which 
actually takes place in one and the same image. 
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#define  INFILE   “c:\\image\\in.128” 
#define  OUTFILE  “c:\\image\\out.128” 
#define  IMSIZE   128 
 
void ** ImAlloc (int,int,int); 
void ImFree (void **, int); 
void GetImage (int, char[], BYTE **); 
void ProcessImage (int, BYTE **, BYTE **); 
void ShowImage (int, BYTE **); 
void PutImage (int, char[], BYTE **); 
 
/************************  MAIN  *****************************/ 
void main (void) 
{ 
   BYTE ** InIm; 
   BYTE ** OutIm; 
 
   InIm  = ImAlloc (IMSIZE, IMSIZE, sizeof(BYTE)); 
   OutIm = ImAlloc (IMSIZE, IMSIZE, sizeof(BYTE)); 
 
   GetImage     (IMSIZE, INFILE, InIm); 
   ProcessImage (IMSIZE, InIm, OutIm); 
   ShowImage    (IMSIZE, OutIm); 
   PutImage     (IMSIZE, OUTFILE, OutIm); 
 
   ImFree (InIm,  IMSIZE); 
   ImFree (OutIm, IMSIZE); 
} 
 
/********************** ProcessImage **************************/ 
void ProcessImage (ImSize, InIm, OutIm) 
int  ImSize; 
BYTE ** InIm; 
BYTE ** OutIm; 
{ 
   int   r,c; 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++) 
         OutIm [r][c] = 0; 
 
   for (r=0; r<ImSize; r++) 
      for  (c=0; c<ImSize; c++) 
         OutIm [r][c] = InIm [r][c] / 2; 

} 

Fig. 1.19: 

Frame of a simple image processing program. The procedures ImAlloc, ImFree and the data 
type BYTE are defined in Appendix A. The realization of the procedures GetImage, ShowImage 
and PutImage depend on the computer used. 

 

1.8 Exercises 

Exercise 1.1: 

A 512*512 satellite image shows an area of 10*10 km (6*6 miles). How large is the area represented 
by a pixel? 

 

Exercise 1.2: 

A typical transmission rate of a serial link between two computers is 9600 baud. How long would it 
take to transmit a 512*512 image with 256 graylevels? 
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Exercise 1.3: 

Assuming 24 bit, 1280*1024 pixel color images, what baud rate is required to transmit a stream of 25 
images/sec over a serial link? 

 

Exercise 1.4: 

Fig. 1.16 and Fig. 1.17 show an example of the application of a 4*4 sampling grid to an “analog”’ 
image. Repeat the sampling with a 8*8 and a 16*16 grid. 

 

Exercise 1.5: 

In contrast to the solid circle used in Exercise 1.4 a finer structure is now to be digitized. Fig. 1.20 
shows two rings. Digitize this image based on a 8*8 sampling grid. 

 
x

y  

Fig. 1.20: 

What happens if a structure which is finer than the sampling grid is to be 
digitized? 

 
Exercise 1.6: 

Fig. 1.21 depicts a cut through an image the intensity of which varies like a nosiy sinusoidal. Apply the 
same quantization process shown in Fig. 1.18 to this curve. 

 
Intensity

x
 

Fig. 1.21: 

This is a cut through an image the 
intensity of which varies like a 
noisy sinusoidal. 

 
Exercise 1.7: 

Explore the following AdOculos functions for image handling: Change Size, Cut, Hex Image and Noise. 

 

Exercise 1.8: 

Explore the AdOculos View Menu. 
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Exercise 1.9: 

Load a *.128 image from the AdOculos images subdirectory. Save this image using the TIFF option. 
Activate any DTP tool and try to import the saved image. 

 

Exercise 1.10: 

Implement the program depicted in Fig. 1.19. Create a development environment which makes it easy 
to realize your own image processing procedures the results of which may be evaluated with the aid 
of AdOculos. Use the sample images from the AdOculos images subdirectory. 

 

Exercise 1.11: 

Write a program which transforms an 8-bit graylevel image into a binary image and outputs it to a file. 
Minimize the file size by grouping 8 pixels to a byte. 

 

Exercise 1.12: 

To save more disk space write a program which compresses the binary images generated in Exercise 
1.11 without loosing information. Write a second program to decompress the compressed images. 

 

Exercise 1.13: 

Write a program which decreases the resolution of a 128*128 graylevel image, to a size of: 64*64; 
32*32 etc. 

 

Exercise 1.14: 

Write a program which decreases the number of graylevels from 256 to 128, to 64 etc. 
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2 Point Operations 

2.1 Foundations 

The requirements of understanding this chapter are 

• to be familiar with basic mathematics 

• to have read Chapter 1. 

In point operations a new graylevel for each of the pixels in an image is calculated exclusively from its 
original graylevel.Some authors therefore use the term pixel value mapping [2.4], whilst others talk of 
gray scale modification [2.5]. Point operations are mainly used for image manipulation (Chapter 1), 
such as contrast enhancement of an image. 

Fig. 2.1 shows an image which will be used as the source image during the first part of this section. 
The graylevels of this image are supposed to lie between 0 and 250. A graylevel histogram which 
reflects the distribution of graylevels in the source image is depicted in Fig. 2.2. Such a histogram 
helps to evaluate the image from a global point of view. For instance, the low contrast of the image is 
obvious since the highest graylevel is 160 instead of 250. 
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Fig. 2.1: 

This image will be used as the source image during the 
first part of this section. The graylevels of the image lie 
between the values 0 and 250. 
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Fig. 2.2: 

A graylevel histogram reflects the distribution of graylevels in an image. This is the histogram 
of the source image shown in Fig. 2.1. Among other things it high-lights the low contrast of 
the source image since its highest graylevel is 160 instead of the potential 250. 

  
Another representation of the graylevel histogram is the so-called cumulative histogram shown in Fig. 
2.3. Here the number of graylevels is summed up resulting in a staircase curve. Sometimes this form 
of histogram is more convenient for evalutation than the conventional histogram. 

There are several methods of enhancing the source image with the aid of point operations. The actual 
choice depends on the desired application. In the next part of this section four interactive and one 
automatic method of image enhancement are introduced. 
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Fig. 2.3: 

This is an alternative representation of the graylevel histogram depicted in Fig. 2.2. Here the 
number of graylevels are summed up yielding a new insight into the source image. 
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The first method “amplifies” the original graylevels GVin using 

GV GAIN *GV BIASout in= + (2.1) 

GAIN is directly defined by the user while BIAS may be determined by the mean graylevel of the 
original image (MEANin) and the mean desired by the user (MEANout): 

out inBIAS MEAN GAIN * MEAN= −  

For the example shown in Fig. 2.1 MEANin is 74. Assuming MEANout = 125 and GAIN = 1.5 the 

relation between the input and the output graylevel is: 

out inBIAS MEAN GAIN * MEAN= −  
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Fig. 2.4; 

This is the mapping of the original graylevels from the image shown in Fig. 2.1 
(GVin) to the new graylevels GVout. The resulting image is shown in Fig. 2.6. 

 
Fig. 2.4 shows the mapping of the graylevels according to this formula. Usually  this mapping is 
performed with the aid of a so-called look-up table (LUT) like that depicted in Fig. 2.5. In practice such 
an LUT is realized by an array the index of which is equivalent to the graylevels to be changed (GVin) 

while the contents of the array is equivalent to the new graylevels GVout. 

Applying the LUT to the source image the result shown in Fig. 2.6 is obtained. The histograms of the 
resulting image are depicted in Fig. 2.7 and Fig. 2.8. Comparing them with the original histograms (Fig. 
2.3 and Fig. 2.2) the stretching of the graylevels is obvious. The result is a higher contrast in the new 
image. 
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Fig. 2.5: 

The mapping shown in Fig. 2.4 is performed 
with the aid of this look-up table. 
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Fig. 2.6: 

Mapping the graylevels of the original image (Fig. 2.1) to new ones according to 
the function shown in Fig. 2.4 leads to this new image. When compared to the 
original the contrast can be seen to have improved. 
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Fig. 2.7: 

This is the histogram of the processed image shown in Fig. 2.6. The comparison of contrast 
between this histogram and the original one (Fig. 2.2) is much easier than the comparison 
between the images. See also the cumulative histogram in Fig. 2.8. 
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Fig. 2.8: 

This is the cumulative version of the histogram shown in Fig. 2.7. The counterpart of the original 
image is shown in Fig. 2.3. 

Automatic graylevel mapping 

This part of the section begins with a new source image that is shown in Fig. 2.9. For the sake of 
simplicity the graylevels of this image only range from 0 to 15. Relating to the histogram of the new 
source image (Fig. 2.10) it is useful to emphasize the separation between the graylevels 7 and 8. This 
can be done by replacing the original graylevels by the frequency of their occurrence which is taken 
from the cumulative histogram (Fig. 2.11): 
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Fig. 2.9: 

This is a new source image comprised graylevels which only range from 0 to 15. 
According to its histogram (Fig. 2.10) it is useful to emphasize the separation 
between graylevels 7 and 8. 

 
The resulting image is shown in Fig. 2.12. The histograms depicted in Fig. 2.13 and Fig. 2.14 show the 
new graylevel distribution. 

Since there was no need for user definitions during the whole process of graylevel mapping it is 
possible to realize it as an automatic process. This is known as histogram equalization. Note that the 
classical definition of equalization refers to a re-mapping of the input image graylevels so that the 
output image has an equal number of pixels at each graylevel. 
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Fig. 2.10: 

The graylevel histogram of the new source image (Fig. 2.9) shows that it is useful in emphasizing the 
separation between graylevels 7 and 8. 
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Fig. 2.11: 

The cumulative histogram taken from the new source image (Fig. 2.9) has its steepest rise between the 
graylevels of interest, 7 and 8. 
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Fig. 2.12: 

Result of re-mapping the graylevels according to the cumulative histogram. 
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Fig. 2.13: 

This is the histogram of the resulting image shown in Fig. 2.12. 
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Fig. 2.14: 

This is the cumulative histogram of the resulting image shown in Fig. 2.12. 

Binarization 

The binarization of graylevel images is the most popular method of segmentation. This applies 
especially to industrial image processing. This subject is discussed in detail in Chapter 5. The 
following paragraphs are for the sake of completeness since binarization is a subject of “Point 
Operations” too. 

The simplest form of binarization is achieved by applying a threshold to a graylevel image thereby 
mapping graylevels below this threshold to 0 and the remaining graylevels to 1. Applying a threshold 
of 65 to the source image shown in Fig. 2.1 leads to the binary image shown in Fig. 2.15. 

An alternative binarization procedure is the so-called bit-plane slicing which offers a special view into 
the “interior” of an image. Fig. 2.16 shows a new source image (the graylevels of which range from 0 
to 15) and additionally row 3 of the image with its graylevels in binary representation. If the graylevel 
image is thought of as a stack of bit-planes (slices) then the current example has 4 of them. The 
“membership” of a pixel within a slice depends on the highest bit of its graylevel (circled in Fig. 2.16). 
So pixel (3,0) belongs to no slice, pixel (3,1) belongs to slice 2 and so on. 
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Fig. 2.15: 

This binary image is obtained by applying a threshold of 65 to the source image 
shown in Fig. 2.1. 
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Fig. 2.16: 

The graylevels of this image range from 0 to 15. Thus it consists of 4 
bit-planes (slices). The “membership” of a pixel in a slice depends on 
the highest bit of its graylevel (circled). Hence pixel (3,0) belongs to 
no slice, pixel (3,1) belongs to slice 2 etc. 

Varying graylevel mapping 

So far graylevel mapping has been applied homogeneously to the whole image. In this sub-section the 
necessity of having different graylevel mappings depending on the position of the pixels to be 
processed is considered. 

Fig. 2.17 shows a very simple line scan camera consisting of only 8 pixels. Suppose this camera is 
used in an application with inhomogeneous illumination. To keep things simple the example is 
somewhat extreme: At the position of pixel 7 the original luminosity is only 50% of the luminosity at 
pixel 0. 

A frequent cause of inhomogeneous illumination is shadows. It has therefore become customary to 
talk about shading instead of inhomogeneous illumination. Consequently a shading correction has to 
be performed. 
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Fig. 2.17: 

This is a very simple line scan camera consisting of only 8 pixels. This 
camera is used in an application with an illumination decreasing from left to 
right. To compensate for this effect different graylevel mappings for pixels 
3 to 7 are required. 

Arithmetic operations on two images 

Until now, point operations have been applied to single images only. The next step is to combine two 
or more images pixel by pixel. 

Fig. 2.18 (left) shows two images consisting of 2 regions the graylevels of which are almost 
homogeneous (graylevels 1 and 10) except for a few disturbed or “noisy” pixels. Taking the mean of 
the graylevels of equivalent pixels diminishes the impact of the disturbance (Fig. 2.18). 

This remedy works if the original (“clean”) graylevel pattern is consistentwe re from image to image 
and the noisy pixels change from image to image. The cleaning effect of the additions increases with 
the number of images. 

The complementary operation to addition is subtraction. Subtracting two images leads to an emphasis 
of the differences. Fig. 2.19 (left) shows two images the graylevel patterns of which differ in a 
triangular small area. In the difference image this small area becomes more prominent or „pops out“. 
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Fig. 2.18: 

On the left are two images consisting of 2 regions the graylevels of which 
are almost homogeneous (graylevels 1 and 10) except for a few disturbed 
“noisy” pixels. The image on the right hand side shows that the averaging 
of both images diminishes the noise. (+) means: sum two graylevels. (/2) 
means: divide the sum by two. 
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Fig. 2.19: 

The subtraction of two images yields the differences between the graylevel 
patterns. (-) means: subtract two graylevels. (||) means: use the absolute 
value. 

 

2.2 AdOculos Experiments 

The aim of the first experiment is to become familiar with the Invert, Stretch and Mark functions. As 
described in Section 1.6 realize the New Setup shown in Fig. 2.20. The source image (which has to be 
loaded into image (1)) used in this experiment originates from a medical application of image 
processing. Fig. 2.21 (TUMSRC.128) shows a tomographic reconstruction of a skull. The ear-like 
objects in the lower part of the image are supports for the patients head. Image (2) shows the result of 
Invert. This image does not disclose any new information which is useful for medical analysis. 
However, stretching the original graylevels emphasizes the details of the brain structure (Image (3)). 
More importantly, a pathological disorder appears which was not previously visible. A tumor which 
contrasts with the healthy brain structure becomes clearly visible. The parameters of Stretch were: 

min. graylevel: 100 

max. graylevel: 105. 

These parameters may be varied by clicking the right mouse button on the function symbol Stretch. 
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Fig. 2.20: 

The aim of the first experiment is to become familiar with the 
Invert, Stretch and Mark function. This New Setup is realized 
according to the steps described in Section 1.6. The results are 
shown in Fig. 2.21. 

 
Image (4) shows the result of Mark in which the graylevel range of interest is marked white and 
superimposed on the original image. In practice such marking is performed by pseudo-color, i.e. the 
original gray levels within the range of interest are colored. 

The parameters of Mark were: 

min. graylevel: 105 

max. graylevel: 107 

mark value: 255. 

These parameters may be varied by clicking the right mouse button on the function symbol Mark. 

The second experiment deals with histogram manipulation and analysis with the aid of Histogram 
Equalization and Gray -> Bilevel. The New Setup is shown in Fig. 2.22. The source image 
(TUMSRC.128) needs to be loaded into image (1). 

After having started Histogram Equalization the dialog box depicted in Fig. 2.23 appears. The 
histogram of the input image (TUMSRC.128) is shown on the left while the right histogram is that of 
the output image. Between them the cumulative histogram controlling the equalization process is 
located (Fig. 2.11). After clicking on OK the output image appears (Fig. 2.25 (2)). 
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Fig. 2.21: 

The source image (TUMSRC.128) shows a tomographic recon-
struction of a skull. (2) is the result of Invert. (3) is the result of 
Stretch with the parameters min. graylevel: 100 and max. 
graylevel: 105. (4) is the result of Mark with the parameters min. 
graylevel: 105, max. graylevel: 107 and mark value: 255. These 
parameters may be varied with by clicking the right mouse button 
on the corresponding function symbol. 

  

 

Fig. 2.22: 

This is the New Setup of the second experiment involving 
histogram manipulation and analysis with the aid of 
Histogram Equalization and Gray -> Bilevel. The results are 
shown in Fig. 2.25. 
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Fig. 2.23: 

This dialog box appears after Histogram Equalization has been started. On 
the left the histogram of the input image (TUMSRC.128) is shown whilst 
on the right the histogram of the output image is illustrated. Between 
them the cumulative histogram which controls the equalization process 
is located. After clicking on OK the output image appears (Fig. 2.25 (2)). 

 
Fig. 2.24 shows the dialog box which appears on the start of Gray -> Bilevel. The small bar in the 
middle of the input image histogram (TUMSRC.128) represents the current threshold which may be 
varied by entering another value for Threshold. After clicking on OK the output image appears (Fig. 
2.25 (3)). 

The last experiment demonstrates the Slice function. The New Setup is shown in Fig. 2.26. The source 
image (TUMSRC.128) should be loaded into image (1). The results are collected in Fig. 2.27. The slice 
to be extracted may be defined by clicking the right mouse button on the function symbol Slice. The 
slices and the resulting images correspond as follows: 

Slice 7: Image (2) 

Slice 6: Image (3) 

Slice 5: Image (4) 

Slice 4: Image (5) 

Slice 3: Image (6). 
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Fig. 2.24: 

This is the dialog box appearing at the start of Gray -> Bilevel. The small bar in the 
middle of the histogram of the input image (TUMSRC.128) represents the current 
threshold which may be varied by entering another value for Threshold. After clicking 
on OK the output image appears (Fig. 2.25 (3)). 

  

 

Fig. 2.25: 

The source image (TUMSRC.128) is again the tomographic 
image. (2) is the result of Histogram Equalization with the 
parameters shown in Fig. 2.23. (3) is the result of Gray -> 
Bilevel with the parameters shown in Fig. 2.24. 
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Fig. 2.26: 

This is the New Setup of the last experiment demon-
strating the Slice function. The results are shown in Fig. 
2.27. 

  

 

Fig. 2.27: 

Here the results of Slice are collected. The slices and 
the resulting images correspond as follows: Slice 7: 
Image (2), Slice 6: Image (3), Slice 5: Image (4), Slice 4: 
Image (5) and Slice 3: Image (6). The slice to be 
extracted may be defined by clicking the right mouse 
button on the function symbol Slice. 
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2.3 Source Code 

Fig. 2.28 presents four C procedures useful for executing point operations. The base for all these 
operations is the look-up table. It is generated by the procedures Invert, Stretch and Mark. The 
procedure LutOp performs the actual image manipulation. Formal parameters are: 

ImSize: image size 

Lut: current look-up table 

Image:image to be manipulated. 

Like the following procedures LutOp is very simple and self-explanatory.  

The procedure Invert inverts the graylevels of an image. Formal parameters are: 

MaxGV: maximum graylevel to be inverted 

Lut: current look-up table. 

The procedure Stretch enhances the contrast of an image within a user-defined graylevel range. 
Formal parameters are: 

LoGV: lower limit of the graylevel range 

HiGV: upper limit of the graylevel range 

MaxGV: maximum graylevel permitted 

Lut: current look-up table. 

The purpose of the procedure Mark is to color those pixels whose graylevels fall into a user-defined 
graylevel range. Formal parameters are: 

LoGV: lower limit of the graylevel range 

HiGV: upper limit of the graylevel range 

MaxGV: maximum graylevel permitted 

Color: color as desired 

Lut: current look-up table. 
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void LutOp (ImSize, Lut, Image) 
int  ImSize; 
BYTE *Lut; 
BYTE **Image; 
{ 
   int r,c; 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  Image[r][c] = Lut [Image[r][c]]; 
} 
void Invert (MaxGV, Lut) 
int  MaxGV; 
BYTE *Lut; 
{ 
   int  r,c, gv; 
   for (gv=0; gv<MaxGV; gv++)  Lut [gv] = (BYTE) (MaxGV-gv-1); 
} 
void Stretch (LoGV, HiGV, MaxGV, Lut) 
int  LoGV, HiGV, MaxGV; 
BYTE *Lut; 
{ 
   int  r,c, gv; 
   long gvn; 
   for (gv=0; gv<MaxGV; gv++) { 
      if (LoGV<=gv && gv<HiGV) { 
         gvn = gv - LoGV; 
         gvn = (gvn * (MaxGV-1)) / (HiGV-LoGV); 
         Lut [gv] = (BYTE) gvn; 
      }else 
         Lut [gv] = (BYTE) ((gv<LoGV) ? 0 : (MaxGV-1)); 
}  } 
void Mark (LoGV, HiGV, MaxGV, Color, Lut) 
int  LoGV, HiGV, MaxGV, Color; 
BYTE *Lut; 
{ 
   int  r,c, gv; 
   for (gv=0; gv<MaxGV; gv++) 
      if (LoGV<=gv && gv<HiGV)  Lut [gv] = (BYTE) Color; 
                          else  Lut [gv] = (BYTE) gv; 

} 

Fig. 2.28: 

C realization of point operations. 

 

2.4 Supplement 

Further applications of point operations as well as theoretical reflections are described by Jähne [2.1], 
Jain [2.2], Marion [2.3], Niblack [2.4] and Rosenfeld and Kak [2.5]. 

2.5 Exercises 

Exercise 2.1: 

Suppose the graylevels of interest in Fig. 2.1 only range from 60 to 80. This range should be mapped 
from 0 to 250 forcing the lower graylevels to zero and the higher ones to 250. 

Draw the mapping function (similar to that shown in Fig. 2.4), the look-up table that realizes the 
mapping function (similar to that shown in Fig. 2.5), the resulting image (similar to that shown in Fig. 
2.6), and the two histograms (similar to those shown in Fig. 2.7 and Fig. 2.8) for this transformation. 
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Exercise 2.2: 

Rather than completely suppress the lower and higher graylevels as shown in Exercise 2.1, the 
contrast of these graylevel ranges may be diminished and the contrast of the range of interest 
between 60 and 80 may be increased. The advantage of this approach is that the graylevel range of 
interest is emphasized without losing the impression of the complete image. 

Compress the original graylevels between 0 and 60 to a range between 0 and 30, stretch the original 
graylevels between 60 and 80 to the new range between 30 and 230, and compress the upper range 
from 80 to 160 to the new range between 230 and 250. Draw the mapping function, the look-up table 
realizing the mapping function, the resulting image and the two histograms. 

 

Exercise 2.3: 

In some applications (i.e. manipulation of medical images) it is useful to mark a certain graylevel range. 
Mark the graylevels of the source image which range from 70 to 80 as shown in Fig. 2.1, by mapping 
them to 250 (white) while mapping the remaining graylevels to half of their original value. Draw the 
mapping function, the look-up table realizing the mapping function, the resulting image and the two 
histograms. 

 

Exercise 2.4: 

Apply histogram equalization to the source image shown in Fig. 2.1. Draw the resulting image and the 
two histograms. 

 

Exercise 2.5: 

Draw the complete bit-planes (slices) of the source image shown in Fig. 2.16. 

 

Exercise 2.6: 

Fig. 2.29 shows an image taken with a line scan camera operating under the bad illumination 
conditions shown in Fig. 2.17. For a shading correction, 5 different graylevel mappings are required. 
Draw them together with the corrected image. 
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Fig. 2.29: 

This image taken with the line scan camera shown in Fig. 2.17 under bad 
illumination conditions has to be corrected. 
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Exercise 2.7: 

Average the images shown in Fig. 2.30, Fig. 2.31 and the resulting image shown in Fig. 2.18. 
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Fig. 2.30: 

Average this image, the one shown in Fig. 2.31 and the resulting image shown in 
Fig. 2.18. 
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Fig. 2.31: 

See Fig. 2.30. 

 
Exercise 2.8: 

Write a program which applies Equation 2.1 to an input image. 

 

Exercise 2.9: 

Write a program which applies a mapping function (Fig. 2.4) to an input image. The mapping function 
should be user-definable by entering the breaks of the curve. 

 

Exercise 2.10: 

Write a program which makes it possible to experiment with graylevel mappings which are dependent 
on pixel locations in the image. Try a contrast diminishing mapping, the influence of which increases 
near the border of the image. 

 

Exercise 2.11: 

Acquire images showing objects on an inhomogeneous background and acquire the background 
images without the objects. Write a program which is able to isolate the objects from their 
inhomogeneous background. 

 

Exercise 2.12: 

Acquire an image with an ensemble of objects. Write a program which is able to detect a missing 
object after it has “seen” the complete ensemble. 

 

Exercise 2.13: 

Become familiar with every point operation offered by AdOculos (AdOculos Help). 
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3 Local Operations 

3.1 Foundations 

The requirements of understanding this chapter are 

• to be familiar with terms like derivative, gradient and convolution 

• to have read Chapter 1 

The global aim of local operations is to emphasize or to suppress graylevel patterns of neighboring 
pixels. Fig. 3.1 (left hand side) illustrates the idea: the graylevels of an input image in an arbitarily 
defined neighborhood around a central pixel (also called the current pixel) are processed by a given 
algorithm. The result of this procedure is a new graylevel which is assigned to the current pixel in the 
output image. The position of the current pixel in both images is identical. The neighborhood is called 
a mask or a window. 

In order to process the whole image it has to be “scanned” by shifting the mask step by step. Usually 
this procedure starts in the top left hand corner of the image (Fig. 3.1, right hand side). After the new 
graylevel has been calculated the mask must be shifted one pixel to the right followed by a new 
calculation, and so on. When the end of the current row is encountered, the whole procedure must be 
started again at the beginning of the next row. Note that masks are not placed side by side like tiles. 

 
Operator window

Current Pixel Operator window START

STOP

 

Fig. 3.1: 

Left: The graylevels in the mask are processed by a given algorithm. The result of this procedure is a new 
graylevel which is assigned to the current pixel in the output image. Right: To process the whole image 
the mask (centered around the current pixel) skips from pixel to pixel. Usually this procedure starts in the 
top left corner of the image. 
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Fig. 3.2: 

This is the input image used by the examples and exercises of Section 3.1.1 
(Graylevel Smoothing). 

 
Clearly, the current pixel never reaches the border of the image. Thus the image “shrinks” as a result 
of a local operation. Usually this shrinking is not important, but it must be ensured that the border 
pixels are not given an accidental graylevel. To simplify matters the whole output image should be 
initialized to 0. 

Two important rules of image processing have now been high-lighted: 

• Separate the output image from the input image. 

• Initialize the whole output image to 0, before starting an operation. 

It is said that „there are exceptions to every rule“ and this applies to image processing as well as to 
life in general (Section 3.4). 

So far the algorithms for processing the local graylevel patterns have not been discussed. The 
following section will demonstrate three classical applications of local operations namely graylevel 
smoothing, emphasizing graylevel differences and sharpening graylevel steps. Further applications are 
discussed in Section 3.4. 

The following sections discuss various well-known local operations. Note that these are only the 
“mainstream” in a wide spectrum of possible local operations. 

3.1.1 Graylevel Smoothing 

The examples in this section employ the image shown in Fig. 3.2 as input image. This image mainly 
consists of two graylevel regions, a “dark” one (graylevel 1) and a “light” one (graylevel 10). 
Interpreting the other graylevels as noise one obvious task is to remove it, or in other words to obtain 
two smooth regions. A very simple smoothing method is the mean operation. Fig. 3.3 shows the 
output image resulting from a mean operation applied to the input image (Fig. 3.2). The mask size was 
3 * 3. The graylevels of the pixels in the mask were summed up and divided by 9. Obviously the 
graylevels of the noisy pixels have been brought closer to the desired graylevel. On the other hand the 
formerly steep graylevel step between the two regions in the input image has been flattened. The 
assessment of this as a positive or negative effect depends on the application. Some of the following 
examples will demonstrate smoothing methods which preserve the graylevel steps. 
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Fig. 3.3: 

Result of the application of a 3 * 3 mean operator to the input image shown in 
Fig. 3.2. 
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An alternative to the normal mean operator is the weighted mean. In this case the graylevels in the 
mask are multiplied by certain weights (also known as coefficients). Fig. 3.4 (right hand side) shows 
the weights of the so-called Gaussian low-pass. On the left hand side the weights of the normal mean 
(also known as box filter) are set against the Gaussian low-pass. 
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Fig. 3.4: 

Left: In the case of a normal mean operation (3 * 3 mask) the 
graylevels in the mask are equally weighted with 1. Due to the 
shape of this mask a filter using it is called a box filter. Right: This 
mask represents a Gaussian low-pass. Since (in comparison to the 
box filter) the weights realize a smoother filter characteristic the 
resulting image has fewer harmonics. 

 
The smoothing effect of the Gaussian low-pass is only slightly better than that of the box filter. 
Furthermore the problems of flattened graylevel steps remain. 

A very simple smoothing operator which preserves graylevel steps is the min operator. As the name 
suggests the min operator yields the minimum graylevel within the mask as the new graylevel. Fig. 3.5 
shows the result of a 3 * 3 mean applied to the input image (Fig. 3.2). Now the dark image region 
(graylevel 1) is clean but on the other hand the former light region is destroyed. The complementary 
max operator cleans light regions but destroys dark regions. 
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Fig. 3.5: 

The 3 * 3 min operator cleans the dark region of the input image (Fig. 3.2) but 
unfortunatly also corrupts the former light region. 

 
Thus an operator is required which combines the functions of the min and max operators and avoids 
their disadvantages. Fig. 3.6 shows the solution: The idea of the median operator is to sort all 
graylevels within the mask according to their values. The one in the middle of the list is used for the 
current pixel of the output image. This strategy removes peaks of both high and low graylevels, 
without flattening graylevel steps separating graylevel regions. The disadvantage of the median: 
Computing time is high since the graylevels of the neighboring pixels must be sorted. 
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Fig. 3.6: 

The median operator combines the functions of the min and max operators but 
avoids their disadvantages. The idea is to sort all graylevels within the mask, 
according to their values. The one in the middle of the list is the resulting 
graylevel. 

 
Another edge preserving smoothing method is the k nearest neighbor approach. This is a normal 
mean operation (box filter) which does not work on all pixels of the mask but only on those k pixels 
whose graylevels are closest to the graylevel of the current pixel. Fig. 3.7 shows the result of a 3 * 3 
nearest neighbor operator with k=3 (including the current pixel) applied to the input image (Fig. 3.2). 
Since only 3 graylevels were used to compute the mean, the smoothing effect is less than that of the 
median. Usually k should be greater than half of the number of pixels in the mask. 
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Fig. 3.7: 

This is the result of a 3 * 3 nearest neighbor operator with k=3 (including the 
current pixel) applied to the input image shown in Fig. 3.2. The nearest neighbor 
operator performs a normal mean operation on those k pixels of the mask; the 
graylevels of which are closest to the graylevel of the current pixel. 

3.1.2 Emphasizing Graylevel Differences 

Emphasizing graylevel differences is the classical first step of contour-oriented segmentation [3.2]. 
This subject is discussed in detail in Chapter 6. What follows has been included for the sake of 
completeness since emphasizing graylevel differences is often achieved by a “Local Operation” too. 

For the examples of this section a new input image is to be used, and is shown in Fig. 3.8. Like the 
input image before, this image consists mainly of two graylevel regions, a “dark” one (graylevel 1) and 
a “light” one (graylevel 10). In contrast to the former image this is not a noisy image which is to be 
smoothed. Now the aim is to emphasize the graylevel step between the dark and the light region. A 
classic method is based on the Laplacian operator. Fig. 3.9 (left hand side) shows the weights of this 
local operator. Applying a Laplacian operator to the input image shown in Fig. 3.8 leads to the output 
image shown in Fig. 3.10. Omitting the sign of the resulting graylevel differences yields the desired 
emphasizing. 

One disadvantage of the Laplacian operator (which is an approximation of the second derivative) is 
that even graylevel differences caused by small peaks are emphasized. If these peaks are a result of 
undesirable noise then the Laplacian operator makes the noise problem worse. To avoid this problem 
an operator based on the first derivative should be used. Fig. 3.9 (right hand side) shows the weights 
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of the Prewitt operator. Applying the top mask (in which vertical graylevel transitions are emphasized) 
first, results in the output image shown in Fig. 3.11. Apart from the absolute magnitudes it is similar to 
the image achieved by the Laplacian operator. However a closer look reveals that it is smoother than 
the output of the Laplacian. This is the effect which is intended when applying an operator based on 
the first derivative. 
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Fig. 3.8: 

This is the input image used by the examples and exercises of Section 3.1.2 
(Emphasizing Graylevel Differences). 
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Fig. 3.9: 

In contrast to the weights shown in Fig. 3.4, which give rise 
to smooth out graylevel differences, the weights in this 
figure realize masks which emphasize graylevel differences. 
Left: The Laplacian operator emphasizes graylevel 
differences by using only one mask. Right: In contrast the 
Prewitt operator utilizes two masks. The top mask 
emphasizes vertical graylevel transitions while the bottom 
mask emphasizes horizontal ones. 
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Fig. 3.10: 

Result of the application of a 3 * 3 Laplacian operator to the input image shown 
in Fig. 3.8. 
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Fig. 3.11: 

Result of the application of the Prewitt mask emphasizing vertical graylevel 
transitions (Fig. 3.9, top right) to the input image shown in Fig. 3.8. 
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Fig. 3.12: 

This is the result of the complete Prewitt operation. Top left: The result of the 
first Prewitt mask has already been computed (Fig. 3.11). Bottom left: This is 
the result of the second Prewitt mask. Since the main graylevel transition in the 
input image (Fig. 3.8) is horizontal there are only fragmented vertical graylevel 
steps in it. Consequently the output of the second Prewitt mask is consistently 
small. Right: The magnitude image yields the maximum graylevel change at 
every pixel. 

 
The Prewitt operation is not yet complete. The second mask has to be applied to obtain the horizontal 
graylevel transitions. Having the results of both masks it is obvious that the Prewitt operator 
approximates a gradient operation. That is, it will yield for each pixel of the input image (apart from the 
border pixels) the direction of the maximum graylevel change and the magnitude of this change. To 
achieve this information explicitly the Cartesian representation of the gradient has to be changed into 
a polar representation. Fig. 3.12 shows the result of the complete Prewitt operator. The gradient 

magnitude is computed using 2 2( x) ( y)∆ + ∆  where ∆x is the horizontal graylevel difference and ∆y is 

the vertical graylevel difference. The direction of the maximum graylevel change is an important 
subject in the context of contour-oriented segmentation and (like further aspects of gradient 
operators) is discussed in detail in Chapter 6. 

As Section 3.1.1 has shown, min and max operations (which are very attractive due to their simplicity) 
yield interesting smoothing results. They are also suitable for emphasizing graylevel differences as 
demonstrated by the example shown in Fig. 3.13 which shows the results of a min (top left) and a max 
operation (bottom left) applied to the source image (Fig. 3.8). The absolute difference between the min 
and the max values yields the emphasized graylevel transition between the dark and the light region. 
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Fig. 3.13: 

Left: Results of a min (top) and a max (bottom) operation applied to the 
source image (Fig. 3.8). Right: The absolute difference between the min and 
the max values yields the emphasized graylevel step between the dark and 
the light regions. 

3.1.3 Sharpening Graylevel Steps 

The transition from the dark to the light region of the input image shown in Fig. 3.8 is flat. The aim of 
this section is to demonstrate approaches which change the flat graylevel transition into a steeper 
step. The first task is to add one of the output images from Section 3.1.2, which emphasizes the 
graylevel transition, to its input image. As an example, Fig. 3.14 shows the result of adding the input 
image shown in Fig. 3.8 to its output image obtained by a Laplacian operation (Fig. 3.10). 
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Fig. 3.14: 

This is the result of adding the input image shown in Fig. 3.8 to the output 
image obtained by a Laplacian operation (shown in Fig. 3.10). 

 
In principle this idea works. However, the negative values and the very high graylevels are far from 
ideal. They may be diminished by adding the Laplacian image with reduced difference values. An 
alternative is to clip the extreme low and high graylevels. 

Another approach is again a variation of the well-known min and max operators. The result of the 
closest of min and max operation is either the minimum or the maximum graylevel in the current mask. 
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The decision depends on the difference between the graylevel of the current pixel and the minimum 
and maximum graylevel in the mask. If the difference from the minimum is less than that from the 
maximum, the operator outputs the minimum graylevel, and vice-versa. Fig. 3.15 shows the result of a 
3 * 3 closest of min and max operator applied to the input image (Fig. 3.8). The result is obviously 
better than that demonstrated in Fig. 3.14. 
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Fig. 3.15: 

This is the result of a 3 * 3 closest of min and max operator applied to the input 
image (Fig. 3.8). This operator returns the minimum (maximum) graylevel in the 
mask if the difference between the graylevel of the current pixel and the 
minimum (maximum) graylevel is less than that to the maximum (minimum). 

 
So far the min and max operators have performed well. The idea of this operator is based on the 
observation that a transistion from a dark to a light region is formed by graylevels lying between the 
low and the high graylevels representing the dark and the light regions. But what happens if the 
graylevel transition from dark to light is very wide and gradual so that it consists of areas with identical 
graylevels, and the low (min) and high (max) graylevels do not lie within the spatial scope of the 
operator? 
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Fig. 3.16: 

To learn about further aspects of the closest of min and max operator this 
image is used as a source for new experiments. 

 
To find an answer to this question a new input image (shown in Fig. 3.16) is used for an example. Fig. 
3.17 shows the result of a 3 * 3 closest of min and max operator applied to the new input image. The 
aim of obtaining a step between the dark and the light region has not been achieved. 
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Fig. 3.17: 

This is the result of a 3 * 3 closest of min and max operator applied to 
the new input image (Fig. 3.16). The aim of obtaining a step between 
the dark and the light regions has not been achieved. 
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Applying two iterations of the 3 * 3 closest of min and max operator to the output image resulting 
from the first iteration (Fig. 3.17) yields the images shown in Fig. 3.18 and Fig. 3.19. Step by step a 
“channel has been dug” by the operator to separate the disturbed region (graylevel 3) and the light 
region. Further iterations would have no effect. Obviously the alternative to the iteration approach is 
the enlargement of the operator mask. 
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Fig. 3.18: 

The result of the second iteration of the 3 * 3 closest of min and max operator, 
applied to the result of the first iteration shown in Fig. 3.17. 
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Fig. 3.19: 

The result of the third iteration of the 3 * 3 closest of min and max operator, 
applied to the result of the second iteration shown in Fig. 3.18. 

 

3.2 AdOculos Experiments 

3.2.1 Graylevel Smoothing 

The first experiment deals with the local Mean Operator, Min Operator, Max Operator and Median 
Operator which are aimed at removing noise. Realize the New Setup as shown in Fig. 3.20. 
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Fig. 3.20: 

The first experiment deals with the local Mean Operator, the Min Operator, 
the Max Operator and the Median Operator which are aimed at removing 
noise. This New Setup is realized according to the steps described in 
Section 1.6. The results are shown in Fig. 3.21. 

 
Fig. 3.21 (PLIERSRC.128) shows the source image for the current experiment. It needs to be loaded 
into image (1). In order to demonstrate noise suppressing operators we need a noisy version of the 
original image (1). For this purpose salt-and-pepper noise is applied to the source image with the aid of 
the Noise function: the graylevels of randomly selected pixels were assigned either as black or as 
white. 

The parameters of Noise were 

No. of Random Pixel: 1000 

Salt & Pepper: on. 

These parameters may be varied with a click of the right mouse button on the function symbol Noise. 
Similarly the parameters of the four local operators should be determined. Each of these operators is 
controlled by the parameter Window Size:. It should be 3 to obtain 

the results shown in Fig. 3.21. 

A straightforward solution to the noise problem can be achieved by employing an averaging operator. 
Using a 3 * 3 mask output image (3) (Fig. 3.21) is obtained. Obviously the disturbance is not entirely 
removed. Furthermore, the image is blurred which is usually an undesirable side effect. 
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Fig. 3.21: 

In the first step the Noise function adds salt-and-pepper noise 
to the input image (PLIERSRC.128). Image (2) shows the result. 
The parameters of Noise were No of Random Pixels: 1000 and 
Salt & Pepper: on. These parameters may be varied by clicking 
the right mouse button on the function symbol of noise. 
Similarly the parameters of the four local operators can be 
specified. Each of these operators is controlled by a parameter 
Window Size:. It should be 3 to obtain the results shown here: 
(3) is the result of the Mean Operator (4) is the result of the 
Min Operator (5) is the result of the Max Operator and (6) is 
the result of the Median Operator. 

 
Min and max operators avoid blurred output images and they consume little computing time. 
However, inspection of the resulting images (4) and (5) reveals their obvious disadvantages. Since the 
min operator yields the minimum graylevel of the current mask, it completely removes white peaks 
whilst on the other hand enlarging black peaks. The result is achieved by using a 3 * 3 mask. 
Assuming the disturbance has been caused by only one black pixel, the min operator generates 8 
additional black pixels around the original one. The max operator behaves in a complementary way. 

For the removal of these point-like disturbances the median operator performs really well. Image (6) 
shows the result of a 3 * 3 median applied to the noisy image. The salt-and-pepper noise is completely 
suppressed. The blurring effect of the median is negligible. Unfortunately, a high price is paid for this 
performance: the sorting procedure requires a lot of computing time. 

3.2.2 Emphasizing Graylevel Differences 

Section 3.1.2 described the Laplacian operator and the Prewitt operator as representatives of gradient 
operators. Experiments with the Laplacian will be demonstrated in Section 3.2.3. Chapter 6 (Contour-
oriented Segmentation) is based on gradient operators, so that experiments with these operators are 
discussed there. 
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3.2.3 Sharpening Graylevel Steps 

The aim of the second experiment is familiarization with the Laplace function. As described in Section 
1.6 the New Setup shown in Fig. 3.22 is used. 

 

 

Fig. 3.22: 

The aim of the second experiment is familiarization with the Laplace function. This 
New Setup is realized according to the steps described in Section 1.6. The results are 
shown in Fig. 3.23. 

 
The Laplacian operator performance is complementary to the averaging operator. Image (2) in Fig. 
3.23 shows the emphasis of the graylevel differences of the input image (DIGIM.128; loaded into 
image (1)). The resulting graylevels of a Laplacian may be negative. The dark regions of the output 
image represent negative “graylevels” while the light regions are assigned positive graylevels. Their 
maximum magnitudes are colored black and white, respectively. If the Laplacian operator yields zero 
the pixel in question is represented by a medium gray. 

For further processing the resulting image (2) which is an integer type has to be converted to a byte 
image with the aid of the Int -> Byte function. As image (3) shows (Fig. 3.23), the region’s borders are 
emphasized by positive graylevels. Adding this result to the original image (DIGIM.128) yields a 
resulting image with sharpened graylevel steps. Note that the Add function divides the graylevel sum 
by 2 to avoid any overflow. Thus the mean graylevel of the resulting image (4) is lower than that of the 
input image. For the current case this effect is compensated with the aid of the Image Attributes 
option (Section 1.6 and Fig. 1.Fehler! Textmarke nicht definiert.). 
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Fig. 3.23: 

Image (2) shows the emphasis of the graylevel 
differences of the input image (DIGIM.128) by a 
Laplacian. The dark regions of the output image 
represent negative “graylevels” whilst the light regions 
are assigned positive graylevels. Their maximum 
magnitudes are colored black and white, respectively. If 
the Laplacian operator yields zero the pixel in question 
is represented by a medium gray. Image (3) is the “byte 
version” of image (2). Image (4) is the sum of the input 
image and image (3). Note that the Add function divides 
the graylevel sum by 2 to avoid any overflow. Thus the 
mean graylevel of the resulting image (4) is lower than 
that of the input image. For the current case this effect 
is compensated for with the aid of the Image Attributes 
option (Section 1.6 and Fig. 1.Fehler! Textmarke nicht 
definiert.). 

 

3.3 Source Code 

Fig. 3.24 shows a procedure which realizes an averaging operation. Formal parameters are: 

ImSize: image size 

WinSize: size of the mask 

InIm: input image 

OutIm: output image. 

In the first step of the procedure, an initialization of the parameters n and Area and the 

output image OutIm takes place. n represents half the mask size WinSize, while the number of 
pixels in the mask is assigned to Area. r and c are the coordinates of the current pixel. 

The averaging that follows is simple. The graylevels in the neighborhood of the current pixel 
InIm[r][c] are summed up in Sum. The value of Sum is then normalized by the number of mask 
pixels Area and assigned to the current pixel of the output image OutIm[r][c]. 
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void Average (ImSize, WinSize, InIm, OutIm) 
int  ImSize, WinSize; 
BYTE ** InIm; 
BYTE ** OutIm; 
{ 
   int   r,c, y,x, n, Area; 
   long  Sum; 
 
   n = (WinSize-1) >> 1; 
   Area = (2*n+1) * (2*n+1); 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  OutIm [r][c] = 0; 
 
   for (r=n; r<ImSize-n; r++) { 
      for (c=n; c<ImSize-n; c++) { 
         Sum = 0; 
         for (y=-n; y<=n; y++) 
            for (x=-n; x<=n; x++) 
               Sum += InIm [r+y] [c+x]; 
         OutIm [r][c] = (BYTE) (Sum/Area); 

}  }  } 

Fig. 3.24: 

C realization of the averaging operator. 

 
Fig. 3.25 shows the procedure for the Laplacian operator. Formal parameters are: 

ImSize: image size 

InIm: input image 

OutIm: output image. 

 
void Laplace (ImSize, InIm, OutIm) 
int  ImSize; 
BYTE ** InIm; 
int  ** OutIm; 
{ 
   int   r,c, y,x, Sum; 
 
   static int Mask [3][3] = { { 0,  1, 0}, 
                              { 1, -4, 1}, 
                              { 0,  1, 0} }; 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  OutIm [r][c] = 0; 
 
   for (r=1; r<ImSize-1; r++) { 
      for (c=1; c<ImSize-1; c++) { 
         Sum = 0; 
         for (y=-1; y<=1; y++) 
            for (x=-1; x<=1; x++) 
               Sum += InIm [r+y] [c+x] * Mask [y+1] [x+1]; 
         OutIm [r][c] = Sum/9; 

}  }  } 

Fig. 3.25: 

C realization of the Laplacian operator. 

 
The procedure starts by initializing of Mask with the coefficients of the Laplacian operator, and with 
the output image OutIm set to 0. 

The frame of the procedure is similar to the one used for averaging. However, in the case of a 
Laplacian operator Sum stores the products of the graylevels InIm[r+y][c+x] and of the 
coefficients Mask[y+1][x+1]. This operation realizes the local convolution (Section 3.4). Another 
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difference from the averaging operation concerns the data type of the output image OutIm. Since the 
results may be negative, signed data is required, i.e. an int image. 

Fig. 3.26 and Fig. 3.27 show procedures realizing the min and the max operator, respectively. Formal 
parameters and initialization correspond to those of the averaging procedure. The procedures 
themselves are also similar. However, the core of the algorithm consists of a procedure which 
searches for the minimum or maximum graylevels within the mask, i.e. a non-linear operation which 
cannot be reversed. 

The realization of the median operator is shown in Fig. 3.28. Formal parameters and initialization are 
the same as before. The array Lst serves for the sorting procedure. It needs the allocation of memory 
to be appropriate to the mask size. The core of the algorithm starts by loading Lst with the graylevels 
of the current mask. The next step sorts the graylevels in Lst based on a standard algorithm (bubble 
sort). Finally the median value is assigned to the current pixel of the output image OutIm[r][c]. 

 
void MinOp (ImSize, WinSize, InIm, OutIm) 
int  ImSize, WinSize; 
BYTE ** InIm; 
BYTE ** OutIm; 
{ 
   int   r,c, y,x, n, Area; 
   BYTE  Min; 
 
   n = (WinSize-1) >> 1; 
   Area = (2*n+1) * (2*n+1); 
 
   for (r=0; r<ImSize; r++) 
     for (c=0; c<ImSize; c++)  OutIm [r][c] = 0; 
 
   for (r=n; r<ImSize-n; r++) { 
      for (c=n; c<ImSize-n; c++) { 
         Min = InIm[r][c]; 
         for (y=-n; y<=n; y++) 
            for (x=-n; x<=n; x++) 
               if (InIm[r+y][c+x] < Min)  Min = InIm [r+y] [c+x]; 
         OutIm [r][c] = Min; 
}  }  } 

 

Fig. 3.26: 

C realization of the min operator. 

  



3 Local Operations - 3.3 Source Code 

Ad Oculos 67

void MaxOp (ImSize, WinSize, InIm, OutIm) 
int  ImSize, WinSize; 
BYTE ** InIm; 
BYTE ** OutIm; 
{ 
   int   r,c, y,x, n, Area; 
   BYTE  Max; 
 
   n = (WinSize-1) >> 1; 
   Area = (2*n+1) * (2*n+1); 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  OutIm [r][c] = 0; 
 
   for (r=n; r<ImSize-n; r++) { 
      for (c=n; c<ImSize-n; c++) { 
         Max = InIm[r][c]; 
         for (y=-n; y<=n; y++) 
            for (x=-n; x<=n; x++) 
               if (InIm[r+y][c+x] > Max)  Max = InIm [r+y] [c+x]; 
         OutIm [r][c] = Max; 

}  }  } 

Fig. 3.27: 

C realization of the max operator. 

 
The procedures shown in Fig. 3.24 and Fig. 3.25 are based on local convolution (Section 3.4). In the 
case of the averaging operator an explicit mask is not necessary because all the coefficients are 1. The 
realization of the Laplacian operator is based on a static definition of the mask in the procedure. 

It is obvious that both operations can be performed by a single procedure which realizes a local 
convolution. In this case the mask must be a formal parameter. Note that the convolution procedure 
should be able to work with any mask size and any coefficients. 
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void Median (ImSize, WinSize, InIm, OutIm) 
int  ImSize, WinSize; 
BYTE ** InIm; 
BYTE ** OutIm; 
{ 
   int   r,c, y,x, i,j, n, Area; 
   BYTE  Buf; 
   BYTE  *Lst; 
 
   n = (WinSize-1) >> 1; 
   Area = (2*n+1) * (2*n+1); 
   Lst = (BYTE *) malloc (Area*sizeof(BYTE)); 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  OutIm [r][c] = 0; 
 
   for (r=n; r<ImSize-n; r++) { 
      for (c=n; c<ImSize-n; c++) { 
         i=0; 
         for (y=-n; y<=n; y++) { 
            for (x=-n; x<=n; x++) { 
               Lst [i] = InIm [r+y] [c+x]; 
               i++; 
         }  } 
 
         for (i=0; i<Area-1; i++)   /**** bubble sort ****/ 
            for (j=Area-1; i<j; j--) 
               if (Lst[j-1] > Lst[j]) { 
                  Buf      = Lst[j-1]; 
                  Lst[j-1] = Lst[j]; 
                  Lst[j]   = Buf; 
               } 
               OutIm [r][c] = Lst [Area/2]; 

}  }  } 

Fig. 3.28: 

C realization of the median operator. 

 

3.4 Supplement 

Human beings try to extract something meaningful from an image. For them an image has a 
“content”. To give only one example, consider the constellation in the night sky. People talk about the 
Big Dipper (the Great Bear in England, the Great Wagon in Germany) even though there is clearly only 
an accidental alignment of some stars. They have no meaningful relationship other than to human 
observers on earth. 

It is extremly important to understand that a local operator merely processes (two-dimensional, 
discrete, spatial) signals which are meaningless to it. Thus one should be cautious in choosing words 
to describe an image or the processing of an image. For instance, local operators which emphasize 
graylevel differences (Section 3.1.2) are sometimes called “edge detectors”. This is misleading since 
the correspondence of these differences to the edges of the objects in the image is generally not 
guaranteed (Chapter 6). 

The classical local operation is based on the well-known convolution of two signals h(m) and f(n): 

h * f h(m)f (n m)dm= −∫  

In practising image processing a small “image” containing the weights (of the processing mask) is 
convolved with the input or source image. Let w(i,j) be weight at position (i,j) related to the origin of 
the mask and f(x,y) the graylevel at position (x,y) related to the origin of the source image. Then 

i j
w * f w(i, j)f (x i, y j)= − −∑∑  

is the local convolution of the image f with the mask w. Although it is incorrect from a formal point of 
view, it is useful to talk about a cross-correlation between the image f and the mask w. w*f yields a 
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measure for the similarity between the weight pattern of the mask and the graylevel pattern of the 
image part which is currently overlaid by the mask. 

Local operations which are not based on convolution are often more interesting. In Section 3.1 these 
included the min, max and median operations. They are typical representatives of the so-called rank 
filters. The general idea of rank filters (Fig. 3.29) is to sort out the graylevels overlaid by the mask, to 
put them into a list, to weight the list entries and to sum up the weighted entries. This sum is the new 
graylevel. That is, for the median operator all weights except the medium one (which is 1) are 0. In the 
case of the min (max) operation only the weight corresponding to the lowest (highest) graylevel is 1. 

Other interesting alternatives to the convolution approach are the so-called morphological image 
processing operations (morphology = science of shape) which are discussed in detail in Chapter 8. 
The basic idea here is to exploit knowledge regarding the shape of those graylevel regions of interest. 

The large amount of literature concerning local operations reflects the broad spectrum of applications 
and the corresponding problems. A few examples are: Ballard and Brown [3.1], Horn [3.4], Jähne [3.5], 
Niblack [3.7], Rosenfeld and Kak [3.8] and Schalkoff [3.9]. Since local operations are an important tool 
of image manipulation (Chapter 1), literature from the desktop publishing domain can be of interest for 
further reading. Morrison [3.6] offers a magical gateway to image processing. 

 

Sort

Graylevels
covered by
the mask

Sorted list
of graylevels

x

List of
weighted
graylevels

Resulting
graylevel

 

Fig. 3.29: 

The general idea of rank filters is to sort the graylevels covered by the mask, to put them into a 
list, to weight the list entries and to sum up those weighted entries. 

 

3.5 Exercises 

Exercise 3.1: 

Apply the Gaussian low-pass operator depicted in Fig. 3.4 to the input image (Fig. 3.2). 

 

Exercise 3.2: 

It is not hard to guess that the complement to the min operator is the max operator. Apply a 3 * 3 max 
operator to the input image (Fig. 3.2). 

 

Exercise 3.3: 

Apply a 3 * 3 median operator to the input image (Fig. 3.2). 
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Exercise 3.4: 

Apply a 3 * 3 nearest neighbor operator with k=6 (including the current pixel) to the input image (Fig. 
3.2). 

 

Exercise 3.5: 

In Section 3.1.2 the min and max operations were used to emphasize graylevel transitions. Apply the 
second lowest and second highest graylevels to obtain a similar result. 

 

Exercise 3.6: 

Apply a 3 * 3 closest of min and max operator to the output image resulting from the first iteration of 
the example shown in Fig. 3.15. 

 

Exercise 3.7: 

Apply a 5 * 5 closest of min and max operator to the source image shown in Fig. 3.16. 

 

Exercise 3.8: 

Let B be a blurred version of image I. Implement an image sharpening filter by subtracting B from I, 
scaling that result, and adding it back to I. Show that this is equivalent to adding the output of a high 
pass filter (see also Section 4.1) back to the original. Explain how this serves to sharpen the image. 

 

Exercise 3.9: 

Write a program which realizes k nearest neighbor operators of various sizes. 

 

Exercise 3.10: 

Write a program which realizes closest of min and max operators of various sizes. 

 

Exercise 3.11: 

Write a program which realizes a general rank filter. 

 

Exercise 3.12: 

Ignore the rule of separating output images from source images and experiment with local operators 
which work on the source image itself. 

 

Exercise 3.13: 

Try to find local operators which yield aesthetically interesting outputs. For instance, realize an 
operator which mimics looking through rippled glass. 

 

Exercise 3.14: 

Become familiar with every local operation offered by AdOculos (AdOculos Help).  
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4 Global Operations 

4.1 Foundations 

The requirements of understanding this chapter are: 

• to be familiar with complex arithmetic/numbers 

• to have a basic understanding of Fourier analysis (this chapter is intended to refresh that knowledge) 

• to have read Chapter 1. 

Global operations require all the pixels of the input image to calculate the graylevel of one output pixel. 
A typical global operator is the Fourier transform. This transformation is well-known in the context of 
one-dimensional continuous and discrete time signals. Digital images are two-dimensional discrete 
spatial signals. The formal roots of the corresponding two-dimensional Discrete Fourier Transform 
(DFT) do not differ from the one-dimensional case and are described in many books dealing with 
digital signal processing or image processing. Thus the following sections offer the opportunity of 
brushing up basic understanding with the aid of a few examples. 

Fig. 4.1 depicts the basic idea of the Fourier transform: by summing sinusoidal signals a non-
sinusoidal waveform can be synthesized and vice-versa; by applying Fourier analysis to a waveform 
information concerning the individual sinusoidal signals comprising the non-sinusoidal waveform is 
obtained. Fig. 4.2 shows the non-sinusoidal waveform synthesized in Fig. 4.1 and its representation in 
the spatial frequency domain which has been generated by Fourier Analysis. The spatial frequency 
domain reveals the sinusoidal “components” (Fig. 4.1) f0, 2f0 and 4f0 of the non-sinusoidal signal. 
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Fig. 4.1: 

Example for the synthesis of a non-sinusoidal signal by summing three sinusoidal signals. Usually this 
representation is known as time domain and the x-axis is therefore labelled with a t. Image processing deals with 
spatial signals. Thus we talk about a spatial domain and label the x-axis as x. a(x) means the amplitude of the spatial 
signal at position x. 

 
The example depicted in Fig. 4.2 and Fig. 4.1 is based on continuous signals. In the case of discrete 
signals (like digital images) Fourier Analysis is performed by the Discrete Fourier Transform (DFT). An 
application-oriented discussion of its formal foundation is given in Section 4.4. Fig. 4.3 outlines the 
application of a DFT which has been simplified by using only a period of eight samples a0, a1, ... a7 of 

a real input signal (i.e. the signal has no imaginary component). 

The DFT yields a Cartesian representation of the spectrum. The real part consists of the coefficients 
A0, A1, ... A7 whilst B0, B1, ... B7 form the imaginary components. The Cartesian representation is 

useful for computers but not very illustrative. Changing the Cartesian representation to a polar 
representation clarifies the spectrum: α0, α1, ... α7 are the magnitudes, whilst Θ0, Θ1, ... Θ7 are the 

phases of the sinusoidal signals revealed by the DFT. The sign of the phase is defined in Fig. 4.4. 
Accordingly a positive real component A and a positive imaginary component B yields a phase angle 
between 0º and 90º, a positive real and negative imaginary component a phase angle between -0º and 
-90º. A negative real component leads to a phase angle between ±90º and ±180º (depending on the 
sign of the imaginary component). 
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Fig. 4.2: 

The non-sinusoidal signal synthesized in Fig. 4.1, represented in both the spatial domain and 
the spatial frequency domain, as yielded by Fourier Analysis. The spatial frequency domain 
reveals the magnitude α(f) (which corresponds to the amplitude of sinusoidal signals in the 
spatial domain) and the phases Θ(f) of the sinusoidal “components” f0, 2f0 and 4f0 of the 

non-sinusoidal signal. f0 is the fundamental (spatial) frequency. 
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Fig. 4.3: 

A simple DFT algorithm based on eight samples a0, a1, ... a7 of a real input signal yielding a 

Cartesian representation of the spectrum. Its real component consists of the coefficients A0, 

A1, ... A7. The imaginary coefficients are B0, B1, ... B7. The polar representation yields the 

magnitudes (α0, α1, ... α7) and the phases (Θ0, Θ1, ... Θ7) of the sinusoidal signals revealed by 

the DFT. The sign of the phase Θk is defined in Fig. 4.4. 

 
Fig. 4.5 demonstrates the application of the DFT on eight samples taken from a sinusoidal signal. 
Computing by hand is easy using the expanded DFT sums shown in Fig. 4.6 and Fig. 4.7 (see Fig. 4.3 
too). 

According to Fig. 4.2 a spectrum is to be expected which consists of only one peak the magnitude of 
which is 1 since the signal is a pure sinusoidal. However the actual spectrum shows two peaks (Fig. 
4.5) each with a magnitude of 0.5. Fig. 4.8 shows the structure of the spectrum of the simplified DFT. 
Except for the restriction to 8 samples this structure is valid for the general DFT. 
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Fig. 4.4: 

Definition of the phase: A positive real component A and a 
positive imaginary component B yielding a phase angle 
between 0º and 90º, a positive real and negative imaginary 
component yielding a phase angle between -0º and -90º. A 
negative real component leads to a phase angle between 
±90º and ±180º (depending on the sign of the imaginary 
component). 

 
At first glance the coefficients generated by the DFT are ordered in an unusual way (e.g.: why are the 
coefficients divided into positive and negative parts? what is a negative frequency?). This ordering has 
no special significance, it is only due to the definition of the DFT and a question of getting used to it. 
The DC coefficient indicates the average value of the sample period a0, a1 ... a7. The fundamental 

frequency is the reciprocal of the period (f0 = 1/T) and therefore the lowest frequency that the DFT 

reveals. The Nyquist frequency is the highest frequency the DFT is able to handle (in the current case 
4f0). The remaining coefficients are integer multiples of f0, the so-called harmonics. 
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Fig. 4.5: 

A simple example applying the algorithm shown in Fig. 4.3. The expanded sums in Fig. 4.6 and 
Fig. 4.7 support the computing of the DFT algorithm by hand. 
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Fig. 4.6: 

Expansion of the DFT sums yielding the real 
component of the spectrum (Fig. 4.3). 
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Fig. 4.7: 

Expansion of the DFT sums yielding the imaginary 
component of the spectrum (Fig. 4.3). 
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Fig. 4.8: 

One needs to get accustomed to the order of the DFT coefficients. The 
coefficient DC indicates the average value of the sample period a0, a1, ... a7. The 

fundamental frequency is the reciprocal of the period whilst the Nyquist 
frequency is the highest frequency the DFT is able to handle. The remaining 
coefficients (harmonics) are integer multiples of f0. 
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Fig. 4.9: 

This example shows the DFT analysing the first harmonic. 
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Fig. 4.10: 

A sample rate which is lower than or equal to double the Nyquist frequency leads to errors. 
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Fig. 4.11: 

At first glance this DFT example is similar to that shown in Fig. 4.5. However, although the input 
signal is a “pure” sinusoidal signal the spectrum indicates various harmonics. It can be said that 
the spectrum “leaks”. 
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Fig. 4.12: 

For the DFT the sinusoidal signal shown in Fig. 4.11 looks like this. 
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Fig. 4.13: 

The best remedy for leakage is windowing. The multiplication of the original signal (top 
left) and a roof function (bottom left) yields a signal with flattened edges. 

 
Fig. 4.9 shows the first harmonic to be treated by the simple DFT (remember the support of Fig. 4.6 
and Fig. 4.7). As expected, coefficients 2 and 6 indicate this harmonic with a magnitude of 1 and a 
phase angle of ±90º. 

Trying to transform the third harmonic as shown in Fig. 4.10 leads to problems: The signal is sampled 
at the zero-crossing points so that the digitized signal is always 0. The problem is due to the violation 
of the rule of using sample rates which are greater (and not equal to) than double the Nyquist 
frequency (Fig. 4.8). 

A more difficult everyday problem of DFT applications is the so-called leakage effect: At first glance 
the DFT example shown in Fig. 4.11 is similar to that depicted in Fig. 4.5. However, although the input 
signal is a “pure” sinusoidal signal the spectrum indicates various harmonics. The spectrum can be 
said to “leak”. The answer to this apparent contradiction is that the actual sinusoidal signal is not 
“clean”. One of the most important properties of the DFT is that it assumes periodic signals. From this 
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point of view the sinusoidal signal looks like that in Fig. 4.12. It is the step which causes the 
harmonics. 

One way of reducing leakage is to try to choose the sample period so that the height of the steps is 
minimal. Unfortunately in practice the repositioning of the sample period is difficult (if not impossible) 
to implement. 

The practical solution is windowing. The principle is demonstarted in Fig. 4.13 where the 
multiplication of the original signal (top left) and a roof function (bottom left) yields a signal with 
flattened edges. The roof function used in this example may be replaced by other windowing 
functions (e.g. bell-shaped) which are able to flatten the original signal. 

So far the DFT has been executed by hand. Obviously it is a fairly time-consuming process even for 
computers (floating point matrix operations). The so-called Fast Fourier Transform (FFT) is the most 
efficient algorithm for performing the Discrete Fourier Transform. Compared to the straight-forward 
implementation of the DFT the FFT saves time and memory since it performs the transformation on 
the input vector, hence needing no extra output vector. Fig. 4.28 shows the source code of the FFT. 

The 2-dimensional case 

Usually anyone who is interested in signal processing is familiar with the 1-dimensional DFT. However 
this is not so for the 2-dimensional case. The first hurdle is the idea of a 2-dimensional sinusoidal 
signal. The example shown in Fig. 4.14 demonstrates its generation. The two 1-dimensional 
cosinusoidal signals depicted in the top illustration are repeated in every row and column. The mean 
of these two images (superposition) yields a 2-dimensional cosinusoidal signal. It looks a little bit like 
the underside of an egg box. The spectrum of this “pure” cosinusoidal signal consists of 4 peaks. 

Fortunately the computing of a 2-dimensional DFT is simply realized with the standard 1-dimensional 
DFT by transforming the single rows first and then transforming the single columns of the resulting 
image (or vice-versa). This algorithm is shown in Fig. 4.29. 
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Fig. 4.14: 

We obtain a 2-dimensional cosine signal by superposing two 1-dimensional cosine signals. 
The 2-dimensional signal looks like the underside of an egg box. The spectrum consists of 4 
peaks, a pair for each 1-dimensional signal. 

Spectral Experiments 

The upper part of Fig. 4.15 depicts a typical application scheme of the Discrete Fourier Transform: The 
spectrum generated by the DFT is manipulated (HP) and then transformed back by an inverse DFT 

(DFT-1). In Fig. 4.15 the example manipulator is a high-pass (HP) filter which suppresses the low 
frequencies residing in the corners of the spectrum. Since the high frequencies are responsible for 
graylevel steps these steps are emphasized in the resulting image. 
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Fig. 4.15: 

The upper part of this figure depicts a typical application scheme of the Discrete 
Fourier Transform: The spectrum generated by the DFT is manipulated (HP) and 

transformed backward by an inverse DFT (DFT-1; Fig. 4.28). Here the 
manipulation is a high-pass (HP) filter operation which suppresses the low 
frequencies. The lower part depicts two procedures supporting the presentation 
of the spectrum to a human observer. The first procedure changes the Cartesian 
to a polar representation (Fig. 4.3) while the second procedure swaps the 
positions of the low and high frequencies so that the low frequencies are in the 
middle of the frame. Note that the source image is supposed to consist of a real 
part only. The imaginary input vector for the the DFT is set to 0. In practice 
images are always real. 

 
The lower part of Fig. 4.15 depicts two procedures making the presentation of the spectrum more 
useful for a human observer. The first procedure changes the Cartesian to a polar representation (Fig. 
4.3) while the second procedure replaces the positions of the low and high frequencies so that the 
low frequencies are now in the middle of the frame. This is the most commonly used representation 
of the spectrum. 

Fig. 4.16 shows the spectrum of a square image region. The five small grids arranged in Fig. 4.17 
illustrate the manipulation of this spectrum: The shaded squares indicate the frequencies to be set to 
0. Below the grids the result of the inverse transform of the manipulated spectrum is shown. 
Obviously the graylevel steps are emphasized by these high-pass operations. That is, a high rate of 



4 Global Operations - 4.1 Foundations 

Ad Oculos 86

higher harmonics indicates steep graylevel steps in the source image. The influence of a low-pass 
filter is complementary. Since higher harmonics are suppressed then graylevel transitions become flat 
resulting in a blurred image. 
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Fig. 4.16: 

This is the spectrum of a square image region. It is the basis for high-pass and low-
pass filter experiments according to the application scheme shown in Fig. 4.15. 
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Fig. 4.17: 

This example demonstrates the influence of the high frequencies. 

 
While high-pass and low-pass filters influence the “borders” of the spectrum, another interesting 
application is the suppression of specific frequencies which are known to be the result of global 
interference in the source image. Fig. 4.18 shows a 2-dimensional cosinusoidal signal which is similar 
to that already depicted in Fig. 4.14 except for interference. This interference leads to the 0.063 entries 
in the magnitude spectrum. It is possible to reconstruct the original 2-dimensional cosinusoidal signal 
exactly, since the frequencies in the spectrum which result from the interference and the frequencies 
representing the cosinusoidal signal have no intersection. 
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Fig. 4.18: 

This is a 2-dimensional cosine signal which is similar (except for an 
interference) to that already depicted in Fig. 4.14. 

 
A completely different example stems from pattern recognition. Suppose the aim is to find a certain 
graylevel pattern in an image. The problem is that the position of the pattern is not known in advance. 
The solution is based on the property that the magnitude spectrum is invariant to shifts of the signal. 
That is, the magnitude spectrum of the graylevel pattern is independant of its position in the image. 
Therefore the recognition process should be executed on the magnitude spectrum instead of on the 
original image. Fig. 4.19 shows a simple string-like graylevel pattern and its spectral representation. In 
Fig. 4.20 and Fig. 4.21 the position of the pattern has changed. These changes are reflected in the 
phase spectra but not in the magnitude spectra. 
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Fig. 4.19: 

A simple string-like graylevel pattern and its spectrum. Fig. 4.20 and Fig. 4.21 
demonstrate the effect of moving this pattern to different positions. 
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Fig. 4.20: 

The shift of the graylevel pattern shown in Fig. 4.19 has no effect on the magnitude 
spectrum. 
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Fig. 4.21: 

The shift of the graylevel pattern shown in Fig. 4.19 has no effect on the magnitude 
spectrum. 

 

4.2 AdOculos Experiments 

The aim of the first experiment is familiarization with the Fourier Transform function. As described in 
Section 1.6 realize the New Setup shown in Fig. 4.22. The source image (BREMSRC.128; Fig. 4.23) to 
be loaded into (1) shows a badge lying on the floor of a laboratory. 
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Fig. 4.22: 

The aim of the first experiment is familiarization with the Fourier 
Transform function. This New Setup is realized according to the steps 
described in Section 1.6. The results are shown in Fig. 4.23. 

 
Image (2) and (3) show the real and the imaginary parts of the result of the Fourier transform. 
Changing the current Cartesian representation to a polar representation clarifies the spectrum. Images 
(4) and (5) show the magnitude and the phase of the spectrum. To become acquainted with the 
Fourier transform trying source images from different scenes is highly recommended. 

The second experiment explores the mechanism of spectrum manipulation. As described in Section 
1.6 the New Setup shown in Fig. 4.24 is used. The source image (BREMSRC.128; Fig. 4.25) to be 
loaded into (1) is again the badge. 

In a similar way to the first experiment, images (2) and (3) show the result of the Fourier transform. 
This Cartesian representation of the spectrum is to be manipulated by the High-Pass function which 
suppresses the low harmonics. The Window Size parameter of the High-Pass function defines the cut 
off radius as shown in (4) and (5). For the current experiment this parameter is 80 pixels. It may be 
varied by clicking the right mouse button on the function symbol High-Pass. 
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Fig. 4.23: 

In the first step the Fourier Transform function computes the spectrum of the 
input image (BREMSRC.128). Images (2) and (3) show the real and the 
imaginary part of the result. Changing the current Cartesian representation to 
a polar representation clarifies the spectrum. Images (4) and (5) show the 
magnitude and the phases of the spectrum. 

  

 

Fig. 4.24: 

The second experiment explores the mechanism of spectrum manipulation. This New Setup is realized 
according to the steps described in Section 1.6. The results are shown in Fig. 4.25. 
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Fig. 4.25: 

Similar to Fig. 4.23 Image (2) and (3) show the result of the Fourier transform. 
This Cartesian representation of the spectrum is to be manipulated by the 
High-Pass function which suppresses the low harmonics. The Window Size 
parameter of the High-Pass function defines the cut off radius as shown in (4) 
and (5). For the current experiment this parameter is 80 pixels. It may be 
varied with by clicking the right mouse button on the function symbol High-
Pass. 
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Fig. 4.26: 

The third experiment replaces the High-Pass function by the Low-Pass function. This New Setup is 
realized according to the steps described in Section 1.6. The results are shown in Fig. 4.27. 

  

 
Fig. 4.27: 

The results of the Low-Pass function are complementary to those of the High-
Pass function shown in Fig. 4.25. 

 
Image (6) shows the result of the application of the Inverse Fourier Transform on the manipulated 
spectrum. As expected the resulting image (6) shows the emphasized graylevel steps of the source 
image (BREMSRC.128). 
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Replacing the High-Pass function by the Low-Pass function yields the results shown in Fig. 4.26 and 
Fig. 4.27. 

Note that the realization of the High-Pass and Low-Pass functions serves the purpose of 
demonstration only. They violate basic rules of filter design and should not be used in practical 
applications [4.5] [4.9]. 
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4.3 Source Code 

void fft (Forward, Size, VecRe, VecIm) 
int   Forward, Size; 
float * VecRe, * VecIm; 
{ 
   int    LenHalf, Stage, But, ButHalf, i,j,k, ip, pot2; 
   float  ArcRe,ArcIm, dArcRe,dArcIm, ReBuf,ImBuf, ArcBuf; 
   double Arc; 
   pot2 = 0; 
   while (Size != (1 << pot2))  pot2++; 
   LenHalf = Size >> 1 ; 
   j = 1; 
   for (i=1; i<Size; i++) { 
      if (i<j) { 
         ReBuf = VecRe[j-1]; 
         ImBuf = VecIm[j-1]; 
         VecRe[j-1] = VecRe[i-1]; 
         VecIm[j-1] = VecIm[i-1]; 
         VecRe[i-1] = ReBuf; 
         VecIm[i-1] = ImBuf; 
      } 
      k = LenHalf; 
      while (k<j) { 
         j -= k;  k = k >> 1; 
      } 
      j += k; 
   } 
   for (Stage=1; Stage<=pot2; Stage++) { 
      But = 1 << Stage; 
      ButHalf = But >> 1; 
      ArcRe = (float)1; 
      ArcIm = (float)0; 
      Arc = (double) (PI/ButHalf); 
      dArcRe = (float) cos(Arc); 
      dArcIm = (float) sin(Arc); 
      if (Forward)  dArcIm = -dArcIm; 
      for (j=1; j<=ButHalf; j++) { 
         i = j; 
         while (i<=Size) { 
            ip = i + ButHalf; 
            ReBuf = VecRe[ip-1] * ArcRe - VecIm[ip-1] * ArcIm; 
            ImBuf = VecRe[ip-1] * ArcIm + VecIm[ip-1] * ArcRe; 
            VecRe[ip-1] = VecRe[i-1] - ReBuf; 
            VecIm[ip-1] = VecIm[i-1] - ImBuf; 
            VecRe[i-1]  = VecRe[i-1] + ReBuf; 
            VecIm[i-1]  = VecIm[i-1] + ImBuf; 
            i += But ; 
         } 
         ArcBuf = ArcRe; 
         ArcRe = ArcRe  * dArcRe - ArcIm * dArcIm; 
         ArcIm = ArcBuf * dArcIm + ArcIm * dArcRe; 
   }  } 
   if (Forward) { 
      for (j=1; j<=Size; j++) { 
         VecRe[j-1] /= Size; 
         VecIm[j-1] /= Size; 

}  }  } 

Fig. 4.28: 

C realization of the Fast Fourier Transform. If Forward is 0 the procedure performs the inverse transform. 

 
Fig. 4.28 shows a procedure which realizes the Fast Fourier Transform. Formal parameters are: 

Forward: Boolean variable which controls forward or backward transformation 

Size: vector size 
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VecRe: real part of vector 

VecIm: imaginary part of vector. 

Note that Size must be to the power of 2 and that the procedure only works on square images. 

Since the FFT algorithm works „in-place“ a separation of input and output vector is not required. 
Details of the FFT algorithm are described by Burrus [4.2], Elliot et al [4.3] and Ramirez [4.11]. 

Fig. 4.29 shows a procedure which realizes the Fourier transform of an image. Formal parameters are: 

Forward: Boolean variable which controls forward or backward transformation 

ImSize: image size 

RealIm: real part of image 

ImagIm: imaginary part of image (zero in the case of the source image). 

 
void TransIm (Forward, ImSize, RealIm, ImagIm) 
int Forward, ImSize; 
float ** RealIm; 
float ** ImagIm; 
{ 
   int    r,c; 
   float  *VecRe; 
   float  *VecIm; 
 
   VecRe = (float *) malloc (ImSize*sizeof(float)); 
   VecIm = (float *) malloc (ImSize*sizeof(float)); 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         VecRe[c] = RealIm[r][c]; 
         VecIm[c] = ImagIm[r][c]; 
      } 
      fft (Forward, ImSize, VecRe, VecIm); 
      for (c=0; c<ImSize; c++) { 
         RealIm[r][c] = VecRe[c]; 
         ImagIm[r][c] = VecIm[c]; 
   }  } 
 
   for (c=0; c<ImSize; c++) { 
      for (r=0; r<ImSize; r++) { 
         VecRe[r] = RealIm[r][c]; 
         VecIm[r] = ImagIm[r][c]; 
      } 
      fft (Forward, ImSize, VecRe, VecIm); 
      for (r=0; r<ImSize; r++) { 
         RealIm[r][c] = VecRe[r]; 
         ImagIm[r][c] = VecIm[r]; 
   }  } 
   free (VecRe); 
   free (VecIm); 

} 

Fig. 4.29: 

C realization of a two-dimensional, Discrete Fourier Transform. The procedure fft is defined in Fig. 4.28. 

 
The procedure starts by allocating memory for both the arrays VecRe and VecIm. They serve as row 
and column buffers. The transformation commences with the image rows. The index of the current 
row is r. In preparation, the buffers VecRe and VecIm must be filled with the graylevels of the current 
row. After calling fft, the transformation result is kept in the buffers since the FFT calculates in-place. 
In the last step the transformation result is rewritten into the input image store. The column 
transformation proceeds in a similar way. 

Typical manipulations of the spectrum are the suppression of high frequencies (low-pass filter) or low 
frequencies (high-pass filter). These operations may be performed using the procedures shown in Fig. 
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4.30. The suppression of high spatial frequencies takes place for both the real and the imaginary part 
of the spectrum outside a circle around the origin: all spectral values in this area are set to 0. The 
suppression of low spatial frequencies is performed in a complementary way. Formal parameters of 
the procedures LowPass and HighPass are 

Rad: radius of the manipulation section 

ImSize: image size 

Image: array representing the part of the spectrum (usually real or imaginary part) which 
 must be manipulated 

 
void LowPass (Rad, ImSize, Image) 
int   Rad, ImSize; 
float ** Image; 
{ 
   int  r,c, Bot,Up; 
   long rr,cc; 
 
   Bot = ImSize/2 -1; 
   Up  = ImSize/2 +1; 
   for (r=-Bot; r<Up; r++) 
      for (c=-Bot; c<Up; c++) 
        if (Rad < (int) sqrt ((double) r*r+c*c)) 
           Image [r+Bot] [c+Bot] = (float)0; 
} 
 
 
void HighPass (Rad, ImSize, Image) 
int   Rad, ImSize; 
float ** Image; 
{ 
   int  r,c, Bot,Up; 
   long rr,cc; 
 
   Bot = ImSize/2 -1; 
   Up  = ImSize/2 +1; 
   for (r=-Bot; r<Up; r++) 
      for (c=-Bot; c<Up; c++) 
         if (Rad > (int) sqrt ((double) r*r+c*c)) 
            Image [r+Bot] [c+Bot] = (float)0; 

} 

Fig. 4.30: 

C realization of two procedures which manipulate the spectrum of an image. 

 
Both procedures are self-explanatory. Please note that the realizations shown in Fig. 4.30 serve the 
purpose of demonstration only. They violate basic rules of filter design and should not be used in 
practical applications. 

4.4 Supplement 

In Section 4.1 a simplified form of the Discrete Fourier Transform (DFT; Fig. 4.3) has been used to 
make the examples more illustrative. Now the original form of the DFT will be discussed. 

Let xm be a complex element of the samples serving as an input signal for the DFT: 

}{m 0 1 M 1x x ,x ,...x −∈  

With 

k 0...m 1

m 0...m 1

= −
= −
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the DFT yields the individual frequencies of the spectrum {X0, X1, ... XM-1} by computing 

2 mkM 1 j
1 M

k mM
m 0

X x e
π− −

=
= ∑  

In order to execute this formula with a computer it is more convenient to have a Cartesian 
representation of the DFT. With 

m m m

j

x a jb

e cos jsin± α

= +

= α ± α
 

the following is obtained: 

M 1
1

k m mM
m 0

2 mk 2 mk
X (a jb )(cos jsin )

M M

−

=

π π= + −∑  

Isolating the real Ak and the imaginary part Bk gives 

k k kX A jB= +  

and 

M 1
1

k m mM
m 0

M 1
1

k m mM
m 0

2 mk 2 mk
A a cos b sin

M M

2 mk 2 mk
B b cos a sin

M M

−

=
−

=

π π= +

π π= −

∑

∑
 

The inverse DFT is defined by the reciprocal 

2 mkM 1 j
M

m k
k 0

x X e
π−

=
= ∑  

In the Cartesian representation 

m m mx a jb= +  

with 

M 1

m k k
k 0

M 1

m k k
k 0

2 mk 2 mk
a A cos B sin

M M

2 mk 2 mk
b B cos A sin

M M

−

=
−

=

π π= +

π π= −

∑

∑
 

The only difference between the forward and backward transform is the factor 1/M scaling the sums. 
Furthermore, it does not matter whether this factor scales the sums of the forward or the backward 
transform. 

The theoretical background of the DFT is discussed in all the references given at the end of this 
chapter. Of special interest is the book by Ramirez [4.11] which gives a very illustrative and practically-
oriented introduction. 

The DFT is an important global operation in digital image processing. But, of course, it is not the only 
one. There are many orthogonal, linear or non-linear transformations in which each coefficient 
depends on every pixel of the input image. Some examples are the Walsh, the cosine and the sine 
transformation. A typical application of these in image processing is for image coding. The non-linear 
rapid transforms can be applied in the context of pattern recognition. There are many other 
applications of global operators described in the relevant literature: for examples consult the reference 
list. 

An important application of the Fourier transformation is in the area of image treatment (Chapter 1) 
which includes such topics as noise suppression and the enhancement of blurred images. A typical 
application in the area of image analysis is the representation of contours by the so-called Fourier 
descriptors. In the context of pattern recognition the Fourier transform is used to achieve a shift 
invariance of the objects to be detected. 
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4.5 Exercises 

Exercise 4.1: 

Extract the simplified DFT shown in Fig. 4.3 from the original DFT. 

 

Exercise 4.2: 

Apply the simple DFT (according to Fig. 4.5) to the sinusoidal signal shown in Fig. 4.31. 

 

x

a(x)

1

-1

20 6 751 3 4

 

Fig. 4.31: 

Exercise 4.2 demonstrates the analysis of the 
second harmonic. 

 
Exercise 4.3: 

Apply the simple DFT (according to Fig. 4.5) to the cosinusoidal signal shown in Fig. 4.32. 

 

x

a(x)

1

-1

20 6 751 3 4

 

Fig. 4.32: 

Exercise 4.3 returns to the fundamental frequency. It 
demonstrates the transformation of a cosinusoidal 
signal. 

 
Exercise 4.4: 

Apply the simple DFT (according to Fig. 4.5) to the cosinusoidal signal shown in Fig. 4.33. 
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Fig. 4.33: 

Exercise 4.4 demonstrates the simplest case, i.e. the 
spectrum of a DC signal. 

 
Exercise 4.5: 

Apply the simple DFT (according to Fig. 4.5) to the cosinusoidal signal shown in Fig. 4.34. 
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20 6 751 3 4

 

Fig. 4.34: 

Exercise 4.5 demonstrates the transformation of a 
pulse. 

 
Exercise 4.6: 

Fig. 4.35 shows horizontal and vertical sinusoidal signals. Superpose them to obtain a 2D sinusoidal 
signal and apply the 2-dimensional DFT to it. It is best to use the DFT program discussed in Exercise 
4.14. 
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Fig. 4.35: 

Exercise 4.6 demonstrates the analysis of the first 2-dimensional 
harmonic. 

 
Exercise 4.7: 

Superpose the sinusoidal signals shown in Fig. 4.36 and apply the 2-dimensional DFT to it. It is best to 
use the DFT program discussed in Exercise 4.14. 
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Fig. 4.36: 

Exercise 4.7 demonstrates the analysis of the second 2-dimensional 
harmonic. 

 
Exercise 4.8: 

Superpose the sinusoidal signals shown in Fig. 4.37 and apply the 2-dimensional DFT to it. It is best to 
use the DFT program discussed in Exercise 4.14. 
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Fig 4.37: 

Exercise 4.8 demonstrates the superposition of a fundamental cosine 
and its second harmonic. 

 
Exercise 4.9: 

Superpose the sinusoidal signals shown in Fig. 4.38 and apply the 2-dimensional DFT to it. It is best to 
use the DFT program discussed in Exercise 4.14. 
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Fig. 4.38: 

Exercise 4.9 demonstrates the superposition of two sinusoidal signals. 

 
Exercise 4.10: 

Fig. 4.39 shows 4 empty frames similar to those used in the experiment shown in Fig 4.16 and Fig. 
4.17. Fill them with the result of the inverse DFT applied to the spectrum shown in Fig 4.16. The 
shaded squares in the small grids indicate the frequencies to be set to 0. It is best to use the DFT 
program discussed in Exercise 4.14. 
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Fig. 4.39: 

Exercise 4.10 demonstrates the influence of the low frequencies. 

 
Exercise 4.11: 

Is the magnitude spectrum invariant to the rotated graylevel pattern shown in Fig. 4.40 (the original 
position is shown in Fig. 4.19)? Find the answer by computing the spectra. It is best to use the DFT 
program discussed in Exercise 4.14. 
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Fig. 4.40: 

The rotation of the graylevel pattern shown in Fig. 4.19 leads to a different 
magnitude spectrum. 
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Exercise 4.12: 

Is the magnitude spectrum invariant to the rotated graylevel pattern shown in Fig. 4.41 (the original 
position is shown in Fig. 4.19)? Find the answer by computing the spectra. It is best to use the DFT 
program discussed in Exercise 4.14. 
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Fig. 4.41: 

The rotation of the graylevel pattern shown in Fig. 4.19 leads to a different 
magnitude spectrum. 

 
Exercise 4.13: 

Compute the Fourier transform of the following functions using the procedure shown in Fig. 4.28. Plot 
the magnitude and phase spectra. 

(a) 

0 0 x 127

a(x) 1 x 128

0 129 x 255

≤ ≤
= =
 ≤ ≤

 

What do your results tell you about the frequency content of an impulse function (refer to the 
magnitude spectrum)? 

(b) 

0 0 x 120

b(x) 1 121 x 136

0 137 x 255

≤ ≤
= ≤ ≤
 ≤ ≤

 

Note that b(x) is a box filter of width 16 (see also Section 3.1). Verify that the magnitude spectrum of 
b(x) is a sinc function. 

(c) 

0 0 x 112

c(x) 1 113 x 144

0 145 x 255

≤ ≤
= ≤ ≤
 ≤ ≤

 

Function c(x)=b(x/2). How does scaling the spatial domain affect the frequency domain? 

(d) 

d(x) 1 0 x 255= ≤ ≤  

What is the Fourier transform of a constant signal? 

(e) 

e(x) b(x) cos(8 x / 256)= + π  

How does the Fourier transform of e(x) differ from that of b(x)? Comment on the effects of adding a 
cosine signal to b(x). 

(f) 

g(x) b(x 16)= −  
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What are the effects of shifting b(x) to the right by 16 pixels? Refer to the magnitude and phase 
spectra. 

 

Exercise 4.14: 

Implement the 2-dimensional DFT as shown Fig. 4.29. 

 

Exercise 4.15: 

Generate a 128 * 128 spectrum consisting of one harmonic only. Perform the inverse FFT and 
describe the resulting image. Try different harmonics. 

 

Exercise 4.16: 

The high-pass filter demonstrated in Fig. 4.17 suppresses lower harmonics completely. Write a 
program which only decreases the lower harmonics with respect to their position in the spectrum. Try 
a complementary low-pass approach. 

 

Exercise 4.17: 

Become familiar with all the global operations offered by AdOculos (see AdOculos Help). 
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5 Region-Oriented Segmentation 

5.1 Foundations 

The requirements of understanding this chapter are 

• to be familiar with basic mathematics 

• to have read Chapter 1. 

In the context of human perception segmentation means extracting a object from its background. This 
procedure is not limited to visual perception. The “acoustic world” of a railway station yields 
interesting examples. A typical “object” in this confusing environment is the announcement of a delay. 
All the other sounds are interpreted as background noise. 

The object “announcement” has a special meaning for most people in the station. Meaning and 
segmentation are usually closely connected. The immediate recognition of a friend in a busy 
pedestrian precinct is another example of this. A flashy poster in the pedestrian precinct is another 
object (even if only for a short time for most of the people passing) which is easily separable from the 
background of moving pedestrians. However, there is an important difference from the object 
“friend”: although the contents of the poster may have a special meaning to some people, the poster 
itself is a separable object for all, due to the signal “color”. 

This “meaningless” form of segmentation is typical for technical image analysis. Common 
segmentation procedures are based on graylevel differences. Since color image processing systems 
are becoming cheaper, the use of color differences may increase. An approach currently used in 
scientific image processing is the so-called knowledge-based segmentation which tries to imitate the 
segmentation capability of humans. This approach is still a matter of laboratory experiments and is of 
little relevance for current practical applications (Section 1.2). 

Fig. 5.1 depicts an example of region-oriented segmentation. The procedure starts by generating and 
analysing the graylevel histogram of the source image (Section 2.1). Assume the source image 
consists roughly of two graylevels representing the background and the objects. In this case the 
histogram is composed of two peaks. The valley between these peaks constitutes the threshold which 
is used to obtain a binary image (Section 1.5). Graylevels of the source image which are below this 
threshold are set to the label ‘0’, whilst those above it are set to ‘1’. 
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Fig. 5.1: 

This is an example of region-oriented segmentation. Its aim is to isolate regions of similar graylevels 
and to describe these regions by features like their area, their center of gravity or their perimeter 
length. Such features are necessary to classify the image region as any known object or as an 
unknown object. 
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The connectivity analysis collects neighboring pixels of the same label assigning marks to them. Thus 
marks indicate connected pixels while labels indicate graylevel ranges. 

Connected pixels constitute image regions which are now ready for description by features like their 
area, their center of gravity or their perimeter length. Such features are necessary in order to classify 
the image region as a known object or as an unknown object (Chapter 10). 

5.1.1 Thresholding 

As mentioned in the introduction, common segmentation procedures are based on graylevel 
differences in the source image. A typical example is the image shown in Fig. 5.2 (left hand side). It 
consists of two distinguishable graylevel regions: the right area of the image is emphasized by high 
graylevels, similar to the poster in the pedestrian precinct which is emphasized by bright colors. Thus 
it should be easy to separate the two regions. 

 

Thres-
holding

Histo-
gram

Analysis

1

2

3 6

4

5

7

8

9

10

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2 2

2

2

2

2

3

3

3

4

4 7

7

8

8

8

10

10

10

10

10

10

10

9

9

9

9

9

9

9

9

9 9

9

9

9

9

9

10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

111

5

10

15

Grayelevel
Occurrence

Grayelevel1 2 3 4 5 6 7 8 9 10 11 12

7

16 16

7

4 4
33

11

Source image Binary image/Label image

 

Fig. 5.2: 

This is an example of the application of a histogram analysis for binarizing a graylevel 
image. The histogram displays the frequency of the graylevels in the source image. In 
this case it reflects the two separate graylevel regions. Placing a threshold between the 
two maxima of the histogram and assigning the label ‘0’ to the graylevels below the 
threshold and ‘1’ to the graylevels above yields the binary image. 

 
Usually a graylevel histogram is used for this purpose (Fig. 5.2). The histogram displays the frequency 
of the graylevels in the input image. The example shown in Fig. 5.2 reflects the two separate graylevel 
regions. Placing a threshold into the valley between the two maxima of the histogram and assigning 
the label ‘0’ to the graylevels below the threshold and ‘1’ to the graylevels above yields the binary 
image shown in Fig. 5.2 (right hand side). 
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Fig. 5.3: 

This is a new source image which is used to demonstrate the handling of more than 
one threshold. 

 
At first glance thresholding seems to be a simple job. Nevertheless, suppose for instance that the 
perimeter of workpieces has to be measured in the context of industrial quality control. The examples 
shown in Fig. 5.1 suggest an ideal graylevel step between the image background and the regions 
representing the workpieces. However, in practice such a step is often more gradual than that of the 
source image shown in Fig. 5.2. Consequently the precision of the measurement depends strongly on 
the correct choice of threshold. 
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Fig. 5.4: 

The histogram of the source image shown in Fig. 5.3 has valleys at graylevel 6, 16 and 19. Thus 
3 thresholds have to be applied. 

 
The rule of thumb for thresholding is: If measurement is the aim ensure excellent (especially stable) 
illumination conditions (Section 1.3) and try to use fixed thresholds. If the aim is object recognition 
under variable conditions an automatic method of choosing a threshold may be good enough, for 
instance with the aid of graylevel histograms. 

Fig. 5.3 shows a new source image. Its graylevel histogram is depicted in Fig. 5.4. It has 3 local 
minima (valleys) and thus 3 thresholds (at graylevel 6, 16 and 19) have to be applied to the new source 
image. The resulting label image is shown in Fig. 5.5. 

The example reveals two typical problems of histogram analysis. The graylevel region (with graylevels 
of about 20) positioned in the middle of the source image (Fig. 5.3) is clearly separated from the 
surrounding graylevel region (graylevels of about 10), but since the number of pixels with graylevels 
around 20 is small their influence on the histogram almost vanishes. The solution of this problem, 
however, is the logarithmic scaling of the histogram entries. 

The second problem is the significance of local minima. In the example the minimum at graylevel 19 is 
a “ghost valley”. It produces a superfluous threshold splitting the region which consists of graylevels 
of around 20. Averaging the histogram entries fills in the small valleys. 
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Fig. 5.5: 

Applying the thresholds found in Fig. 5.4 to the source image shown in Fig. 5.3 leads 
to this image. 

5.1.2 Connectivity Analysis 

The segmentation is not complete yet. From the point of view of a human observer the label image 
shown in Fig. 5.1 already consists of two distinct and connected regions. However, the computer 
“sees” only an array of zeros and ones and it does not “know” anything about their neighbors. Thus a 
connectivity analysis, which in the case of region-oriented segmentation is known as blob coloring, 
component labelling or component marking, is required. 

Fig. 5.6 shows a source image which is segemented by two thresholds yielding a label image 
consisting of 4 regions but only 3 labels. The pixels of the top left region (label ‘1’) do not know that 
they belong together and not to the other label ‘1’ region in the middle of the image. The connectivity 
analysis helps here. Suppose the algorithm starts at the top left corner encountering label ‘1’. Now it 
gathers all neighboring pixels with label ‘1’ and assigns mark ‘a’ to this collection. Next the procedure 
encounters label ‘0’ collects the corresponding pixels and assigns a ‘-‘ which defines this region as 
background. Further processing yields labels ‘b’ and ‘c’. 
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Fig. 5.6: 

In this example the label image consists of 4 regions but only 3 labels. 
The connectivity analysis gathers neighboring pixels of the same label 
and assigns a mark to them. The region with label ‘0’ is interpreted as 
background. 

5.1.3 Feature Extraction 

In order to analyze the separated regions information measurements about all their pixels could be 
used. However, in practice the realization of the analysis is based on a few typical features of these 
regions. 

For a human observer it is evident that region ‘a’ shown in Fig. 5.6 consist of four corners, that it is not 
tilted and that it is a square whilst region ‘c’ is L-shaped. Unfortunately a computer needs special 
algorithms to recognize such information. Typical features in the context of region-oriented 
segmentation are: 

• area 

• perimeter 

• compactness = perimeter2 / (4π × area) 

• polar distance (also called distance-versus-angle signature) and 

• center of gravity (to determine the position of the object). 
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In the case of a circle the compactness is 1. It increases if the perimeter of a region becomes longer in 
comparison to its area. Please note that this definition does not correspond to the everyday meaning 
of “compact”. 

The polar distance indicates the distance between the center of gravity of the region and the border of 
the region. Again the circle represents a special case: the polar distance is the same for any point on 
the border. All other shapes have distances which vary from border point to border point. The form of 
variation is characteristic of the shape. Fig. 5.7 shows an equilateral triangle and a diagram which 
depicts the variation of the polar distance. 
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Fig. 5.7: 

The polar distance (also called distance-versus-angle signature) indicates the 
distance between the center of gravity and the border of the region. The form of 
variation is characteristic of the region shape. 

 
Most of the features depend on the position, rotation and scaling of regions. This may be desirable 
but sometimes it is inconvenient. For instance, the center of gravity depends on the position of the 
region. This is useful, since the center of gravity determines the position of an object. The 
compactness is a ratio measurement and thus independent of position, rotation or scaling. The 
compactness is therefore especially useful as a simple shape feature. 

5.2 AdOculos Experiments 

To become familiar with region-oriented segementation realize the New Setup shown in Fig. 5.8 (see 
also Section 1.6). The example image which will be used in the following section depicts part of a 
tower block (Fig. 5.10 (MZHSRC.128)). This picture is especially suitable due to its homogeneous 
regions of various graylevels. 
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Fig. 5.8: 

This chain of procedures is the basis for experiments concerning region oriented segmentation. The New Setup is 
realized according to the steps described in Section 1.6. The results are shown in Fig. 5.10. 

5.2.1 Thresholding 

Starting the processing chain with Thresholding we encounter the dialog box shown in Fig. 5.9. The 
histogram clearly shows that the source image consists of three easily separable graylevel regions. 
Since these regions correspond to meaningful picture regions (the bright background represents the 
sky, the windows are dark and the remaining areas belong to the building) a segmentation by 
thresholding is practicable. The next step is to smooth the histogram and to start the automatic search 
for local minima. 

The result of these operations is shown in Fig. 5.10 (2). The local minima serve as thresholds: the 
graylevels of the source image which are between zero and the lowest threshold obtain label ‘0’ (the 
black regions in (2)). Label ‘1’ is assigned to the graylevels between the two thresholds (gray color in 
(2)). Finally the remaining graylevels above the high threshold are labelled with ‘2’ (represented by the 
white regions in (2)). 
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Fig. 5.9: 

Starting the processing chain with Thresholding we encounter this dialog box. The 
histogram shows clearly that the source image consists of three easily separable 
graylevel regions. Since these regions correspond to meaningful picture regions 
(the bright background represents the sky, the windows are dark and the remaining 
areas belong to the building) a segmentation by thresholding is practicable. The 
next step is to smooth the histogram and to start the automatic search for local 
minima. 

 
Since the transitions between the picture regions are not ideal steps, the threshold procedure yields 
„noise“ at the borders of these regions. In order to clean them morphological operators (erosion and 
dilation) are used (Chapter 8). For this purpose the label image is converted into several binary images: 
each label in turn represents the object while the other labels are interpreted as background. Now the 
borders of the regions corresponding to the current label are cleaned with the aid of binary erosion 
followed by a binary dilation with a structuring element of size 3 * 3 (Chapter 8). The result of the 
cleaning step is shown in (4). 

5.2.2 Connectivity Analysis 

In Fig. 5.10 (4) 16 separate regions have been found. The separation is due to different labels or the 
spatial distance between regions with identical labels. Label ‘0’ (black in (4)) represents a large 
connected region. Label ‘1’ (gray) is divided into 10 smallish regions. Label ‘2’ (white) comprises one 
large and four small regions. The purpose of the connectivity analysis is to mark these 16 areas. The 
result is shown in (6). Successful marking is portrayed with the aid of a border. The region represented 
by label ‘0’ is an exception. For the sake of clarity it is interpreted as background. 
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Fig. 5.10: 

The example image (MZHSRC.128) depicts part of a tower block. This picture is especially suitable 
for the experiment due to its homogeneous regions of different graylevels. (2) is the result of the  
Thresholding step (label image). This procedure obtains its parameters from the dialog box shown in 
Fig. 5.9. (3) and (4) show the results of cleaning the label image (2). The operations are discussed in 
detail in Chapter 8. (5) is the result of the connectivity analysis while (6) and (7) represent the results 
of feature extraction. 

5.2.3 Feature Extraction 

Fig. 5.10 (7) lists the features of the regions shown in (6). The list entries start with the top left region 
which in the current case is the large region to the left of (6). The next one is the small top right region, 
and so on. 
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5.3 Source Code 

5.3.1 Thresholding 

Fig. 5.11 shows a procedure which generates a graylevel histogram. Formal parameters are: 

ImSize: image size 

NofGV: highest graylevel to be processed (usually 255) 

MaxAcc: maximum histogram entry; after the generation of the histogram its entry must 
 be normalized according to MaxAcc 

Sqrt: if Sqrt is not zero, the original histogram entries must be replaced by their square 
 root. 

Image: image from which the histogram has to be taken 

Histo: array representing the histogram. 

 
void Histogram (ImSize, NofGV, MaxAcc, Sqrt, Image, Histo) 
int  ImSize, NofGV, MaxAcc, Sqrt; 
BYTE ** Image; 
int  * Histo; 
{ 
   int  r,c, gv, Max; 
 
   for  (gv=0; gv<NofGV; gv++)  Histo[gv] = 0; 
 
   Max=0; 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         gv = Image[r][c]; 
         Histo[gv] ++; 
         if (Histo[gv] > Max)  Max = Histo[gv]; 
   }  } 
 
   if (Sqrt) { 
      for (gv=0; gv<NofGV; gv++) 
         if (Histo[gv]) 
            Histo[gv] = (int) sqrt ((float)Histo[gv]); 
      Max = (int) sqrt ((float)Max); 
   } 
 
   for (gv=0; gv<NofGV; gv++) 
      Histo[gv] = (int) (((float)Histo[gv] * MaxAcc) / Max); 

} 

Fig. 5.11: 

C realization of histogram generation. 

 
The procedure starts by initializing the histogram array Histo, forcing each graylevel entry gv to zero. 
The generation of the histogram requires the graylevels of all the pixels comprising the image. The 
graylevel of the current pixel is gv = Image[r][c]. The corresponding histogram entry Histo[gv] 
must be incremented. Furthermore it has to be tested whether Histo[gv] is the maximum value. 
Max is required by the final normalization step. 

If the dynamic range of the histogram entries has to be compressed the Sqrt flag must be set to one. 
Now the lower entries are emphasized. Please note that Max is to be dealt with in the same way. 

Even in the case of small images rather high histogram entries may occur. This may cause problems in 
succeeding procedures due to overflow events. Moreover, a fine resolution of entries is not 
necessary, since only obvious histogram valleys are of interest. Therefore, the user should determine 
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the maximum entry with the aid of MaxAcc. The final step of the procedure normalizes the histogram 
according to MaxAcc. 

A robust segmentation via histogram analysis occurs when there are few but distinct peaks and 
valleys in the histogram. Thus, smoothing the histogram to remove insignificant local maxima should 
precede the actual analysis procedure. Fig. 5.12 shows an appropriate smoothing procedure. Formal 
parameters are: 

NofGV: highest graylevel to be processed 

Width: size of the neighborhood of entries the average value of which is to be taken 

Histo: array of the original histogram 

Smooth: array of the smoothed histogram. 

 
void SmoothHistogram (NofGV, Width, Histo, Smooth) 
int  NofGV, Width; 
int  *Histo; 
int  *Smooth; 
{ 
   int  r,c, i,gv,Cen; 
   long h; 
 
   Cen = Width/2; 
   for (gv=0; gv<NofGV; gv++)  Smooth[gv] = 0; 
 
   for (gv=0; gv<=NofGV-Width; gv++) { 
      h=0; 
      for (i=gv; i<gv+Width; i++) 
         h += (long)Histo[i]; 
      Smooth[gv+Cen] = (int) (h/Width); 

}  } 

Fig. 5.12: 

C realization of histogram smoothing. 

 
The procedure starts by initializing the output array Smooth. The smoothing is realized by an averaging 
operation applied to a neighborhood of histogram entries of size Width. The resulting mean value is 
assigned to the middle entry Smooth[gv+Cen]. 

After smoothing another routine is used to search for the histogram valleys can be searched for. This 
search is realized by the procedure LocMin which again is based on the procedures NofUp and 
NofDown. They detect rising and falling histogram entries respectively. Formal parameters of NofUp} 
are (Fig. 5.13): 

NofGV: highest graylevel to be processed 

Start: graylevel (index of the histogram array), from which the procedure should begin 

Histo: histogram array. 

At the beginning the procedure checks whether a rise is present. This is the case if the histogram 
entry Histo[Start] is less than the entry of its neighbor to the right Histo[Start+1]. Otherwise 
the procedure will be left returning zero. 
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int NofUp (NofGV, Start, Histo) 
int NofGV, Start; 
int * Histo; 
{ 
   int  i,iStep; 
 
   if (Histo[Start] >= Histo[Start+1])  return (0); 
   iStep = Start; 
   for (i=Start; i<NofGV-1; i++) 
      if (Histo[i] < Histo[i+1]) 
         iStep = i; 
      else 
         if (Histo[i] > Histo[i+1]) break; 
   return (iStep-Start); 
} 

 

Fig. 5.13: 

C realization of the detector for rising histogram entries. 

 
If we are able to proceed, we progress through the histogram (from left to right) as long as the left 
entry is less than its right neighbor (Histo[i] < Histo[i+1]). This means a rising histogram at 
position i which is „remermbered“ by istep. If, on the other hand, the current entry is greater than 
its right neighbor (Histo[i] > Histo[i+1]) the histogram is descending and consequently the 
procedure stops. But what about the special case of equal histogram entries? We are now moving on 
a plateau where no special action is taking place. In particular the “marker” istep must not be 
increased, because it indicates the last rising position. However, the return value is equal to the 
number of entries between the Start position and the last rising position iStep. 

 
int NofDown (NofGV, Start, Histo) 
int NofGV, Start; 
int * Histo; 
{ 
   int  i,iStep; 
 
   if (Histo[Start] <= Histo[Start+1])  return (0); 
   iStep = Start; 
   for (i=Start; i<NofGV-1; i++) 
      if (Histo[i] > Histo[i+1]) 
         iStep = i; 
      else 
         if (Histo[i] < Histo[i+1]) break; 
   return (iStep-Start); 

} 

Fig. 5.14: 

C realization of the detector for falling histogram entries. 

 
The procedure NofDown is similar to NofUp, except that it detects falling histogram entries (Fig. 
5.14). As already described the above two procedures will be used in LocMin (Fig. 5.15) the formal 
parameters of which are: 

ImSize: image size 

NofGV: highest graylevel to be processed 

MinDown: minimum number of falling histogram entries to be regarded as significant of a 
 descending histogram 

MinUp: minimum number of rising histogram entries to be regarded as significant of a 
 rising histogram 

Histo: histogram array 
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Thres: array which collects the indices of the histogram valleys. 

The procedure returns the number of valleys. 

The first step of the procedure is allocating memory for the first element of the array Thres. This first 
element corresponds to the graylevel 0, which is defined as the lowest threshold. The succeeding 
procedure will profit from this arrangement. Index i counts the number of histogram valleys. 

The example shown in Fig. 5.16 illustrates the behavior of LocMin. Starting with the current value of 
index d, NofDown calculates the number of falling histogram entries Down. If this number is less than 
a user-defined minimum MinDown, d will be incremented and the search proceeds. Otherwise NofUp 
calculates the number of rising histogram entries Up beginning with d+Down. The search for rising 
entries stops if at least MinUp of such entries are found. Thus, we have “walked” through a significant 
histogram valley. The indices of the peaks to the left and to the right of this valley are located at the 
current values of d and u+Up. 

 
int LocMin (ImSize, NofGV, MinDown, MinUp, Histo, Thres) 
int ImSize, NofGV, MinDown, MinUp; 
int * Histo; 
int * Thres; 
{ 
   int  i, r,c, d,u, Down, Up; 
 
   GetMem (Thres); 
   Thres[0] = 0; 
   i=1; 
   for (d=0; d<NofGV; d++) { 
      Down = NofDown (NofGV, d, Histo); 
      if (Down>=MinDown) { 
         for (u=d+Down; u<NofGV; u++) { 
            Up = NofUp (NofGV, u, Histo); 
            if (Up>=MinUp) { 
               GetMem (Thres); 
               Thres[i] = d+Down + (u-d-Down)/2; 
               i++; 
               d = u+Up;   /*<<<<<<<<< attention: loop counter */ 
               break; 
   }  }  }  } 
   GetMem (Thres); 
   Thres[i] = NofGV-1; 
   return (i); 

} 

Fig. 5.15: 

C realization of the detection of local minima (valleys) in a histogram. Procedure GetMem is defined in Appendix A. 

 
It seems reasonable to place the threshold exactly in the middle between the two peaks. However, if, 
for instance, the left peak slopes gently in the direction of the right peak, then this placement would 
be unfavorable. It seems better to place the threshold in the valley between the positions d+Down and 
u. Having found this new threshold, index d is forwarded to the right peak u+Up. Here the search for a 
new valley starts. The search ends when the right edge NofGV-1 of the histogram is encountered. As 
the maximum graylevel, NofGV-1 is defined as being the last and highest threshold and is added to 
Thres. The procedure ends by returning the number of thresholds stored in Thres. 
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Fig. 5.16: 

Example of the search for local minima. 

 
In order to apply the thresholds to the source image, the procedure ThresIm is used (Fig. 5.17). 
Formal parameters are: 

ImSize: image size 

n: number of thresholds 

Thres: array, which contains the thresholds 

ThresIm: image the thresholds are applied to. Since this is a pixel operation, input and 
 output image are identical. 

The threshold operation is fairly simple: for each pixel ThresIm[r][c] we must check between 
which thresholds Thres[i] and Thres[i+1] its graylevel lies. The index of the lower threshold is 
taken as a new graylevel. In order to distinguish between the original graylevel and this new one, it is 
called a label (Section 5.1). 

As described in Section 5.2 the “raw” label images may be noisy at the borders between neighboring 
label regions. Typically tiny “islands” of “foreign” labels between two desired “principal” regions are 
found. Furthermore, the borders of desired regions may be frayed. Morphological image processing 
offers appropriate tools to remove these distortions. Chapter 8 is devoted to this subject. In the 
context of label images, a binary erosion and a binary dilation are needed. However, one detail must 
be added to the original procedures (shown in Fig. 8.12): since there is usually more than background 
and one label in the label image (this would be a binary image), the morphological operations must be 
applied to each label separately. The variations of the original procedures are shown in Fig. 5.18 and 
Fig. 5.19.  
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void ThresIm (ImSize, n, Thres, ThresIm) 
int  ImSize, n; 
int  * Thres; 
BYTE ** ThresIm; 
{ 
   int  i,r,c, gv; 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++) 
         for (i=0; i<n-1; i++) { 
            gv = (int)ThresIm[r][c]; 
            if (Thres[i]<gv && gv<=Thres[i+1]) { 
               ThresIm[r][c] = (BYTE)i; 
               break; 

}        }  } 

Fig. 5.17: 

C realization of a threshold operation. 

  
void EroThres (ImSize, Thres, StrEl, InIm, OutIm) 
int     ImSize; 
int     *Thres; 
StrTypB *StrEl; 
BYTE    **InIm; 
BYTE    **OutIm; 
{ 
   int  r,c, y,x, i,j, dummy; 
   int  NofThres=Thres[0]-1; 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  OutIm [r][c] = 0; 
 
   for (j=1; j<NofThres; j++) { 
      for (r=0; r<ImSize; r++) { 
         for (c=0; c<ImSize; c++) { 
            for (i=1; i<=StrEl[0].r; i++) { 
               y = r + StrEl[i].r; 
               x = c + StrEl[i].c; 
               if (y>=0 && x>=0 && y<ImSize && x<ImSize) 
                  if (InIm [y][x] != (BYTE)j)  goto Failed; 
            } 
            OutIm [r][c] = (BYTE)j; 
Failed:     dummy = 0; 

}  }  }  } 

Fig. 5.18: 

C realization of an erosion used to “clean” a label image. Type StrTypB is defined in Appendix A. 
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void DilThres (ImSize, Thres, StrEl, InIm, OutIm) 
int     ImSize; 
int     *Thres; 
StrTypB *StrEl; 
BYTE    **InIm; 
BYTE    **OutIm; 
{ 
   int  r,c, y,x, i,j, th, dummy; 
   int  NofThres=Thres[0]-1; 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  OutIm [r][c] = 0; 
 
   for (j=1; j<NofThres[0]; j++) { 
      for (r=0; r<ImSize; r++) { 
         for (c=0; c<ImSize; c++) { 
            for (i=1; i<=StrEl[0].r; i++) { 
               y = r - StrEl[i].r; 
               x = c - StrEl[i].c; 
               if (y>=0 && x>=0 && y<ImSize && x<ImSize) { 
                  if (InIm [y][x] == (BYTE)j) { 
                     OutIm [r][c] = (BYTE)j; 
                     break; 

}  }  }  }  }  }  } 

Fig. 5.19: 

C realization of a dilation used to “clean” a label image. Type StrTypB is defined in Appendix A 

5.3.2 Connectivity Analysis 

Fig. 5.20 illustrates a simple procedure which realizes the connectivity analysis. It is known as “blob 
coloring” [5.1]. The input to this procedure is the label image. The results are represented by a mark 
image. The operator is realized by two L-shaped masks which are shown in Fig. 5.20a. We need one 
specimen for the label image and another for the mark image. Both masks work always on the same 
position in their respective “host images”. The mask elements are named L (Left), U (Up) and C 
(Center, the current pixel). The asterisk indicates the corresponding elements in the mark image. 

The structure of the procedure is shown in Fig. 5.20b. After initializing the variable Mark each pixel C 
of the label image is tested for being part of the background. This scanning routine starts at the top 
left corner of the label image and stops at the bottom right corner. If C does not belong to the 
background, the procedure has to decide on one of the following four cases (also the example in Fig. 
5.20c and the C realization shown in Fig. 5.23): 
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Fig. 5.20: 

Principle of connectivity analysis. 

 
C=U & C≠L: The label of the current pixel C is identical to that of the pixel above. Thus, the 

corresponding mark U* is assigned to the current pixel C*. 

C=L & C≠U: The label of the current pixel C is identical to that of the left pixel. Consequently the mark 

L* is assigned to the current pixel C*. 

C=L & C=U: If all of the three labels are identical any of the two marks U* and L* may be assigned to 

the current pixel C*. We use L*. Although the three labels are identical, this may not apply to the 

marks U* and L*. An example of this is shown in Fig. 5.20c. The solution of this problem requires a so-

called equivalence list, storing the information that the different marks U* and L* are actually identical. 
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C≠L & C≠U: A current pixel C, which is not identical to any of its neighbors, indicates the appearance 

of a new region. Thus, the current pixel C* receives a new mark. A new mark is obtained simply by 
incrementing the old value of Mark. 

The handling of the equivalence list is a little tricky. Some important details must be taken into 
account. The data structure of the equivalence list is simple. It is an array the index of which is realized 
by one of the equivalent marks. The other mark is the corresponding array entry (Fig. 5.23). But what 
about marks which are free of any equivalence? Such a situation may result in undefined array entries. 
To avoid this, the equivalence list should be initialized in an appropriate way. Using a new mark as 
index and entry of the array is recommended here (EquLst[Mark] = Mark in Fig. 5.23). Thus, 
during the later analysis of the equivalence list, a pair consisting of an identical index and entry 
indicates that the corresponding mark is free of any equivalence. 
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Fig. 5.21: 

Example illustrating the problem of multiple 
equivalences. 

 
Fig. 5.21 shows two examples of the equivalence problem. Let us start with the top one: due to the 
W-shaped region, the blob coloring procedure extracts three different marks. On the right two 

possible equivalence lists are shown. The first version (U* is the array index) creates no difficulties. 

However, the other version (L* represents the array index) leads to two entries in the case of mark ‘1’. 
Since the equivalence list is a simple one-dimensional array, it is only able to store one entry. Thus the 
second entry (‘3’) eliminates the first one (‘2’). Unfortunately, choosing the first version of the list does 
not solve the problem. The second example of blob coloring illustrates the problem of multiple 
equivalences the other way round. Thus, the realization of equivalence lists by simple arrays seems to 
be wrong. It is not: the short recursive procedure shown in Fig. 5.22 solves the problem. Formal 
parameters are 

List: equivalence list 

i: entry which has to be checked. 

 
int LastMark (List, i) 
int *List; 
int i; 
{ 
   if (i==List[i])  return (i); 
              else  return (LastMark (List, List[i])); 

} 

Fig. 5.22: 

C realization which removes multiple equivalences. 

 
The procedure returns the mark whose index and entry are identical. The idea of the procedure is 
based on the following considerations: 
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(a) If a mark a is equivalent to other marks b, c, ..., the marks b, c, ... are also equivalent to each other. 
Thus, only one of the marks b, c, ... is needed to describe the equivalence with a, provided (and 
this is essential) the equivalence between the remaining marks is expressed by the list. 

(b) The above mentioned provision means that the list contains chains of equivalent marks. Realizing 
this idea in the context of the example shown in Fig. 5.21 index ‘1’ would have the entry ‘2’, mark 
‘3’ would be assigned to index ‘2’ and finally index ‘3’ obtains mark ‘3’ indicating the end of the 
chain. 

(c) The entry of a new mark is to be put into the array element with an index which is identical to this 
new mark. According to (b) such an index is positioned at the end of an equivalence chain. 

(d) The direct entry into the list of a pair of equivalent marks is not allowed. Before this can be done, 
the end of the chain within which each mark appears, has to be found. Instead of the original 
equivalent marks, these “end of chain marks” serve as index and entry of the equivalence list. 
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int ConCom (ImSize, MaxMark, InIm, MarkIm, EquLst) 
int  ImSize, MaxMark; 
BYTE ** InIm; 
int  ** MarkIm; 
int  *  EquLst; 
{ 
   int  r,c, yu,xu,yc,xc,yl,xl, U,C,L, Mark, Um,Lm; 
  
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  MarkIm[r][c] = 0; 
 
   for (r=0; r<ImSize; r++) InIm[r][0] = 0; 
   for (c=0; c<ImSize; c++) InIm[0][c] = 0; 
   for (r=0; r<ImSize; r++) InIm[r][ImSize-1] = 0; 
   for (c=0; c<ImSize; c++) InIm[ImSize-1][c] = 0; 
 
   Mark = 0; 
   GetMem (EquLst); 
   EquLst[Mark] = Mark; 
   for (r=1; r<ImSize-1; r++) { 
      for (c=1; c<ImSize-1; c++) { 
         yu = r-1;  xu = c; 
         yc = r;    xc = c; 
         yl = r;    xl = c-1; 
         U = (int) InIm [yu][xu]; 
         C = (int) InIm [yc][xc]; 
         L = (int) InIm [yl][xl]; 
         if (c) { 
            if (C==U && C!=L) { 
               MarkIm [yc][xc] = MarkIm [yu][xu]; 
            }else{ 
               if (C==L && C!=U) { 
                  MarkIm [yc][xc] = MarkIm [yl][xl]; 
               }else{ 
                  if (C==L && C==U) { 
                     Lm = MarkIm [yl][xl]; 
                     Um = MarkIm [yu][xu]; 
                     MarkIm [yc][xc] = Lm; 
                     if (Lm!=Um) { 
                        Lm = LastMark (EquLst, Lm); 
                        Um = LastMark (EquLst, Um); 
                        EquLst [Lm] = Um; 
                     } 
                  }else{ /*(!L && !U)*/ 
                     Mark++; 
                     MarkIm [yc][xc] = Mark; 
                     GetMem (EquLst); 
                     EquLst[Mark] = Mark; 
   }  }  }  }  }  } 
Leave: 
   return (Mark); 

} 

Fig. 5.23: 

C realization of connectivity analysis. Procedure GetMem is defined in Appendix A. 

 
The search for these “end of chain marks” is performed by the procedure LastMark. The application 
of this procedure in the context of blob coloring is shown in Fig. 5.23. ConCom realizes the approach 
illustrated in Fig. 5.20. Formal parameters are: 

ImSize: image size 

MaxMark: maximum number of marks 

InIm: label image on which the connectivity analysis is to be carried out 

MarkIm: mark image 

EquLst: equivalence list. 
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The procedure starts by initializing the mark image MarkIm. Additionally the blob coloring procedure 
requires a label image InIm with a border which is free of labels. The width of this border should be 
one pixel. The next step initializes the variable Mark with zero and allocates memory for the first 
element of the equivalence list EquLst. 

The kernel of the procedure is as usual framed by two for loops. The coordinates of the L-shaped 
masks are yu, xu, yc, xc, yl and xl. They are indices which point to the labels U, C and L. Label zero 
is interpreted as background. If the current label C belongs to the background, no further processing is 
necessary. Otherwise the connectivity analysis proceeds according to Fig. 5.20b, considering the 
equivalence problems. The procedure returns the number of marks in MarkIm. 

Enhancement of equivalence list 

The equivalence list connects two marks. However, usually more than two marks are equivalent. This 
leads to an equivalence chain which has already been discussed in the context of the procedure 
ConCom. A typical example of the equivalence problem is shown in Fig. 5.24. i is the index of the 
equivalence list, representing the marks from ‘1’ to ‘14’. The equivalent marks are positioned on the 
right of the indices (EquLst). For instance, the marks ‘1’ and ‘4’ are equivalent. Mark ‘4’ is again 
equivalent to mark ‘5’, which itself is equivalent to ‘2’. Thus, equivalence applies to all of the marks ‘1’, 
‘2’, ‘4’ and ‘5’. 

It is the purpose of the enhancement procedure to replace different but equivalent marks by only one 
“new” mark. Assume that ‘1’ is the new mark in the example. Then the indices ‘1’, ‘2’, ‘4’ and ‘5’ of the 
new list NewLst, yield the entry ‘1’. The next index to work on is ‘3’. This mark is not equivalent to any 
other mark. Thus, only the “old” mark ‘3’ is replaced by the “new” mark ‘2’. Index ‘6’ is the next 
candidate. It is the first element of the following equivalence chain: ‘9’, ‘8’, ‘13’. Now a new situation 
arises: EquLst contains another mark ‘13’ the index of which is ‘10’. However, ‘10’ is also a mark which 
appears in EquLst. The corresponding index is ‘7’.  

If we return to the starting point i=’13’ the equivalences ‘11’ and ‘12’ are detected. To sum up: all the 
marks from ‘6’ to ‘13’ are equivalent and obtain the “new” mark ‘3’. In the end index ‘14’ is left. It is 
replaced by the “new” value ‘4’. The enhancement procedure has reduced the number of marks from 
14 to 4. This example is not an extreme one, it is typical. The large number of different marks is due to 
the extremely local scope of the blob coloring procedure. 

Although the enhancement operation seems to be rather complicated, it is realizeable by a simple 
recursive procedure. First of all, the frame procedure of the enhancement operation is illustrated (Fig. 
5.26). Formal parameters are: 

ImSize: image size 

n: number of marks in MarkIm 

EquLst: list reflecting the equivalences in MarkIm 

MarkIm: mark image which has to be cleaned. 

The enhancement procedure already mentioned is FillEquiv. It replaces the different marks in an 
equivalence chain by the last mark of the chain. At the end of the filling procedure the differences 
between the remaining marks in EquLst are usually greater than 1. However, according to the 
example shown in Fig. 5.24, the marks should be represented by increments. This is realized by the 
procedure IncEquLst. Both procedures manipulate the original equivalence list EquLst without 
using a buffer list. Thus, in contrast to the example shown in Fig. 5.24, the frame procedure 
CorrectMarks does not need a NewLst. CorrectMarks ends with the replacement of the old 
marks in MarkIm. 
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Fig. 5.24: 

Example of the enhancement of an equivalence list. 

 
The most important procedure of the whole enhancement process is FillEquiv (Fig. 5.27). It is 
based on the principles of the procedure LastMark (Fig. 5.22). Formal parameters are: 

Lst: equivalence list 

Mark: current mark. 

The procedure is calling itself until it encounters the end of the equivalence chain (Equ=Lst[Equ]), 
the beginning of which is indicated by the value of Mark at the first calling. Since the recursive calling 
is connected with an assignment of the current return value to the current index (return (Lst[Equ] 
= FillEquiv (Lst, Equ))), the whole chain is filled with the return value of the last recursive 
calling (return (Equ)) during the backtracking process. 
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Fig. 5.25: 

Tracing the enhancement process shown in Fig. 5.24. 

 
Applying FillEquiv to the example shown in Fig. 5.24 the result depicted in Fig. 5.25 is obtained. 
The left table shows a trace of the variables during the recursive calls of FillEquiv. Starting point is 
mark ‘1’. It is equivalent to ‘4’ which again is equivalent to ‘5’. This is the end of the chain. New chains 
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start with the marks ‘2’, ‘3’, ‘5’, etc. The end of each chain is marked in the left table by small letters. 
The end of a chain starts the backtracking of the recursion. This process is illustrated with the aid of 
the right table. The columns Index and Start represent the original equivalence list. For each recursion 
end from a to n, the new mark is noted. This new mark replaces the old mark of an equivalence chain 
during backtracking. 

Finally the marks ‘3’, ‘5’, ‘12’ and ‘14’ “survive”. The desired incremental representation of these new 
marks is performed by the procedure IncEquLst (Fig. 5.28). Formal parameters are: 

n: number of marks 

Lst: equivalence list. 

The new representatives of the marks are generated with the aid of the variable New. Initially the 
values of New are negative and replace the old entries of the equivalence list. The negative sign 
serves as an indicator for entries which have already been replaced. At the end of IncEquLst the 
negative signs are removed. Now the enhanced equivalence list is available for further processing. 

 
void CorrectMarks (ImSize, n, EquLst, MarkIm) 
int ImSize, n; 
int *EquLst; 
int ** MarkIm; 
{ 
   int  i,r,c; 
 
   for (i=1; i<=n; i++) 
      EquLst[i] = FillEquiv (EquLst, i); 
 
   IncEquLst (n, EquLst); 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++) 
         if (MarkIm[r][c]) 
            MarkIm[r][c] = EquLst [MarkIm[r][c]]; 

} 

Fig. 5.26: 

C realization of the recursive enhancement of equivalence lists: the frame procedure. 

  
int FillEquiv (Lst, Mark) 
int *Lst; 
int Mark; 
{ 
   int  Equ; 
   Equ = Lst [Mark]; 
   if (Equ==Lst[Equ])  return (Equ); 
                 else  return (Lst[Equ] = FillEquiv (Lst, Equ)); 

} 

Fig. 5.27: 

C realization of the recursive enhancement of equivalence lists: the filling procedure. 
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void IncEquLst (n, Lst) 
int n; 
int *Lst; 
{ 
   int i,j, Old, New; 
 
   New = -1; 
   for (i=1; i<n; i++) { 
      Old = Lst[i]; 
      if (Old >= 0) { 
         for (j=i; j<n; j++) 
           if (Lst[j]==Old)  Lst[j] = New; 
         New--; 
   }  } 
 
   for (i=1; i<n; i++)  Lst[i] = abs (Lst[i]); 

} 

Fig. 5.28: 

C realization of the recursive enhancement of equivalence lists: the cleaning procedure. 

5.3.3 Feature Extraction 

Fig. 5.29 shows a procedure which extracts the features area, center of gravity, perimeter, polar 
distance and compactness. Formal parameters are: 

ImSize: image size 

M: number of marks in MarkIm 

MarkIm: mark image 

RegIm: image which stores the region under consideration 

OutlIm: image which stores the outline of the region under consideration. 

It is the purpose of this procedure to store that region in the image RegIm which corresponds to the 
current mark m in order to extract the features of this region. Except for compactness, each feature 
requires a special procedure. The filling of RegIm is performed with the aid of the procedure 
LoadRegIm (Fig. 5.30). Formal parameters are 

m: current mark 

ImSize: image size 

MarkIm: mark image 

RegIm: image which stores the region under consideration. 
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void Features (ImSize, M, MarkIm, RegIm, OutlIm) 
int  ImSize, M; 
BYTE ** MarkIm; 
BYTE ** RegIm; 
BYTE ** OutlIm; 
{ 
   int    r,c, m, Area, Peri; 
   float  Com; 
   CGTyp  CenGra; 
   PolTyp Pol; 
 
   for (m=1; m<=M; m++) { 
      LoadRegIm (m, ImSize, MarkIm, RegIm); 
      Area   = CountPixel (ImSize, RegIm); 
      CenGra = CentOfGrav (Area, ImSize, RegIm); 
      Peri   = GenOutLine (ImSize, RegIm, OutlIm); 
      Pol    = PolarCheck (ImSize, CenGra, OutlIm); 
      Com    = (float) (Peri*Peri) / (12.56*Area); 
}  } 

 

Fig. 5.29: 

C realization of feature extraction. Data types CGTyp and PolTyp are defined in Appendix A. 

  
void LoadRegIm (m, ImSize, MarkIm, RegIm) 
int  m,ImSize; 
BYTE ** MarkIm; 
BYTE ** RegIm; 
{ 
   int  r,c; 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++) 
         if ((int)MarkIm[r][c] == m)  RegIm [r][c] = 1; 
                                else  RegIm [r][c] = 0; 

} 

Fig. 5.30: 

C realization of the determination of the current region. 

 
The procedure is simple and self-explanatory. A typical region feature is area. In order to be 
independent of a particular scale, we use the number of pixels measured. 

The procedure CountPixel, which is shown in Fig. 5.31, calculates the number of pixels. Formal 
parameters are: 

ImSize: image size 

RegIm: image which stores the region under consideration. 

 



5 Region-Oriented Segmentation - 5.3 Source Code 

 

Ad Oculos 135

int CountPixel (ImSize, RegIm) 
int  ImSize; 
BYTE ** RegIm; 
{ 
   int  r,c,n; 
   n=0; 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++) 
         if (RegIm[r][c])  n++; 
   return(n); 

} 

Fig. 5.31: 

C realization of the calculation of area. 

 
The procedure returns the number of pixels of the region under consideration. Like the preceding one, 
the current procedure is simple and self-explanatory. The center of gravity of a region is important in 
localizing this region. The center coordinates are: 

R 1C 1
1

G N
r 0 c 0

R 1C 1
1

G N
r 0 c 0

r r f (r,c)

c cf (r,c)

− −

= =
− −

= =

=

=

∑ ∑

∑ ∑
 

r and c are the coordinates of the image, while R and C indicate the number of rows and columns. N 
represents the number of pixels of the region. f(r,c) is the image function. It yields 1 if the current pixel 
(r,c) belongs to the region. Otherwise we obtain 0. Fig. 5.32 shows the procedure CentOfGrav which 
calculates the center of gravity. Formal parameters are 

n: number of pixels in the region 

ImSize: image size 

RegIm: image which stores the region under consideration. 

The procedure returns the coordinates of the center of gravity. It is self-explanatory. The shape of a 
region is determined by its outline. GenOutLine extracts this feature. (Fig. 5.33). Formal parameters 
are: 

ImSize: image size 

RegIm: image which stores the region under consideration 

OutlIm: image which stores the outline of the region under consideration. 
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CGTyp CentOfGrav (n, ImSize, RegIm) 
int  n, ImSize; 
BYTE ** RegIm; 
{ 
   int   r,c; 
   CGTyp CenGra; 
   long  yc,xc; 
 
   yc=0; 
   xc=0; 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++) 
         if (RegIm[r][c]) { 
            yc += r; 
            xc += c; 
         } 
   CenGra.r = (int) (yc/n); 
   CenGra.c = (int) (xc/n); 
   return (CenGra); 

} 

Fig. 5.32: 

C realization of the calculation of center of gravity. Data type CGTyp is defined in Appendix A. 

  
int GenOutLine (ImSize, RegIm, OutlIm) 
int  ImSize; 
BYTE ** RegIm; 
BYTE ** OutlIm; 
{ 
   int  r,c,n; 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  OutlIm [r][c] = 0; 
 
   for (r=1; r<ImSize; r++) 
      for (c=1; c<ImSize; c++) 
         if (!RegIm [r][c-1] && RegIm [r][c])  OutlIm [r][c] = 1; else 
         if (RegIm [r][c-1] && !RegIm [r][c])  OutlIm [r][c-1] = 1; 
 
   for (r=1; r<ImSize; r++) 
      for (c=1; c<ImSize; c++) 
         if (!RegIm [r-1][c] && RegIm [r][c])  OutlIm [r][c] = 1; else 
         if (RegIm [r-1][c] && !RegIm [r][c])  OutlIm [r-1][c] = 1; 
 
   n=0; 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++) 
         if (OutlIm[r][c])  n++; 
 
   return(n); 

} 

Fig. 5.33: 

C realization of the outline extraction. 

 
The procedure returns the number of outline pixels. It starts by initializing OutlIm and ends by 
counting the outline pixels. The kernel of the procedure determines the vertical and horizontal shares 
of the outline. A pixel belongs to the region outline if one of two neighboring pixels (vertical or 
horizontal) belongs to the background while the other is part of the region. 

A simple method of describing the shape is offered by the minimum and maximum polar distances. 
These features are extracted by the procedure PolarCheck (Fig. 5.34). Formal parameters are: 

n: number of outline pixels 

ImSize: image size 
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CenGra: center of gravity 

OutlIm: image which stores the outline of the region under consideration. 

The procedure returns the minimum and maximum polar distances relative to the mean distance. The 
polar distance is calculated with the aid of the Euclidean distance d = (int) sqrt ((float)dy* 
dy + dx*dx). 

 
PolTyp PolarCheck (n, ImSize, CenGra, OutlIm) 
int   n, ImSize; 
CGTyp CenGra; 
BYTE  ** OutlIm; 
{ 
   int    r,c, d,dy,dx, Min,Max; 
   long   Mean; 
   PolTyp Pol; 
 
   Min = 2*ImSize; 
   Max = 0; 
   Mean = 0; 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++) 
         if (OutlIm[r][c]) { 
            dy = CenGra.r - r; 
            dx = CenGra.c - c; 
            d = (int) sqrt ((float)dy*dy + dx*dx); 
            if (d<Min) 
               Min = d; 
            else if (d>Max) 
               Max = d; 
            Mean += d; 
         } 
   Mean /= n; 
   Pol.Min = (float) Min/Mean; 
   Pol.Max = (float) Max/Mean; 
   return (Pol); 

} 

Fig. 5.34: 

C realization of the calculation of polar distances. Data types CGTyp and PolTyp are defined in Appendix A 

 

5.4 Supplement 

A fundamental problem of region-oriented segmentation procedures is their sensitivity to unusual 
region shapes. Difficulties are typically caused by regions containing holes, overlapping areas and 
spiral areas. In order to „toughen“ the basic procedures (described in the preceding section) against 
such cases, they must be adequately modified. The specific modification depends very much on the 
problem which has been encountered. Such special cases are not a subject of this book. Thus, the 
following sections offer some general tips for further work. 

5.4.1 Thresholding 

The binarization of graylevel images with the aid of thresholds is the most popular method of 
segmentation. This applies especially to industrial image processing. A thorough survey of this subject 
is offered by Sahoo, Soltani and Wong [5.11]. Some interesting alternatives to thresholding (e.g. region 
growing and split-and-merge approaches) are presented by Rosenfeld/Kak [5.10], Horn [5.2], Young et 
al. [5.13]. 

In the following section a few variations to the threshold approach are outlined. The idea of positioning 
the thresholds in the histogram valleys is derived from efforts to maximize the number of pixels with 
graylevels which lie between two thresholds. A more sophisticated approach from Kohler [5.6] 
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includes the contrast information: the optimum threshold yields more contours of high contrast and 
fewer contours of low contrast than any other threshold. Kohler finds this optimum threshold with the 
aid of a special contrast histogram. 

Otsu [5.7] uses normal graylevel histograms. Based on them he obtains simple statistical measures 
from which the threshold can be extracted. An appropriate measurement is the entropy of the 
graylevel histogram. Many authors describe threshold procedures based on entropy (e.g. [5.8] [5.9] 
[5.5] [5.4]). Tsai [5.12] interprets a graylevel image as an ideal version of a binary image. Accordingly 
Tsai claims that a threshold should be found which yields a binary image, the first three moments of 
which equal the moments of the graylevel image. 

These variations of threshold procedures offer interesting approaches. However, regarding practical 
applications, the following points should be considered: 

• A lot of procedures are designed for the optimum positioning of only one threshold. Usually, it is no 
problem to adapt them to a search for multiple thresholds. 

• Threshold procedures do not “know” anything about the contents of the image. Thus, they only 
work satisfactorily if it is guaranteed that meaningful regions are represented by similar graylevels. 
In this case a region is represented in the histogram by a peak. Note that the image of a chessboard 
yields the same histogram as an image which contains one white and one black region of identical 
size. 

5.4.2 Connectivity Analysis 

The procedures described in Section 5.3.2 represent only one possible realization of connectivity 
analysis. The variations of these procedures depend on the 

application being considered and depend also on constraints like the necessity of a hardware 
realization. The following two points outline refinements of general interest: 

• The first variation concerns the L-shaped masks shown in Fig. 5.20. They find connected labels 
based on a 4-connected neighborhood (Section 6.3.2, Fig. 6.11). This approach is simple and clearly 
arranged. However, Horn points out that problems with line-shaped label regions may arise [5.2]. To 
solve these problems, he proposes a mask which is based on a 6-connected neighborhood. In 
practice such problems are not of importance since line-shaped regions do not often appear. Users 
who want to be on the safe side should use the Horn approach. 

• The representation of regions by the coordinates of the corresponding pixels is straightforward, but 
requires unnecessary memory. A more sophisticated approach is based on those image rows which 
belong to a region. When stepping (from left to right) along one of these rows, sooner or later the 
left border of the region is encountered, the region is crossed and finally the right border is found. 
The column indices of the left and right border represent the region completely and in a very 
memory-efficient way. Furthermore, this procedure allows an efficient solution of the equivalence 
problem. A detailed description of the entire approach can be found in [5.10]. 

5.4.3 Feature Extraction 

The region features described in Section 5.1.3 are only a few of the large spectrum of possible 
features the choice of which depends on the application. Thus, the following points only mention a 
few generally applicable features: 

Eccentricity is the ratio of the maximum and the minimum polar distances. 

Orientation is the angle between the axis of the first moment of inertia and the coordinate system. 

Bounding rectangle is the rectangle with mimimum area, which completely surrounds the region. It is 
easily calculated with the aid of orientation. 

Symmetry in different variations. 

These and other features are described by many authors. Two examples are [5.1] and [5.3]. 
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5.5 Exercises 

Exercise 5.1: 

Apply a threshold of 2.5 and 8.5 to the source image shown in Fig. 5.2. Compare the results. 

 

Exercise 5.2: 

Apply an average operation over 3 entries to the histogram shown in Fig. 5.4 take the thresholds from 
this manipulated histogram and apply them to the source image shown in Fig. 5.3. 

 

Exercise 5.3: 

Segment the source image shown in Fig. 5.35 using the thresholds 8, 13 and 17 and apply a 
connectivity analysis to the label image. 
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Fig. 5.35: 

This is the source image used in Exercise 5.3. 

 
Exercise 5.4: 

Write a program which computes and applies thresholds locally. 

 

Exercise 5.5: 

Write a program which computes a contrast histogram as described in Section 5.4.1. 

 

Exercise 5.6: 

Acquire workpiece images and write a program which measures them. Implement calibration 
mechanisms. 

 

Exercise 5.7: 

Write a program which realizes a connectivity analysis that fills label regions with a mark and avoids 
the necessity of an equivalence list. 

 

Exercise 5.8: 

Write a program which determines the features eccentricity, orientation and bounding rectangle. 

 

Exercise 5.9: 

Acquire workpiece images and write a program which determines their position and orientation 
relative to the origin of the image. 
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Exercise 5.10: 

Become familiar with every region operation offered by AdOculos (AdOculos Help). 
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6 Contour-Oriented Segmentation 

6.1 Foundations 

The requirements of understanding this chapter are 

• to be familiar with terms like derivative, gradient and convolution 

• to have read Chapter 1 (Introduction) Section 3.1.2 (Emphasizing Graylevel Differences), and the 
beginning of Section 5.1 (Foundations; the discussion of the basics of segmentation). 

As already discussed in Section 5.1, common segmentation procedures are based on graylevel 
differences within the source image. This is also valid for contour-oriented segmentation. Thus this 
form of segmentation starts by emphasizing graylevel differences (Fig. 6.1) and is typically performed 
by a gradient operation as discussed in Section 3.1.2. Changing the Cartesian representation of the 
gradient operator into a polar representation yields the magnitude and direction of the maximum 
graylevel change. In order to obtain a more illustrative representation, the gradient direction is rotated 
by 90º because the direction is then aligned with the direction of the contour. In this book the 
direction of a contour is defined so that the higher graylevels are at the right-hand side of the contour. 
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Fig. 6.1: 

The aim of contour segmentation is to describe the borders of image regions by means of only a 
few segments. This means firstly a huge data reduction an secondly the possibility of a high-level 
description of the region borders. 

 
The gradient operator „smears“ the contour due to its low-pass filter effect. To enhance the contour a 
thinning procedure is applied which leaves a gradient image with lines which are only one pixel wide. 

A linking procedure collects connected contour points forming a line (like the pearls of a necklace). 
Thus linking contour points is the realization of the connectivity analysis in the context of contour-
oriented segmentation, just as blob coloring is the realization in the context of region-oriented 
segmentation (Section 5.1.2). The linking procedure provides lists containing the coordinates of 
connected contour points. 
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In the last step the contour represented by contour point chains is approximated by segments. Thus 
the result of the whole process of contour segmentation is a list of segments represented by the 
coordinates of their terminating points. The advantages of contour segmentation are: 

• Comparing the enormous number of pixels of the source image with the few coordinates of the 
segment list shows that a considerable data reduction has been achieved. 

• A structural description of the contour of image regions is obtained. Thus we are able to describe 
contours in abstract terms such as “these segments are parallel”. 

6.1.1 Detection of Contour Points 

The first step towards the detection of contour points is the enhancement of graylevel differences in a 
source image. There are many methods available to achieve this end. In practice, however, the 
gradient operation is widely used, because it is simple and robust. A gradient operator yields the 
magnitude of graylevel differences as well as the direction of the highest graylevel difference (Fig. 
6.2). Although most authors emphasize the representation of the gradient magnitude, the gradient 
direction is in fact more important. This realization will form the focus of the following sections. 

 

Grad

2

Source image

Gradient magnitude

Gradient direction +- 

Fig. 6.2: 

A gradient operation emphasizes graylevel 
differences since it yields, for every pixel, 
the magnitude and direction of the 
maximum graylevel change. To obtain a 
more illustrative representation, the 
gradient direction is rotated by 90º. Then 
the direction is now aligned with the 
direction of the contour. In this book the 
direction of a contour is defined so that the 
higher graylevels are on the right-hand side 
of the contour. 

 
The following examples of gradient operations are based on the source image shown in Fig. 6.3. The 
simplest gradient operation is realized by subtracting the graylevels of two horizontally and two 
vertically neighboring pixels. This is equivalent to the convolution of the source image with the masks 
shown in Fig. 6.4. The results of this convolution (∆x and ∆y) as well as its polar representation 
(Magnitude and Direction) are also shown in Fig. 6.4. 

The disadvantage of this simple operator is its sensivity to the “digital nature” of the graylevel 
transition in the source image (Fig. 6.3). If the transition is interpreted as a straight border of an image 
region, then the gradient magnitude and direction should be equal at every pixel of the source image. 
To obtain the desired result the convolution mask must be enlarged to increase its smoothing effect 
(Section 3.1.1). 
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Fig. 6.3: 

This source image is used as the basis for experiments with gradient operators. 
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Fig. 6.4: 

The simplest gradient operation is realized by the subtraction of the graylevels of two 
horizontally and two vertically neighboring pixels. ∆x and ∆y are the results of the 
convolution of the masks with the source image (Fig. 6.3). Magnitude and Direction) 
stand for the polar representation of the gradient. 

 
Following the size of the gradient operator, the next most important parameter concerns the choice of 
the mask coefficients. The aim here is to approximate the ideal gradient operation as closely as 
possible. This objective is especially important for the gradient direction, because even small errors 
may have a detrimental impact on the results of successive processing steps. From this point of view 
the 3 * 3 gradient operator should not be used. In practice, a 5 * 5 mask has proved to be a good 
compromise. Larger masks yield only marginally better results whilst consuming far more 
computation time. If there are relatively large objects in an image and if the image is noisy, the 
application of a 9 * 9 mask is to be recommended. The higher low-pass filter effect of this mask 
frequently improves the results. 
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Fig. 6.5: 

The 3 * 3 mask is known as the Sobel operator. The larger masks are “inflated” Sobel masks. From a 
practical point of view the 5 * 5 mask has proved to be a good compromise between simplicity, a good 
approximation of the ideal gradient operation and processing speed. 

 
The mask coefficients are determined by some basic investigations (e.g. [6.7]). Nevertheless, these 
approaches are based on constraints which are often not appropriate in an industrial environment. For 
industrial applications the original idea of Sobel (namely the decrease of the coefficients towards the 
border of the mask) is sufficient for most cases. For instance, an arched form like the positive part of a 
sine function proves suitable. The coefficients shown in Fig. 6.5 have been chosen based on this 
model. The sum of the coefficients should be zero, in order to avoid shifting the local mean of the 
graylevels. 

A lot of computation time can be saved if the coefficients are only +1 and -1 as in the examples 
above. However, the approximation error of the Sobel masks is smaller. 

6.1.2 Contour Enhancement 

As a result of a gradient operation, the gradient magnitudes near a contour are often distributed in a 
way similar to an extended mountain ridge (Fig. 6.6). The “summit pixels” are those having locally the 
highest gradient magnitudes. These points are very likely to represent the actual location of the 
contour of a region. I.e. the description of the contour by the “summit pixels” should be sufficient. 
Sticking to the “ridge” portrayal this means: the slopes of the ridges on the left-hand and the right-
hand side of the summit are superfluous and should be removed (non-maxima suppression). This 
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“thinning” of the chain of ridges eventually leaves a thin wall of width 1 pixel (Fig. 6.7). In most cases 
the height of this wall is irrelevant. 

Fig. 6.8 (left) shows a gradient image in polar representation. To find the local maximum magnitudes 
the left-hand and the right-hand side neighbors of every gradient pixel have to be determined. 
However, what is considered to be left or right? The location of the neighbors is defined relative to the 
gradient direction of the current pixel. Therefore four neighbor relations have to be dealt with. They are 
depicted in Fig. 6.9. Fig. 6.8 (right) shows the neighborhood relations and the local maxima of the 
current example. 

In practice non-maxima suppression should not only be based on the comparison of neighboring 
gradient magnitudes but also on the comparison of the gradient directions too. Since “inside” the 
smeared contour, neighboring gradient directions are similar, this similarity should be checked and 
irregular local maxima which are caused by noise should be removed. 

Fig. 6.10 shows the results of 3 different direction checks. Since the source image (Fig. 6.8 (left)) 
represents the corner of a region, the variations of the gradient directions are comparatively high. Thus 
the similarity check should permit a variation of up to ±30º to keep the contour closed. 
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Fig. 6.6: 

The gradient magnitudes are distributed like an extended mountain ridge. The “summit 
pixels” are those having the highest local gradient magnitudes. These points are very 
likely to represent the actual location of a region’s contour. 

 
The thinning procedure yields contours which are indeed one pixel wide but the contour points are 4-
connected. Fig. 6.11 (a) shows an example of such a chain of contour points. A 4-connected chain is 
only one pixel wide, if neighborhoods are only permitted in a horizontal or in a vertical orientation. 
However, if a diagonal neighborhood is permissible too, the chain shown in Fig. 6.11 (a) has redundant 
contour points which may even interfere with further processing steps such as linking (Section 6.1.3). 
Thus the aim should be to obtain an 8-connected chain as shown in Fig. 6.11 (b). 

 



6 Contour-Oriented Segmentation - 6.1 Foundations 

 

Ad Oculos 149

Thinning

2

Gradient magnitude

Gradient direction +
2

Gradient magnitude

Gradient direction +  

Fig. 6.7: 

The aim of a thinning procedure is to enhance a “smeared” contour 
such that lines which are only one pixel wide remain. 

 
To transform a 4-connected chain into an 8-connected one the masks shown in Fig. 6.12 are used. The 
bold lines depict pixels which are part of a 4-connected chain. The current pixel of each mask 
corresponds to the superfluous contour point. The algorithm using these mask works directly on the 
pixels of the source image. Thus, this procedure constitutes an exception to the rule which requires 
separate images for input and output. If the algorithm (starting as usual in the top left corner of the 
image) encounters one of the four constellations, the current pixels of the magnitude image and of the 
direction image are set to 0, i.e. they become part of the background. Fig. 6.13 shows a simple 
example for the transformation of a 4-connected chain of contour points (Start) into an 8-conntected 
chain (Result). Although the chain of contour points shown in Fig. 6.14 (Start) is unusual, the gradient 
operator produces such chains under certain constraints. As the example indicates the basic 4-to-8 
transform fails in ist attempt at processing these unusual chains. To be successful the application of 
the 4 masks shown in Fig. 6.12 has to be refined. 
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Fig. 6.8: 

This is a simple example demonstrating the non-maxima suppression procedure. 
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Fig. 6.9: 

Determination of neighborhoods in the context of the non-maxima suppression. To give 
one example: if the gradient direction of the current pixel (r,c) is between 67.5º and 112.5º 
or 247.5º and 292.5º the neighbor pixel are (r,c-1) and (r,c+1). 
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Fig. 6.10: 

These are the results of 3 different direction checks. Since the source image shown in Fig. 
6.8 (left) represents the corner of a region, the variations of the gradient directions are 
comparatively high. Thus the similarity check should permit a difference of up to ±30º to 
keep the contour closed. 

  

(a) (b)  

Fig. 6.11: 

Both chains are only one pixel wide but the connection 
of their elements differs. (a) shows a 4-connected 
chain the elements of which permit only horizontal or 
vertical orientations. The 8-connected chain (b) allows 
diagonal neighborhoods too. A 4-connected chain has 
redundant elements which may disturb further 
processing steps. 
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Fig. 6.12: 

These masks are used to transform a 4-connected chain into an 8-connected one (Fig. 
6.11). The bold lines depict pixels which are part of a 4-connected chain. The current 
pixel of each mask corresponds to the superfluous contour point. 

  

Start Result  

Fig. 6.13: 

This is a simple example for the transformation of a 4-
connected chain of contour points (Start) into an 8-
connected chain (Result). 

  

Start

End  

Fig. 6.14: 

The application of the 4-to-8 transform to the unusual (but 
not impossible) chain yields a broken chain. 

 
Fig. 6.15 shows the application of a mask on part of a chain. Firstly, not only the middle element of the 
masks has to be considered but all three mask elements are equally and simultaneously under 
consideration. Secondly two forms of neighbors have to be distinguished. A corner neighbor is an 8-
connected chain element while a border neighbor is 4-connected to the mask element currently under 
consideration. While border neighbors may be covered by other mask elements, corner neighbors 
must lay outside of the mask. 

The above definitions are the basis for the new 4-to-8 algorithm, if the following conditions are met: 

• the mask element under consideration has either one or two border neighbors and 

• no corner neighbor 

Next delete the chain element covered by the mask element under consideration. 

Fig. 6.16 demonstrates the application of the refined transformation to the unusual chain shown in Fig. 
6.14. 
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Fig. 6.15: 

The refined application of the 4-to-8 masks is based 
on a more detailed consideration of the 
neighborhood and the connectivity of the chain and 
mask elements. First all the elements of the mask 
have to be given equal consideration. Secondly 
corner neighbors and border neighbors have to be 
distinguished as shown in the example above. 

  

Start Result 

Fig. 6.16: 

The application of the refined 4-to-8 transform to the unusual chain shown 
in Fig. 6.14. 

6.1.3 Linking Contour Points 

Thinning the gradient images does not complete contour-oriented segmentation. If a human observer 
focuses on Fig. 6.17 he or she will recognize three lines. In contrast, the computer only “knows” about 
certain contour points. Hence, a connectivity analysis (Chapter 5) is required which collects connected 
contour points and provides lists containing their coordinates. In the case of contour segmentation 
this procedure is known as contour linking. 
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Fig. 6.17: 

The linking procedure provides lists containing 
the coordinates of connected contour points. 

 
Fig. 6.18 demonstrates the search for neighboring contour points in a source image. Starting with the 
„eastern“ neighbor of the current contour point (marked by a cross) a search is made 
counterclockwise for another contour point. The first contour point which is encountered becomes the 
new current contour point while the current one is kept in the current contour point list and deleted 
from the source image. 

 

 

Fig. 6.18: 

The search for neighboring contour points starts with the „eastern“ neighbor of 
the current contour point (marked by a cross) searching counterclockwise for 
another contour point. The first contour point which is encountered becomes 
the new current contour point while the current one is kept in the current 
contour point list and deleted from the source image. 

 
Fig. 6.19 (left hand side) shows two chains of contour points. The linking procedure yields two chains 
a and b (right-hand side). Note that the data structure used to represent the chains is a list. Thus the 
right-hand side image is only used to illustrate the result. 

Fig. 6.17 suggests the utilization of the gradient direction for the linking procedure. This is indeed a 
way to avoid the fragmentation of chains as demonstrated in Exercise 6.5. See Section 6.4.3 (Linking 
Contour Points) for further explanation. 
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Fig. 6.19: 

The application of the linking procedure to the source image (left-hand side) yields two 
chains a and b (right-hand side). 

6.1.4 Contour Approximation 

In the case of region segmentation (Chapter 5) connectivity analysis is followed by feature extraction. 
These features (e.g. compactness) are typically numerical. In contrast, features describing contours 
are often structural (e.g. parallelism of segments). Thus a description of contours by segments is 
required. They can be obtained by contour approximation. Fig. 6.20 shows an example. The idea of a 
simple approximation procedure is illustrated in Fig. 6.21. At the beginning the chain of contour points 
is tentatively approximated by a single segment. If the greatest perpendicular distance between 
segment and contour chain exceeds a user defined tolerance value the segment is split at the location 
of the greatest distance. This procedure is repeated until the greatest distance is below the user-
defined tolerance. 

 

Approxi-
mation

 

Fig. 6.20: 

Features describing contours are often structural, e.g. the parallelism of 
segments. Segments describing contours are achieved with the aid of an 
approximation algorithm. 
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(a) (b) (c)  

Fig. 6.21: 

A simple approximation algorithm tentatively starts by approximating the chain of contour 
points by a single segment. If the greatest perpendicular distance between segment and 
contour chain exceeds the tolerance value defined by the user, the segment is split at the 
location of the greatest distance. This procedure is repeated until the greatest distance is 
below the user-defined tolerance value. 

 

6.2 AdOculos Experiments 

To become familiar with contour-oriented segementation the New Setup shown in Fig. 6.22 is invoked 
as described in Section 1.6. The example image which will be used in the current section depicts 
simple geometrical objects cut out of cardboard (Fig. 6.23 (KDVSRC.128)). A piece of black cardboard 
serves as a background, while the objects are gray or white. This image is suitable for demonstration 
purposes because of the simple contours of its objects. 

 

 

Fig. 6.22: 

This chain of procedures is the basis for experiments concerning contour-oriented segmentation. The New Setup is 
realized according to the steps described in Section 1.6. The results are shown in Fig. 6.23. 
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Fig. 6.23: 

The example image (KDVSRC.128) depicts simple geometric objects cut out of cardboard. A piece of black 
cardboard serves as background, whilst the objects are gray or white. This image is suitable for demonstration 
purposes because of the simple contours of its objects. (2), (3), (4) and (5) are the results of the gradient operation. 
The interpretation of the gradient direction (5) is based on the palette. (6) and (7) represent the thinning result. The 
chains of contour points (8) are easy to interpret if the image is magnified and colored (View menu). The same 
holds for (9) which shows the segments computed by the approximation function. 

6.2.1 Detection of Contour Points 

Contour points are detected by a gradient operation using a 5 * 5 processing window. Fig. 6.23 (2) and 
(3) show the graylevel differences in Cartesian representation. The gradient magnitudes of the contour 
points are shown in (4). The gradient direction is depicted in (5), where graylevels are used to 
represent the directions of gradients according to the palette. 

The parameter used by Cartesian/Polar... was 

Threshold:10. 

This parameter may be varied by clicking the right mouse button on the function symbol. The 
threshold defines a value, below which the gradient magnitudes are set to zero. 

6.2.2 Contour Enhancement 

The next step in the procedure of contour segmentation is thinning the gradient image. The results of 
this process are shown in Fig. 6.23 (6) and (7). The parameter used by Thinning was: 

Max. Angle:30. 

This parameter may be varied by clicking the right mouse button on the function symbol. The 
parameter controls the direction check discussed in Section 6.1.2. 

The use of simple “artificial” objects emphasizes that the thinning procedure is not faultless: 
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• Vertices are deformed, rounded or even destroyed. 

• Contours of objects which were originally straight, are often “bent”. This observation demonstrates 
an unfortunate fact: a perfect placement of thin contours is not possible. 

• Due to the small dimensions of the objects used here, the “digital nature” of the processing 
becomes visible. For round shapes this may cause severe distortion. 

6.2.3 Linking Contour Points 

The result of the linking operation is shown in Fig. 6.23 (8). Magnification and coloring (View menu) of 
(8) supports the illustration of the result. Contour points which are linked together have the same 
color. It is obvious that the computer “sees” different concatenations than humans, whilst a human 
observer can easily recognize the closed contours of the objects, the computer did not perform well. 
These problems are mainly caused by small gaps in the contour. This kind of fault typically occurs at 
vertices and is due to the low-pass filter effect of the preceeding gradient operation. 

The results of the linking procedure are visualized by means of a pixel matrix. Note that the actual data 
structure of a chain of contour points is a list or a one-dimensional array. 

6.2.4 Contour Approximation 

The remarks made at the end of the preceeding section (concerning the visualization of chains of 
contour points) are also valid in the case of contour approximation. The results of the approximation 
are segments which are eventually completely defined by their terminating points. These points are 
emphasized in Fig. 6.23 (9). Again magnification and coloring (View menu) should be used in support 
of this illustration. 

The parameter used in Approximation was: 

Max. Error: 3. 

This parameter may be varied by clicking of the right mouse button on the function symbol 
Approximation. 

As a result of accepting this fairly high approximation error (in comparison with the size of the regions) 
the circle has lost its original shape. Alternatively a smaller maximum error would have caused many 
short segments. The choice of an optimal tolerance must finally depend on the specific task at hand. 

 

6.3 Source Code 

6.3.1 Detection of Contour Points 

Fig. 6.24 shows a procedure which realizes a 5 * 5 gradient operation. Formal parameters are: 

MaxGV: maximum graylevel permitted in the output images 

ImSize: image size 

InImage: input image on which the gradient operation has to be performed 

DeltaX: output image of column differences 

DeltaY: output image of row differences. 

The current procedure uses 5 * 5 masks for calculating the gradient (Fig. 6.5). In the program these 
masks are represented by the static variables Xmask and Ymask. The first step of the program serves 
to initialize the output images DeltaX and DeltaY. 
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void GradOp5 (MaxGV, ImSize, InImage, DeltaX, DeltaY) 
int  MaxGV, ImSize; 
BYTE ** InImage; 
int  ** DeltaX; 
int  ** DeltaY; 
{ 
   long  dXl, dYl; 
   int   r,c, dX,dY, gv, y,x, MaxMag; 
 
   static int Xmask [5][5] = { { -10, -10,  0,  10,  10}, 
                               { -17, -17,  0,  17,  17}, 
                               { -20, -20,  0,  20,  20}, 
                               { -17, -17,  0,  17,  17}, 
                               { -10, -10,  0,  10,  10} }; 
   static int Ymask [5][5] = { {  10,  17,  20,  17,  10}, 
                               {  10,  17,  20,  17,  10}, 
                               {   0,   0,   0,   0,   0}, 
                               { -10, -17, -20, -17, -10}, 
                               { -10, -17, -20, -17, -10} }; 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         DeltaX [r][c] = 0; 
         DeltaY [r][c] = 0; 
   }  } 
 
   MaxMag = 0; 
   for (r=2; r<ImSize-2; r++) { 
      for (c=2; c<ImSize-2; c++) { 
         dXl = 0; 
         dYl = 0; 
         for (y=-2; y<=2; y++) { 
            for (x=-2; x<=2; x++) { 
               gv = InImage [r+y] [c+x]; 
               dXl += (gv * Xmask [y+2] [x+2]); 
               dYl += (gv * Ymask [y+2] [x+2]); 
         }  } 
         dX = (int) (dXl/25); 
         dY = (int) (dYl/25); 
         if (abs(dX) > MaxMag)  MaxMag = abs(dX); 
         if (abs(dY) > MaxMag)  MaxMag = abs(dY); 
         DeltaX [r][c] = dX; 
         DeltaY [r][c] = dY; 
   }  } 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         DeltaX [r][c] = (int) (((long) DeltaX [r][c] * MaxGV) / MaxMag); 
         DeltaY [r][c] = (int) (((long) DeltaY [r][c] * MaxGV) / MaxMag); 
}  }  } 

Fig. 6.24: 

C realization of the gradient operation. 

 
The following part of the program realizes the gradient operation itself. r and c are the coordinates of 
the current pixel. The two inner for loops perform the local convolution of the input image InImage 
with both masks, Xmask and Ymask. The coordinates of the pixels in the window around the current 
pixel are r+y and c+x. The graylevel of each pixel in the window is gv. The corresponding coefficients 
in the two masks are addressed by x+2 and y+2. 

Graylevels and coefficients are multiplied and the 25 products summed up in the variables dXl and 
dYl. Because sums may exceed the range of an int variable, long variables are used. Division of the 
sums by 25 eliminates this danger. Thus, the final results of the local convolution are assigned to the 
int variables dX and dY. Before their results are assigned to the output images, they are checked to 
see if either of the variables exceeds the maximum value which has occurred so far. 
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Finally, the calculated data are normalized. This step ensures that the highest magnitude equals 
MaxGV. For the purpose of visualization 255 is a reasonable value for MaxGV. However, it is important 
to keep in mind that the values of the output images DeltaX and DeltaY may be negative. Thus, we 
need the int type for DeltaX and DeltaY. Applying an abs operation to the output value and 
assigning the result to the BYTE arrays, guarantees perfect visualization. However, some of the 
following contour procedures need signed data. 

A typical example of these procedures is the transformation from Cartesian to polar representation. 
The corresponding procedure is shown in Fig. 6.25. Formal parameters are 

MaxGV: highest gradient magnitude permitted 

ImSize: image size 

MagThres: threshold of the gradient magnitude: values below this threshold are set to zero 
 and interpreted as background 

DeltaX: input image of the column differences (cartesian representation) 

DeltaY: input image of the row differences (cartesian representation) 

GradMag: output image of the gradient magnitude 

GradAng: output image of the gradient direction (plus 90º). 

At the beginning of this procedure the output images GradMag and GradAng are initialized. 

Determination of the highest gradient magnitude requires calculation of the expression 2 2x y+ . A 

straightforward C realization would need a great deal of computing time. Since the precision required 
for the gradient magnitude is minimal, it is advantageous to use the approximation |x|+|y| (abs(dX) 
+ abs(dY)). 

The last step of the procedure uses the the highest gradient magnitude to normalize the magnitude 
values with respect to MaxGV. This parameter is user defined but must not exceed 255 since the 
output image GradMag is of type BYTE. Calculation of the gradient direction is based on the 
procedure DiscAtan256 which is defined in Appendix A.4. According to this procedure, the complete 
circle is represented by the range of BYTE variables (i.e. from 0 to 255). Since the gradient direction 
has to be rotated by 90º (Section 6.1.1) a value of 64 is added. ANDing the value of the direction with 

255 is equivalent to a modulo-28 operation which forces the values of the gradient direction into the 
range of a BYTE variable. 
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void CarToPol (MaxGV, ImSize, MagThres, DeltaX, DeltaY, GradMag, GradAng) 
int  MaxGV, ImSize, MagThres; 
int  ** DeltaX; 
int  ** DeltaY; 
BYTE ** GradMag; 
BYTE ** GradAng; 
{ 
   int  r,c, dX,dY, Mag, MaxMag; 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         GradMag [r][c] = 0; 
         GradAng [r][c] = 0; 
   }  } 
 
   MaxMag = 0; 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         dX = DeltaX [r][c]; 
         dY = DeltaY [r][c]; 
         Mag = abs(dX) + abs(dY); 
         if  (Mag > MaxMag)  MaxMag = Mag; 
   }  } 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         dX = DeltaX [r][c]; 
         dY = DeltaY [r][c]; 
         Mag = abs(dX) + abs(dY); 
 
         if (Mag > MagThres) { 
            GradMag [r][c] = (BYTE) (((long)Mag * MaxGV) / MaxMag); 
            GradAng [r][c] = (BYTE) ((DiscAtan256 (dY,dX) + 64)  &  255); 
}  }  }  } 

f_KaPoCode 

Fig. 6.25: 

C realization of the transformation from Cartesian to polar gradient representation. Procedure DiscAtan is defined 
in Appendix A. 

6.3.2 Contour Enhancement 

Fig. 6.26 shows a procedure which realizes contour thinning. The formal parameters are: 

ImSize:image size 

DeltaDir: highest value permitted for the deviation between two adjacent gradient 
 directions 

GradMag: input image of the gradient magnitude 

GradAng: input image of the gradient direction 

ThinMag: output image of the thinned gradient magnitude 

ThinAng: output image of the thinned gradient direction. 

The first step in this procedure initializes the output images ThinMag and ThinAng. The following 
thinning procedure is only activated if the gradient magnitude of the current pixel (r,c) is greater than 
0. Otherwise the pixel is considered to be a background pixel (Section 6.3.1). 

The thinning procedure compares the magnitude and the direction of the current pixel with that of its 
neighbors on the left-hand and the right-hand sides. However, what is considered to be left or right? 
The location of the neighbors is defined relative to the gradient direction of the current pixel. Therefore 
we have to deal with four neighbor relations. They are depicted in Fig. 6.9. The current neighborhood 
is determined by four if expressions, which are decided according to the gradient direction C. The 
result is a pair of coordinates [N1r][N1c] and [N2r][N2c] which represent the two neighbors. 
Thus, the gradient directions are N1 = GradAng [N1r][N1c] and N2 = GradAng [N2r][N2c]. 
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The next question concerns the deviations between the gradient direction of the current pixel (c) and 
the gradient directions of the neighbors (N1 and N2). The highest deviation permitted is user specified 
by setting the variable DeltaDir. N1 and N2 are neither allowed to fall below Cmin nor to exceed 
Cmax. Care has to be taken when performing the necessary comparisions: if Cmin and Cmax are not in 
the range of gradient directions (i.e. from 0 to 255) the result of any comparision may be incorrect. 
There are several ways to solve this problem. The one chosen for the thinning procedure is 
straightforward: the direction represented by C is rotated by 128 (corresponding to 180º). Provided 
that DeltaDir is smaller than 64 (corresponding to 90º), Cmin and Cmax remain in the range between 
0 and 255. Naturally, for correct comparisions the directions represented by N1 and N2 have to be 
rotated accordingly. 

If the comparison of the gradient directions of adjacent pixels yields a deviation exceeding DeltaDir 
the procedure is aborted. Otherwise the current pixel is likely to belong to a region of homogeneous 
gradient directions. Using the figurative description of Section 6.1.2, this corresponds to the gradient 
direction of the current pixel being aligned with the „chain of mountains“. The remaining question is 
whether or not the current pixel is a “summit pixel”. To answer this question the gradient magnitudes 
are utilized: if the magnitude of the current pixel is greater than or equal to the magnitude of both the 
neighbors it is classified as a “summit pixel”. In this case the magnitude and direction of the current 
pixel are retained in the output images ThinMag and ThinAng, respectively. 
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void Thinning (ImSize, DeltaDir, GradMag, GradAng, ThinMag, ThinAng) 
int  ImSize, DeltaDir; 
BYTE ** GradMag; 
BYTE ** GradAng; 
BYTE ** ThinMag; 
BYTE ** ThinAng; 
{ 
   int  r,c, N1,N2, N1c,N1r, N2c,N2r, N1m,N2m, N1ok,N2ok; 
   int  C, Cm, Cmax,Cmin; 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         ThinMag [r][c] = 0; 
         ThinAng [r][c] = 0; 
   }  } 
   for (r=1; r<ImSize-1; r++) { 
      for (c=1; c<ImSize-1; c++)  if (GradMag[r][c]) { 
         C = (int) GradAng [r][c]; 
         if (0<=C && C<=15 || 240<=C && C<=255 || 112<=C && C<=143) { 
            N1r = r-1;  N1c = c; 
            N2r = r+1;  N2c = c;     /* west, east */ 
 
         }else if (16<=C && C<=47 || 144<=C && C<=175) { 
            N1r = r-1;  N1c = c-1; 
            N2r = r+1;  N2c = c+1;   /* north-east, south-west */ 
 
         }else if (48<=C && C<=79 || 176<=C && C<=207) { 
            N1r = r;    N1c = c-1; 
            N2r = r;    N2c = c+1;   /* north, south */ 
 
         }else if (80<=C && C<=111 || 208<=C && C<=239) { 
            N1r = r-1;  N1c = c+1; 
            N2r = r+1;  N2c = c-1;   /* north-west, south-east */ 
         } 
         Cmin = C - DeltaDir; 
         Cmax = C + DeltaDir; 
         N1 = GradAng [N1r][N1c]; 
         N2 = GradAng [N2r][N2c]; 
         if (Cmin>=0 && Cmax<=255) { 
            N1ok = (Cmin<=N1 && N1<=Cmax); 
            N2ok = (Cmin<=N2 && N2<=Cmax); 
         }else{ 
            C += 128;  C &= 255; 
            Cmin = C - DeltaDir; 
            Cmax = C + DeltaDir; 
            N1 += 128;  N1 &= 255;  N1ok = (Cmin<=N1 && N1<=Cmax); 
            N2 += 128;  N2 &= 255;  N2ok = (Cmin<=N2 && N2<=Cmax); 
         } 
         if (N1ok && N2ok) { 
            N1m = GradMag [N1r][N1c]; 
            N2m = GradMag [N2r][N2c]; 
            Cm  = GradMag [r][c]; 
            if (N1m<=Cm && N2m<=Cm) { 
               ThinMag [r][c] = GradMag [r][c]; 
               ThinAng [r][c] = GradAng [r][c]; 
}  }  }  }  } 

Fig. 6.26: 

C realization of the thinning operation. 

 
The thinning procedure yields contours which are indeed one pixel wide but the contour points are 4-
connected. Fig. 6.11 (a) shows an example of such a chain of contour points. Actually, a 4-connected 
chain is only one pixel wide, if neighborhoods are only permitted in a horizontal or vertical orientation. 
However, if a diagonal neighborhood is permissible too, parts of a 4-connected chain become two 
pixels wide. This disadvantage disappears if contour points are 8-connected (Fig. 6.11 (b)). 
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void FourToEight (ImSize, ThinMag, ThinAng) 
int  ImSize; 
BYTE ** ThinMag; 
BYTE ** ThinAng; 
{ 
   int   r,c, Cm, N1c,N1r, N2c,N2r, N1m,N2m; 
 
   for (r=1; r<ImSize-1; r++) { 
      for (c=1; c<ImSize-1; c++)  if (ThinMag[r][c]) { 
         N1r = r-1;  N1c = c; 
         N2r = r;    N2c = c+1; 
         Cm  = ThinMag [r][c]; 
         N1m = ThinMag [N1r][N1c]; 
         N2m = ThinMag [N2r][N2c]; 
         if (Cm && N1m && N2m) { 
            ThinMag [r][c] = 0; 
            ThinAng [r][c] = 0; 
         }else{ 
            N1r = r-1;  N1c = c; 
            N2r = r;    N2c = c-1; 
            Cm  = ThinMag [r][c]; 
            N1m = ThinMag [N1r][N1c]; 
            N2m = ThinMag [N2r][N2c]; 
            if (Cm && N1m && N2m) { 
               ThinMag [r][c] = 0; 
               ThinAng [r][c] = 0; 
            }else{ 
               N1r = r+1;  N1c = c; 
               N2r = r;    N2c = c-1; 
               Cm  = ThinMag [r][c]; 
               N1m = ThinMag [N1r][N1c]; 
               N2m = ThinMag [N2r][N2c]; 
               if (Cm && N1m && N2m) { 
                  ThinMag [r][c] = 0; 
                  ThinAng [r][c] = 0; 
               }else{ 
                  N1r = r+1;  N1c = c; 
                  N2r = r;    N2c = c+1; 
                  Cm  = ThinMag [r][c]; 
                  N1m = ThinMag [N1r][N1c]; 
                  N2m = ThinMag [N2r][N2c]; 
                  if (Cm && N1m && N2m) { 
                     ThinMag [r][c] = 0; 
                     ThinAng [r][c] = 0; 
}  }  }  }  }  }  } 

Fig. 6.27: 

C realization of the transformation of 4-connected neighborhoods into 8-connected neighborhoods. 

 
Fig. 6.27 shows a procedure, which realizes the transformation of 4-connected neighborhoods into 8-
connected neighborhoods. The formal parameters are: 

ImSize: image size 

ThinMag: magnitude image in which the superfluous contour points have to be erased 

ThinAng: direction image in which the superfluous contour points have to be erased. 

This procedure constitutes an exception to the rule which requires separate images for input and 
output. Thus, the usual initialization of the images is not necessary. Fig. 6.12 shows four possible 
configurations for 4-connected neighborhoods. The bold lines depict pixels which are part of a 4-
connected chain. The current pixel of each mask corresponds to the superfluous contour point. If the 
algorithm encounters one of the four configurations then the current pixels of the magnitude image 
and of the direction image are set to 0, i.e. they become part of the background. 
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6.3.3 Linking Contour Points 

Fig. 6.28 shows a procedure which realizes the linking of contour points. Formal parameters are: 

ImSize: image size 

ThinMag: input image, which represents the thinned gradient magnitude (8-connected 
 neighborhood) 

Chain: output vector, which contains all chains of contour points 
in ThinMag. 

The procedure returns the length of the vector Chain. The two vectors x and y which are defined at 
the beginning of the procedure support a simple addressing of each of the eight neighbors of the 
current pixel. The coordinates of the current pixel (the gradient magnitude of which is greater than 0) 
are rf and the coordinates of the neighbor cc are rf+y[cc] and cf+x[cc]. For the „eastern“ 
neighbor cc is 0. cc is incremented counter clockwise, i.e. cc is 7 for the „south-eastern“ neighbor 
(see the definition part of the procedure in Fig. 6.28). 

Continuation of the linking algorithm is controlled by two variables: 

i: addresses the contour points in a chain beginning with i=1 
for the first point. For the last point i corresponds to 
the number of contour points in the current chain 

l: counts the number of all contour points which are linked 
in any given chain. 

The frame of the linking algorithm is realized by two for loops which scan the whole of the input 
image ThinMag for contour points. The gradient magnitudes of these points are not used by our 
simple type of algorithm. It only has to be greater than 0. 

If a contour pixel is encountered it is interpreted as the first element of a chain. Thus, i is set to 1 and 
the coordinates of this point must be retained in Chain. Since i is also part of Chain, the beginning 
of a new chain can be identified without problems. This is important for succeeding procedures which 
use Chain. Before searching for further contour points in the neighborhood, it is necessary to mark 
the current pixel as “found”. This is simply done by ThinMag[rf][cf]=0, which means however 
than the input image is destroyed at the end of the procedure. 

The inner for loop scans (by variation of x and y) the neighborhood around the current pixel searching 
for further contour points. The coordinates of the neighbors are rs and cs. If this search fails for all of 
the eight neighbors, the current pixel is the last point in the chain. The control is then returned to the 
outer two for loops in order to search for the beginning of a new chain. 
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int Linking (ImSize, ThinMag, Chain) 
int    ImSize; 
BYTE   ** ThinMag; 
ChnTyp * Chain; 
{ 
   /* chain code (cc):  O NO  N NW  W SW  S SO   */ 
   static  int y [8] = {0,-1,-1,-1, 0, 1, 1, 1}; 
   static  int x [8] = {1, 1, 0,-1,-1,-1, 0, 1}; 
   int  r,c, rf,cf, rs,cs, i,l, cc; 
 
   l = 0; 
   for (r=1; r<ImSize-1; r++) { 
      for (c=1; c<ImSize-1; c++)  if (ThinMag [r][c]) { 
         rf = r; 
         cf = c; 
         i = 1; 
         Chain[l].r = rf; 
         Chain[l].c = cf; 
         Chain[l].i = i; 
         i++; 
         l++; 
         ThinMag [rf][cf] = 0; 
 
         for  (cc=0; cc<8; cc++) { 
            rs = rf + y[cc]; 
            cs = cf + x[cc]; 
            if (ThinMag [rs][cs])  { 
               rf = rs; 
               cf = cs; 
               GetMem (Chain); 
               Chain[l].r = rf; 
               Chain[l].c = cf; 
               Chain[l].i = i; 
               i++; 
               l++; 
               ThinMag [rf][cf] = 0; 
               cc=-1;   /* attention:  reset of loop counter */ 
   }  }  }  } 
   l--; 
   return (l); 
} 

Fig. 6.28: 

C realization of contour point linking. The data type ChnTyp and the procedure GetMem are defined in 
Appendix A. 

 
Consider the case of a successful search for a neighboring contour point. In this case, first of all 
Chain has to be reallocated in order to provide memory for the new contour point. After assigning rf, 
cf and i to Chain, the control variables i and l are incremented and the neighbor is marked as 
“found”. 

The termination of this procedure is in violation of an important rule of good programming: never 
manipulate a loop counter. However, pragmatic programmers appreciate such exceptions which 
confirm the rules. In our case the “reset” of the loop counter is a simpler and clearer realization than 
any practical alternative. 

The procedure Linking is the simplest realization of a linking algorithm. In practice this procedure 
should be elaborated in order to realize the function described in Section 6.1.3. For further information 
Section 6.4.3. 

6.3.4 Contour Approximation 

Fig. 6.30 shows the procedure Approx which realizes the contour approximation. Formal parameters 
are: 
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ChnLen: length of the vector Chain 

MaxErr: maximum approximation error (in pixels) permitted 

Chain: input vector, which contains the chains of contour points 

Segs: output vector, which contains the segments. 

The procedure Approx merely serves as a frame for the original approximation algorithm. It works on 
the vector Chain, beginning at the end, picking up the successive chains and starting the procedure 
Polygon with the current chain which is determined by the index TopOfCurve which points to the 
end of the chain and the parameter CurveLen represented by the length of the chain. The procedure 
Polygon approximates the current chain by segments, and retains the coordinates of the segment 
termination points in the vector Segs. 
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Fig. 6.29: 

The realization of the split algorithm the original idea of which is 
illustrated in Fig. 6.21. The method differs a little from the ideal 
approach: The approximation error is expressed by the city block 
distance between the pixels of the chain and the pixels of the 
segment. This offers the advantage of a fast and simple realization. 

  
void Approx (ChnLen, MaxErr, Chain, Segs) 
int    ChnLen, MaxErr; 
ChnTyp * Chain; 
SegTyp * Segs; 
{ 
   int  NofSegs, CurveLen, TopOfCurve; 
 
   NofSegs = 0; 
   TopOfCurve = ChnLen; 
   while (TopOfCurve >= 0) { 
      CurveLen = Chain[TopOfCurve].i; 
      Polygon (TopOfCurve, CurveLen, MaxErr, &NofSegs, Chain, Segs); 
      TopOfCurve -= CurveLen; 
}  } 

Fig. 6.30: 

C realization of contour approximation (frame). The data types ChnTyp and SegTyp are defined in Appendix A. 

 
Fig. 6.31 shows the procedure Polygon which realizes the actual approximation algorithm. Formal 
parameters are: 

TopOfCurve: index which points to the last contour point of the current chain 
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CurveLen: length of the current chain 

MaxErr: highest approximation error permitted 

NofSegs: return parameter representing the number of segments 

Chain: vector containing the chains 

Segs: output vector containing the segments. 

 
void Polygon (TopOfCurve, CurveLen, MaxErr, NofSegs, Chain, Segs) 
int    TopOfCurve, CurveLen, MaxErr, *NofSegs; 
ChnTyp * Chain; 
SegTyp * Segs; 
{ 
   int    r0,c0,r1,c1, m,n, LineLen, Difference, MaxErrPos, MaxDiff; 
   LinTyp * Line; 
 
   r1 = Chain[TopOfCurve].r; 
   c1 = Chain[TopOfCurve].c; 
   r0 = Chain[TopOfCurve-CurveLen+1].r; 
   c0 = Chain[TopOfCurve-CurveLen+1].c; 
 
   LineLen = GenLine (r0,c0,r1,c1, Line); 
   MaxErrPos = 0; 
   MaxDiff   = 0; 
   for (m=1, n=TopOfCurve-CurveLen+1;  m<=LineLen;  m++, n++) { 
      Difference = abs (Line[m].c - Chain[n].c) + 
                   abs (Line[m].r - Chain[n].r); 
      if (Difference > MaxDiff) { 
         MaxErrPos = m; 
         MaxDiff   = Difference; 
   }  } 
   if (MaxDiff > MaxErr) { 
      Polygon (TopOfCurve, CurveLen-MaxErrPos+1, MaxErr, NofSegs, Chain, Segs); 
      Polygon (TopOfCurve-CurveLen+MaxErrPos, MaxErrPos, MaxErr, 
               NofSegs, Chain, Segs); 
   }else{ 
      GetMem (Segs); 
      Segs[*NofSegs].r0 = Line[0].r; 
      Segs[*NofSegs].c0 = Line[0].c; 
      Segs[*NofSegs].r1 = Line[LineLen-1].r; 
      Segs[*NofSegs].c1 = Line[LineLen-1].c; 
      ++*NofSegs; 
}  } 

Fig. 6.31: 

C realization of contour approximation (split algorithm). The data types ChnTyp, SegTyp and LinTyp and the 
procedures GenLine and GetMem are defined in Appendix A. 

 
The approximation of contours is based on the split algorithm which is described in Section 6.1.4. Fig. 
6.29 shows the basic realization of the algorithm. In order to compute the approximation error the 
segment is represented by a list of pixels. The error is expressed by the city block distance between 
the pixels of the chain and the pixels of the segment. This does not exactly correspond to the original 
principle (Fig. 6.21), but offers the advantage of a fast and simple realization. 

The pixels representing the segment are computed by the procedure GenLine (Fig. 6.31). The 
coordinates of these pixels are contained in the vector Line. The procedure GenLine returns the 
length LineLen of this vector. The following for loop computes the city block distances 
Difference between the pixels of the chain Chain and the segment Line (Fig. 6.29). 

The index of the maximum error MaxDiff is MaxErrPos. If MaxDiff does not exceed the user-
defined parameter MaxErr the current segment is to be retained in Segs. Previously Segs must have 
been reallocated in order to provide more memory. This is realized with the aid of the procedure 
GetMem. Now the termination points of the segment Line are assigned to the vector Segs. If the 
approximation error is unacceptable (i.e. (MaxDiff > MaxErr)) then two recursive calls of the 
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procedure Polygon are processed in order to approximate the two parts of the chain which arose 
from the splitting process. 

Bear in mind that the procedure Polygon is a very simple realization of the split algorithm. In order to 
keep the procedure easily understandable, mechanisms which are necessary to cope with 
“inconvenient” contours have not been implemented. This applies especially to the case of closed 
contours. 

6.4 Supplement 

6.4.1 Detection of Contour Points 

Fig. 6.32 visualizes two basic approaches to contour detection: both the maximum of the first 
derivative and the zero-crossing of the second derivative detect the highest local graylevel difference. 
A graylevel image may be interpreted as a function f(x,y) of two coordinates x and y of a two-
dimensional coordinate system having the unit vectors i and j. The first derivative of this function 
realizes the gradient: 

f f
f (x, y) i j

x y

∂ ∂∇ = +
∂ ∂

 

The magnitude of the gradient is: 

2 2
f f

f (x, y)
x y

   ∂ ∂∇ = +   ∂ ∂   
 

and the direction: 

f f
( f (x, y)) arctan

y x
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The second derivative realizes the Laplace operator: 

2 2
2

2 2
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f (x, y) i j

x y

∂ ∂∇ = +
∂ ∂

 

which is rotation invariant. Thus the Laplace operator yields no information about the direction of the 
contour. 
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Fig. 6.32: 

Use of the first and the second spatial derivatives of the graylevel permits the 
detection of contour points. 

 
Realizations of these two approaches are based on local convolutions (Section 3.4) of a graylevel 
image with coefficient masks which approximate the gradient or the Laplace operator. In this context 
the size of the mask and the choice of its coefficients are important parameters. For determination of 
these parameters three requirements have to be taken into account [6.7]: 

• Contour points must be safely detected. 

• The positioning of contour points must be accurate. 

• The contour represented by the contour points should be thin and unique. 

Based on these requirements the academic community has developed several operators (e.g. [6.7] 
[6.8]). Compared to the rather expensive realization of these operators, their practical benefits are 
poor. The reasons for this limitation are: 

• Each of these “edge detectors” only yields graylevel differences. However, the correspondence of 
these differences to the edges of the objects within the image is generally not guaranteed. There is 
no exact correspondence. In fact, no operator “knows” anything about the objects. The operator 
merely processes (two-dimensional, discrete, spatial) signals which are meaningless to it. 

• The design of the operators has been optimized for certain ideal types of graylevel differences 
(typically for ideal step edges). These types are rarely found in practice, except in the case of images 
which have been obtained under ideal illumination conditions. Such “clean” images, however, do 
not need sophisticated operators. 

• In order to find the best performance for a certain purpose, the various tools on offer must be 
evaluated. However, in the case of edge detectors, there is no performance measure which is 
widely accepted. 

Consistently, for practical application one should remember the “good old” operators, such as the 
gradient operator, which has already been described in the preceeding sections. 

A good realization of the zero-crossing operator is the classic approach introduced by Marr and 
Hildreth [6.12] [6.13]. However, the invariance of the Marr/Hildreth operator to rotation is a decisive 
drawback: One abandons the important direction information. When considering this aspect it seems 
advisable to give preference to the gradient operator. 

Finally it should be emphasized that sophisticated modern operators are not simply academic “toys”. 
On the contrary, these operators are most important for a deep understanding of, and for further 
development of image processing procedures. Please bear in mind that the operators which have now 
become classic operators were origionally developed in the academic “playground” too. 
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6.4.2 Contour Enhancement 

The aim of contour enhancement is the removal of superfluous contour points as well as the closing 
of broken contours. This task can never be quite satisfactorily performed, because the enhancement 
procedures have no knowledge of the objects in the image. The decision as to whether a contour 
point is superfluous or not can only be taken on the strength of the local configuration of the signal 
“image”. Similar problems arise for the task of closing gaps. The danger of making decisive errors is 
inseparable from this operation: certain gaps in a contour may be meaningful, and in this case must 
not be closed. 

A typical tool which removes superfluous contour points is the thinning procedure described in the 
preceding sections. This procedure is well-known as non-maxima suppression. It is simple and 
effective. However, if the information concerning the gradient magnitude has to be preserved, the 
representation of the contour by its “summit pixels” (Section 6.1.2) is not sufficient. In this case the 
width and the form of the “gradient ridge” must be taken into account for the thinning process. A 
method of achieving this is the so-called non-maxima absorption method. Pictorially speaking, the 
“summit” absorbs parts of the mountain slope on its right-hand and left hand side and in the process 
becomes higher. 

Enhancement procedures which are able to fill gaps in contours are much more complex. A well-
known tool that is not confined to image processing is the so-called relaxation procedure. It checks 
adjacent objects (of whatever kind) for certain homogeneity criteria. Objects which do not fit into a 
homogeneous neighborhood are forced to assimilate. Application of this principle to the enhancement 
of contours means that: 

• strong contour elements which occur in a neighborhood of weak elements should be suppressed, 
since they are likely to be caused by noise, 

• weak contour elements which are part of a distinct contour should be strengthened, 

• a contour element which is not aligned with a distinct contour should be adapted to the contour. 

The basic principles of the classic relaxation procedures were described in [6.11]. An interesting 
alternative is discussed in [6.3]. It synergetically combines a non-maxima suppression, a non-maxima 
absorption and a relaxation procedure. 

Most of the relaxation procedures suffer from a common drawback: they require a lot of computing 
power, often without returning an adequate performance. To make relaxation an appropriate tool for 
closing gaps in contours, a considerable amount of research work still needs to be done. Thus, in 
practice one should first try to solve current enhancement problems by using the simple non-maxima 
suppression procedure. 

6.4.3 Linking Contour Points 

The linking procedure which was presented in Section 6.1.3 is simple and fast. However, it has two 
disadvantages. They are illustrated in Fig. 6.33. Consider a thin contour image which represents a 
bright semicircular object on a dark background (Fig. 6.33 (a)). The corresponding direction of the 
contour (gradient direction plus 90º) is symbolized by arrows. At the lower vertices the contour is 
broken. 

The linking algorithm starts its search for contour points at the top left-hand corner of the image and 
proceeds row by row. Thus it encounters the first contour point at the top of the semicircle. From 
there it starts tracking adjacent contour points until it finds one of the terminating points. The contour 
points found between start and termination establish the first chain. The other half of the semicircle is 
not part of this chain. It requires another chain. Thus, we end up with three chains (Fig. 6.33 (b)), 
where two chains would have been sufficient. 
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Fig. 6.33: 

The disadvantage of the simple linking procedure which leads to fragmented 
chains can be overcome by the using the gradient direction. 

 
The second problem concerns the direction of the linking procedure. For two of the three chains 
depicted in Fig. 6.33 (b) it does not correspond with the original direction of the contour. This fault is 
not crucial but may be inconvenient for some applications. 

Both problems can be easily solved: 

(1) Recall the linking approach described in Section 6.1.3: In preparation, the procedure searches for 
any of the two terminating points and only starts the tracking from there. 

(2) Proceed according to (1) but make the preparatory search against the gradient direction of the 
contour points. 

In spite of these improvements the linking algorithm is only capable of linking adjacent contour points, 
for this reason it is called local. Global linking strategies use context information in order to perform 
well. This information may range from the progress of the entire chain which has been linked so far, to 
information concerning the objects which are supposed to be part of the image. Such algorithms are 
very time-consuming. Moreover, they are not yet well enough developed or understood for practical 
use. 

Nevertheless, one of these procedures, the so-called Hough transform has made its way into practical 
application. Since it is an interesting method even beyond the scope of contour point linking, a special 
section has been devoted to the Hough transform (Chapter 7). 

6.4.4 Contour Approximation 

The aim of the contour approximation is the representation of contour point chains by a minimum 
number of segments under the constraint of a maximum approximation error. These conditions are 
met by Dunham’s optimal algorithm [6.9]. 

This algorithm has a serious drawback: it consumes an enormous amount of computing time. On the 
other hand it is an excellent reference for comparision with other algorithms. Dunham himself 
conducted such comparisions and concluded that the simple split strategy (Section 6.3.4 and [6.15]) 
performs acceptably well. In view of the simple realization and the low consumption of computing 
time, it is a good practical choice. 

6.4.5 Other Contour Procedures 

The procedure of contour segmentation introduced in the preceding sections is classic but certainly 
not the only one possible. There are a few interesting alternatives two of which are introduced in the 
following section. 

One of these alternatives is derived from the work of Prager [6.14]. The basis of his idea is a special 
form of contour representation as depicted in Fig. 6.34. Prager calls his approach the interpixel model. 
Other authors speak of “crack edges” [6.1]. Contour elements are positioned between any two 
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vertically or horizontally neighboring pixels. The magnitude of such a contour element is determined 
by the difference of the two graylevels. To avoid negative magnitudes the absolute value of the 
differences is utilized. The direction of the contour elements is determined by their positions between 
adjacent pixels. That is to say, there are only two directions, namely “horizontal” and “vertical”. Hence, 
the relationship between neighborhoods becomes very simple. Obviously, this strongly influences the 
succeeding procedures. For example, based on the interpixel model Prager introduces a relaxation 
algorithm which is simple, fast and robust. 

 

Contour
element

Graylevel
pixel  

Fig. 6.34: 

The interpixel model proposed by Prager is based on contour 
elements which are positioned between any two vertically or 
horizontally neighboring pixels. The magnitude of such a contour 
element is determined by the absolute difference of the two 
graylevels. 

 
Another alternative was described by Burns et al. [6.6]. The procedure starts in the usual way: a simple 
gradient operation is executed in order to detect contour points. Inspecting the gradient directions in 
the examples of Section 6.3, it becomes obvious that there are large regions of similar gradient 
direction. These homogeneous regions are the basis for further processing. Burns et al. approximate 
the curve of the gradient magnitude in these regions by planes. From the positions of these planes 
segments are determined which approximate the contour. Therefore, neither a thinning nor a linking 
procedure is required. However, this does not mean that the approach of Burns et al. would 
necessarily save computing resources. On the contrary: the amount of memory and time required is 
clearly larger than the classic procedure. Nevertheless, it is a very interesting approach which provides 
a deeper insight into the problems of contour segmentation. 

6.5 Exercises 

Exercise 6.1: 

Apply the masks shown in Fig. 6.35 to the source image shown in Fig. 6.3. 
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Fig. 6.35: 

Like the simple operator shown in Fig. 6.4 these masks realize 
the gradient operation. However, due to their size they have a 
smoothing effect which decreases their sensivity to very local 
graylevel changes. 

 
Exercise 6.2: 

Apply the non-maxima suppression procedure to the gradient image shown in Fig. 6.36. Performing 
the similarity check permit differences of ±5º, ±10º and ±15º. 

 



6 Contour-Oriented Segmentation - 6.5 Exercises 

 

Ad Oculos 175

0 0

0 19

18

0

0

20

45

81

125 217 223

234

229

210 228

231

229

188

152

112

175

12741

70

67

22 16 20 15 0

000

41

135192192

104

136 197156

100

197

173186

101 92 89

243208 224

234

15542 95

5416066

31

176

134

Magnitude

Direction

0 0

0

000

038

4445

58

65

68

70

72

73

45

65

62

68 73

73

75

70

65

53

0

0

0

25

31

39

52

66

73

70

69 52

59

59

38

23

13

7

0 321318

335

335

329

329

323

329

326

333

335

332

325336

343

346

346

342

325

 

Fig. 6.36: 

This is the part of a gradient image produced by a 5 * 5 Sobel operator 
(Fig. 6.5). 

 
Exercise 6.3: 

Apply the 4-to-8 transform to the chain shown in Fig. 6.13 starting at the bottom right. 

 

Exercise 6.4: 

Apply the refined 4-to-8 transform to the chain shown in Fig. 6.37. 

 

 

Fig. 6.37: 

This chain of contour points is another unusual result of the non-maxima suppression. 

 
Exercise 6.5: 

Apply the linking procedure to the chain shown in Fig. 6.38. 
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Fig. 6.38: 

This image is used as source image for Exercise 
6.5. 

 
Exercise 6.6: 

Write a program which evaluates the precision of the direction calculated by various gradient 
operators. Note that the precision of the direction depends on the direction itself. 

 

Exercise 6.7: 

Write a program which realizes the refined 4-to-8 transform as discussed in Section 6.1.2. 

 

Exercise 6.8: 

Write a program which realizes the improved link procedure as discussed in Section 6.4.3. 

 

Exercise 6.9: 

Fig. 6.29 illustrates a realization of the split procedure which is fast and simple but tends to 
inconvenient split errors in certain situations. Write a program which realizes the split procedure 
according to its original principle. 

 

Exercise 6.10: 

Write a program which is able to detect parallel segments. Assume that the segements are described 
by their terminating points. 

 

Exercise 6.11: 

Write a program which finds graylevel steps based on the zero-crossing approach. 

 

Exercise 6.12: 

Write a program which finds graylevel steps based on the interpixel approach. 

 

Exercise 6.13: 

Apply the 5*5 gradient operator to the cardboard shapes image (Fig. 6.23 (KDVSRC.128)). Also apply a 
5*5 smoothing operator followed by a simple differentiation. Compare the results obtained 

 

Exercise 6.14: 

Become familiar with every contour operation offered by AdOculos (AdOculos Help). 
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7 Hough Transform 

7.1 Foundations 

The requirements of understanding this chapter are: 

• to be familiar with geometry 

• to have read Chapter 1 (Introduction) Section 6.1.1 (Detection of Contour Points), and Section 6.1.2 
(Contour Enhancement). 

The idea of the Hough transform was introduced by P.V.C. Hough in 1962. Duda and Hart [7.20] 
exploited this idea to detect collinear points (points which lie on a straight line). Although this 
application refers to contour-oriented segmentation (Chapter 6) this chapter has been devoted to the 
Hough transform. One reason for this was to achieve greater clarity in Chapter 6. The other reason 
was that the special qualities of the Hough transform justify dedicating a separate chapter to it. 

The basic idea of the Hough transform is illustrated in Fig. 7.1: on the left a straight line in the 
Cartesian coordinate system is shown. Usually, we determine such a straight line by its slope and its 
intersection with the y-axis. Another description uses the perpendicular distance r to the origin and the 
angle θ between r and the x-axis (Fig. 7.1 (a)). Both descriptions are connected by the so-called normal 
representation of a line. 

r x cos ysin= θ + θ . 

θ lies in the interval [0,π). r may have positive and negative values. 

 

r0

x

y

r0

r

0

(a) (b)

0

 

Fig. 7.1: 

Usually, a straight line is determined by its slope and its intersection with the y-axis 
(a). Alternatively a straight line is described by the perpendicular distance r to the 
origin and the angle θ between r and the x-axis. Using r and θ to construct a two-
dimensional coordinate system the straight line becomes a point (b). This line-to-point 
transform is realized by r x cos ysin= θ + θ . 

 
In a coordinate system which is determined by r and θ (Fig. 7.1 (b)) the original straight line is a point. 
Clearly this line-to-point transform is not a tool which evaluates data. However, it serves for the 
enhancement of these data and therefore simplifies the succeeding data analysis. 

Fig. 7.2 illustrates an example of using the Hough transform for contour segmentation. On the left a 
section of a thinned gradient image (Section 6.1.2) is shown. The five arrows represent contour points 
which lie on a straight line (note that a contour point consists of a magnitude and a direction). A 
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human observer notices this at first sight. However, the computer only “sees” the single contour 
points. Their collinearity is revealed with the aid of the Hough transform. 

From the gradient direction of the contour points (x, y) we obtain θ=45°. Thus, the thinned gradient 
image yields all the data required to carry out the operation r x cos ysin= θ + θ . With the current data 
for each contour point r=23. 

In practice, the (r,θ) domain (the so-called accumulator, Fig. 7.2) is quantized as a digital image. All the 
accumulator cells (these are the “pixels” of the accumulator) are initially set to zero. Carrying out the 
Hough transform turns out to be simple: for each contour point of the gradient image the Hough 
transform determines a coordinate pair (r,θ) and increments the contents of the corresponding 
accumulator cell. In the current example each of the 5 contour points yields the coordinate pair (r=23, 
θ=45). 
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Fig. 7.2: 

This is an example of using the Hough transform for contour segmentation. On the left a 
section of a thinned gradient image is shown. The five arrows represent contour points 
which lie on a straight line. The Hough transform reveals the collinearity of these contour 
points. 

 
Now the acutal Hough transform is finished and its result is to be found in the accumulator. The next 
step is to analyze the accumulator. The starting point of this analysis is obvious: all of the accumulator 
cells (r,θ) the entries of which are greater than 1, represent at least 2 contour points lying on a straight 
line. This straight line is completely determined by r and θ. In order to illustrate this in the context of 
the example shown in Fig. 7.2, the straight line determined by (r=23, θ=45) is entered into a 128 * 128 
image (bottom right). 

For further processing, knowledge of the intersections between the straight line and the image border 
is advantageous. They are easy to obtain with the aid of r x cos ysin= θ + θ  since r and θ are known and 
one of the intersection coordinates x and y is given by the image border. Applying the data of the 
current example to this procedure the intersections (0,32) and (32,0) are obtained (Fig. 7.2). Note that 
the straight lines obtained by the Hough transform (like any straight line) have no terminating points. 

The straight lines obtained so far only indicate the collinearity of contour points. Thus the use of the 
Hough transform to detect contours of objects requires further processing steps which are dependent 
on the actual application. The improvement of contour point linking procedures is obviously desirable. 
While popular linking procedures only make use of local contour information (Section 6.1.3), the use of 
the Hough transform allows the inclusion of global information like the collinearity of contour points 
[7.18]). Here another interesting use of the Hough transform will be discussed: the straight lines 
obtained by the Hough transform serve as “signposts” indicating those regions of the source image 
which have the best chance of representing meaningful contours. Focussing the attention on these 



7 Hough Transform - 7.1 Foundations 

 

Ad Oculos 181

regions of interest avoids wasting computing time with redundant regions. Besides this signpost 
function, the Hough transform yields important information concerning the geometry of straight lines. 
We have already become acquainted with collinearity. In addition, the accumulator directly reflects 
parallelism: all straight lines represented by the entries of one accumulator column are parallel [7.19]. 
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Fig. 7.3: 

This is a survey of a chain of procedures, based on the Hough transform, for 
extracting segments. A gradient operation followed by a thinning step extracts 
the contour points of the source image. For each of the contour points the 
Hough transform calculates the coordinates of the corresponding accumulator 
cell and increments its entry. The analysis of the accumulator yields straight 
lines representing collinear contour points. The tracking procedure “scans” 
along these lines through the source image, searching for object contours. 

 
Fig. 7.3 shows a survey of the complete procedure. A gradient operation followed by a thinning step 
extracts the contour points of the source image. The resulting thinned gradient image is binary: the 
gradient magnitude of any contour point is 1, while background pixels are represented by 0. For each 
of the contour points the Hough transform calculates the coordinates of the corresponding 
accumulator cell and increments its entry. The analysis of the accumulator yields straight lines 
representing some collinear contour points. The tracking procedure “scans” along these lines through 
the source image, searching for object contours. Indicators for such contours are significant graylevel 
differences between the left-hand side and the right-hand side of the straight lines. The scanning 
procedure detects the first and last points of each encounter (or “contact”) with such differences. 
These “contacts” are the termination points of a straight line segment representing a part of an object 
contour. 

Fig. 7.4 illustrates a simple realization of tracking. The scanning routine is based on a “glider” which 
moves along the straight lines. The glider compares the graylevels on its left-hand side and on its 
right-hand side. If the graylevel difference is significant (the significance is defined by the user) the 
glider is likely to be moving along the contour of an object. 

 

 

Fig. 7.4: 

In order to find object contours a glider moves along the straight lines. The glider 
compares the graylevels on its left and on ist right hand side If the graylevel 
difference is significant the glider is likely to be moving along an object contour. 
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The principle illustrated in Fig. 7.3 covers some basic problems of applying the Hough transform. 
These are to be discussed in Section 7.4. 

7.2 AdOculos Experiments 

To become familiar with the Hough transform realize the New Setup shown in Fig. 7.5 is invoked as 
described in Section 1.6. The example image which will be used in the current section contains two 
wooden building blocks on a dark background (Fig. 7.6 (BLOCKSRC.128)). The image is blurred and of 
low contrast. Such problems should be overcome by robust image processing procedures. 

 

 

Fig. 7.5: 

This chain of procedures is the basis for experiments concerning Hough transformation. The New Setup is realized 
according to the steps described in Section 1.6. The results are shown in Fig. 7.6. 

 
According to the summary shown in Fig. 7.3 the first step is a gradient operation, which is then 
followed by a thinning procedure. The gradient operation is realized by a 5 * 5 Sobel mask while the 
thinning is carried out by a non-maxima suppression. Both procedures are described in detail in 
Chapter 6. Fig. 7.6 (6) and (7) show their results. 

The parameters used by Cartesian/Polar... and Thinning were: 

Threshold: 10 

Max. Angle: 30. 

These parameters may be varied by clicking on the right mouse button on the function symbols. 

Now we have the starting point for the Hough transform the result of which is an accumulator with 
mainly high entries. (8) shows that high entries are rather rare even though the low entries are 
emphasized. If the actual accumulator is depicted then there are only a few light clusters. These 
clusters consist of several accumulator cells with high entries which represent straight lines 
determined by very similar parameters r and θ. The next step is to replace such bundles of straight 
lines by a single “superior” line. A simple realization of this idea is a two-dimensional non-maxima 
suppression in which only the highest entry of a cluster “survives”. Such a procedure is described in 
Section 7.3 (Fig. 7.8) and in the current setup realized by the function Clean Accumulator. The result of 
this cleaning step is shown in (9). 

(10) depicts the straight lines represented by the highest entries of the cleaned accumulator. The 
brightness of a line corresponds to the height of the entry in question. The glider moves along these 
lines detecting the segments shown in (11). The parameters used by Accu Analysis... were: 
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Fig. 7.6: 

The example image (BLOCKSRC.128) contains two wooden building blocks on a dark 
background. The image is blurred and of low contrast. (6) and (7) show the results of the 
gradient and thinning procedures. The parameters were Threshold: 10 and Max. Angle: 30. 
These parameters may be varied by clicking the right mouse button on the function symbols. (8) 
is the content of the accumulator, (9) is the result of the cleaning step. (10) depicts the straight 
lines represented by the highest entries of the cleaned accumulator. The parameters used by 
Accu Analysis... were Glider Length: 10, Min. Significant Graylevel Difference: 10 No. of 
Significant Graylevel Differencens on the Glider: 7 Threshold for Accumulator Points: 50. These 
parameters may be varied by clicking of the right mouse button on the function symbol Accu 
Analysis.... 

 
Glider Length: 10 

Min. Significant Graylevel Difference: 10 

No. of Significant Graylevel Differences on the Glider: 7 

Threshold for Accumulator Points: 50 

These parameters may be varied by clicking the right mouse button on the function symbol Accu 
Analysis.... 

By now it will be obvious that the procedure is only able to find straight contours. Moreover, the 
segment representing the top contour of the lower building block is too short to be recognized. 
Comparing the course of this segment with the course of the block contour from right to left, a slight 
but clear deviation is obvious. Thus, at the left end of the segment the glider (Fig. 7.4) was not able to 
detect significant graylevel differences and as a result had to stop the tracking prematurely. The 
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original cause of this error was due to the misalignment of the straight line which is the result of the 
cleaning step applied to the accumulator. Thus the (at first sight) good idea of replacing clusters in the 
accumulator by a single point involves a certain risk. Section 7.4 offers a detailed discussion of this 
problem. 

 

7.3 Source Code 

Fig. 7.7 shows a procedure for carrying out the Hough transform. Formal parameters are: 

ImSize: image size 

AccuRows: number of accumulator rows 

AccuCols: number of accumulator columns 

MaxGV: maximum accumulator entry; after the generation of the accumulator its entries 
 must be normalized according to MaxGV (MaxGV must not exceed 255) 

ThinMag: input image representing the gradient magnitude 

ThinAng: input image representing the gradient direction 

IntAccu: accumulator of type int 

Accu: accumulator of type BYTE. 

The gradient image (represented by ThinMag and ThinAng) should be thinned (Section 6.1.2). The 
use of the original gradient image does not cause poor results, but the transform requires more 
computing time than is necessary (Section 7.1). 

The procedure starts by initializing the accumulator arrays IntAccu and Accu by setting each entry to 
zero. The Hough transform has to be carried out for each pixel in the gradient magnitude 
ThinMag[r][c] which has a non-zero value. The transformation starts by changing the gradient 
direction Alpha into the accumulator coordinate Theta as shown in Section 7.1. Dtheta is the radius 
representation of Theta. According to the normal representation of a line the missing accumulator 
coordinate Rad is obtained with the aid of Dtheta and the coordinates r and c of the current pixel 
(Section 7.1). Since Rad may be negative, the origin of this coordinate should correspond to the mean 
accumulator row ([Rad+(AccuRows>>1)]). The last transformation step increments the entry of the 
current accumulator cell. 
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void HoughTrans (ImSize, AccuRows, AccuCols, MaxGV, 
                 ThinMag, ThinAng, IntAccu, Accu) 
int  ImSize, AccuRows, AccuCols, MaxGV; 
BYTE ** ThinMag; 
BYTE ** ThinAng; 
int  ** IntAccu; 
BYTE ** Accu; 
{ 
   int    r,c, Alpha, Theta, Rad, Mag, MaxMag; 
   double Dtheta; 
 
   for (r=0; r<AccuRows; r++) { 
      for (c=0; c<AccuCols; c++) { 
         IntAccu [r][c] = 0; 
         Accu [r][c] = 0; 
   }  } 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         if (ThinMag [r][c]) { 
            Alpha = (int) ThinAng [r][c]; 
            if (Alpha >= 128)  Alpha -= 128; 
            if (Alpha <=  64)  Theta = 64 - Alpha; 
                         else  Theta = 192 - Alpha; 
            Dtheta = (Theta*PI)/128; 
            Rad = (int) (c*cos(Dtheta) + r*sin(Dtheta)); 
            IntAccu [Rad+(AccuRows>>1)] [Theta] ++; 
   }  }  } 
 
   MaxMag = 0; 
   for (r=0; r<AccuRows; r++) { 
      for (c=0; c<AccuCols; c++) { 
         Mag = IntAccu [r][c]; 
         if (Mag>MaxMag)  MaxMag = Mag; 
   }  } 
 
   for (r=0; r<AccuRows; r++) { 
      for (c=0; c<AccuCols; c++) { 
         Mag = IntAccu [r][c]; 
         Accu [r][c] = (BYTE) (((long)Mag * MaxGV) / MaxMag); 

}  }  } 

Fig. 7.7: 

C realization of the Hough transform. 

 
In the case of IntAccu the entry of an accumulator cell ranges from 0 to 32,767. This is sufficient, 
since even larger thinned gradient images are unlikely to contain 32,767 contour points of identical 
Theta and Rad values. Further procedures do not require such a range. Therefore the last two steps 
of the procedure compress the original range of an int variable into the range of a BYTE variable. 

Cleaning the accumulator is a typical additional procedure. It is realized by CleanAccu (Fig. 7.8). 
Formal parameters are: 

ImSize: image size 

AccuRows: number of accumulator rows 

AccuCols: number of accumulator columns 

WinSize: size of the operator mask 

InAccu: accumulator to be cleaned 

OutAccu: cleaned accumulator. 
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void CleanAccu (ImSize, AccuRows, AccuCols, WinSize, InAccu, OutAccu) 
int  ImSize, AccuRows, AccuCols, WinSize; 
BYTE ** InAccu; 
BYTE ** OutAccu; 
{ 
   BYTE Inc, Max; 
   int  r,c, yw,xw, ya,xa, h; 
 
   for (r=0; r<AccuRows; r++) 
      for (c=0; c<AccuCols; c++)  OutAccu [r][c] = 0; 
 
   h = WinSize>>1; 
 
   for (r=0; r<AccuRows; r++) { 
      for (c=0; c<AccuCols; c++) { 
         Inc = InAccu[r][c]; 
         if (Inc) { 
            Max = 0; 
            for (yw=r-h; yw<=r+h; yw++) { 
               for (xw=c-h; xw<=c+h; xw++) { 
                  if (xw<0) { 
                     xa = xw+AccuCols; 
                     ya = AccuRows-yw; 
                  }else if (xw>=AccuCols) { 
                     xa = xw-AccuCols; 
                     ya = AccuRows-yw; 
                  }else{ 
                     xa = xw; 
                     ya = yw; 
                  } 
                  if (InAccu[ya][xa] > Max)  Max = InAccu[ya][xa]; 
            }  } 
            if (Inc==Max)  OutAccu[r][c] = Inc; 

}  }  }  } 

Fig. 7.8: 

C realization which cleans the accumulator. 

 
At the beginning of the procedure the output accumulator OutAccu is initialized. The size of the 
quadratic operator mask WinSize should be odd. Typical values of WinSize are 3 and 5. The origin of 
the mask is its central pixel and variable h represents the maximum index magnitude of the mask. 

The cleaning is carried out for each accumulator cell the entry Inc of which is greater than 0. If the 
current entry holds the maximum value of all the entries covered by the operator mask, it is 
transferred into the output accumulator OutAccu (Section 7.1). Thus, only the local maxima of the 
clusters appearing in the accumulator “survive”. As long as the operator mask completely covers the 
accumulator (the coordinates ya and xa do not exceed the accumulator border) the determination of 
the maximum entry is no problem. But on encountering the border, the typical problems already 
discussed in Section 3.1 arise. In the case of the accumulator rows the solution is simple: the 
accumulator consists of “spare” rows at the “top” and “bottom” of the accumulator, so that the 
operator mask never touches the horizontal border. The solution for the accumulator columns is more 
complicated, since the columns represent an angle (i.e. θ). As an angle is cyclical, the “far left” and “far 
right” columns are direct neighbors. Furthermore, the neighborhood is determined by the polarity of 
the row index. 

The example shown in Fig. 7.9 illustrates the connections. It depicts a small accumulator in order to 
keep the example simple. The column index xa ranges from 0 to 7 (representing a semicircle) while 
the row index ya ranges from 0 to 15. Thus, AccuCols is 8 and AccuRows is 16. Please note that r (as 
shown in Fig. 7.9) may be positive or negative (the definition of the normal representation of a line in 
Section 7.1). 
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Fig. 7.9: 

Example of the relations between neighboring accumulator cells. The two 
corresponding straight lines are shown in Fig. 7.10. 

 
The model accumulator consists of two entries. The corresponding straight lines are shown in Fig. 
7.10: they are close neighbors although their positions in the accumulator suggest a considerable 
separation. As discussed in Section 7.2, θ requires a fine quantization in order to avoid misplacements. 
Thus, apart from the current example, θ ranges from 0 to 127. Using this range in the context of the 
current example, the two straight lines would almost merge. 
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Fig. 7.10: 

Two neighboring straight lines, the parameters r and θ of which differ considerably. 
The corresponding accumulator entries are shown in Fig. 7.9. 

 
Obviously the solution of the border problem must differ from the usual one (Section 3.1). In 
procedure CleanAccu the solution starts with the test if (xw<0) (Fig. 7.8). If the index xw reaches 
the bottom left (top) border of the accumulator, the resulting accumulator indices xa and ya are at the 
top right (bottom) border of the accumulator. The solution of the reverse case (xw>=AccuCols) is 
similar. 
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Before discussing the analysis of the accumulator, it should be remembered that there are 
fundamental problems concerning the displacement of straight lines caused by the cleaning 
procedure (Section 7.2 and Section 7.4). 

 
int AnalyzeAccu (ImSize, AccuRows, AccuCols, Thres, Accu, Lines) 
int     ImSize, AccuRows, AccuCols, Thres; 
BYTE    ** Accu; 
LinTypH *Lines; 
{ 
   #define  XCONV(y)   (int) ((Rad - y*sin(Dtheta)) / cos(Dtheta)) 
   #define  YCONV(x)   (int) ((Rad - x*cos(Dtheta)) / sin(Dtheta)) 
 
   int    r,c, v,u, i, NofLines, Theta, Rad, Cy[2], Cx[2]; 
   double Dtheta; 
 
   NofLines = 0; 
   Cy[0]=0;  Cx[0]=0;  Cy[1]=0;  Cx[1]=0; 
 
   for (r=0; r<AccuRows; r++) { 
      for (c=0; c<AccuCols; c++) { 
         if ((int)Accu[r][c] > Thres) { 
            Rad = r - (AccuRows>>1); 
            Theta = c; 
            Dtheta = (Theta*PI)/128; 
            if (Theta==0) { 
               Cy[0]=0;  Cx[0]=Rad;  Cy[1]=ImSize-1;  Cx[1]=Rad; 
            }else{ 
               if (Theta==64) { 
                  Cy[0]=Rad;  Cx[0]=0;  Cy[1]=Rad;  Cx[1]=ImSize-1; 
               }else{ 
                  i = 0; 
                  v = 0; 
                  u = XCONV(v); 
                  if (0<=u && u<ImSize)  {Cy[i] = 0;  Cx[i] = u;  i++;} 
                  v = ImSize-1; 
                  u = XCONV(v); 
                  if (0<=u && u<ImSize)  {Cy[i] = ImSize-1;  Cx[i] = u;  i++;} 
                  if (i<2) { 
                     u = 0; 
                     v = YCONV(u); 
                     if (0<=v && v<ImSize)  {Cy[i] = v;  Cx[i] = 0;  i++;} 
                     if (i<2) { 
                        u = ImSize-1; 
                        v = YCONV(u); 
                        if (0<=v && v<ImSize)  {Cy[i] = v;  Cx[i] = ImSize-1; i++;} 
            }  }  }  } 
            GetMem (Lines); 
            Lines[NofLines].r0 = Cy[0]; 
            Lines[NofLines].c0 = Cx[0]; 
            Lines[NofLines].r1 = Cy[1]; 
            Lines[NofLines].c1 = Cx[1]; 
            Lines[NofLines].Inc = Accu[r][c]; 
            Lines[NofLines].Dir = (BYTE) Theta; 
            NofLines++; 
   }  }  } 
   return (NofLines); 

} 

Fig. 7.11: 

C realization of the accumulator analysis. Type LinTypH and procedure GetMem are defined in Appendix A. 

 
A simple analysis is carried out by the procedure AnalyzeAccu (Fig. 7.11). Formal parameters are: 

ImSize: image size 

AccuRows: number of accumulator rows 
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AccuCols: number of accumulator columns 

Thres: minimum value of an accumulator entry the coordinates of which determine a 
 straight line 

Accu: accumulator 

Lines: list of straight lines which are detected by AnalyzeAccu. 

The procedure returns the number of straight lines detected in the accumulator. 

The principle of the analysis procedure is simple: the coordinates Rad and Theta, of those 
accumulator cells the entries of which exceed the threshold Thres, represent a straight line marking 
significant graylevel differences from the source image. 

For the efficient handling of these straight lines, the parameters Rad and Theta are often 
inconvenient. Usually it is easier to determine the straight line by its intersections with the image 
border. These intersections are simply obtained with the aid of the normal representation of a line. 
(Section 7.1). The corresponding formulas are realized by the macros XCONV(y) and YCONV(x) in 
AnalyzeAccu. The coordinates of the intersections are: Cy[0] and Cx[0]; and Cy[1] and Cx[1]. 
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Fig. 7.12: 

Example of an ambiguous intersection. 

 
For the special cases (Theta==0) and (Theta==64) the intersecting coordinates are obvious. All 
other cases require testing of the four sections of the image border with regard to an intersection. 
Unfortunately the image corners cause ambiguity. The straight line shown in Fig. 7.12 intersects the 
left and the top part of the border at only one point. Which of these two possibilities is finally chosen 
does not matter however. The important point is that the algorithm extracting the intersections should 
detect the ambiguity and randomly choose one intersection. 

In order to store the intersection parameters the list Lines has to be extended in preparation for a 
new element (GetMem (Lines)). This new element retains the intersection coordinates (Cy[0], 
Cx[0], Cy[1], Cx[1]), the entry of the corresponding accumulator cell (Accu[r][c]) and the 
direction of the straight line (Theta). 

After the straight lines are determined they are used to “track along” the significant graylevel 
differences of the lines (Section 7.1). For this purpose the Tracking procedure was developed (Fig. 
7.13). Formal parameters are: 

ImSize: image size 

GlidLen: length of the glider 

MinDif: minimum graylevel which is considered to be significant 

NofHit: minimum number of significant graylevel differences detected by the glider 

NofLines: number of straight lines extracted by the Hough transform 

Lines: list of straight lines 

Image: source image to be analyzed 

Segs: list of segments detected by the glider. 

The procedure returns the number of segments detected by the glider. 
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int Tracking (ImSize, GlidLen, MinDif, NofHit, NofLines, Lines, Image, Segs) 
int     ImSize, GlidLen, MinDif, NofHit, NofLines; 
LinTypH *Lines; 
BYTE    **Image; 
SegTyp  *Segs; 
{ 
   BYTE   Inc, Dir; 
   int    i,j,n, r,c, r0,c0,r1,c1, NofSegs, LineLen; 
   LinTyp *Line; 
 
   NofSegs = 0; 
   Line = (LinTyp *) malloc ((ImSize+ImSize)*sizeof(LinTyp)); 
 
   for  (i=0; i<NofLines; i++) { 
      r0  = Lines[i].r0; 
      c0  = Lines[i].c0; 
      r1  = Lines[i].r1; 
      c1  = Lines[i].c1; 
      Dir = Lines[i].Dir; 
      LineLen = GenLine (r0,c0,r1,c1, Line); 
      ScanLine (ImSize, Dir, GlidLen, MinDif, NofHit, LineLen, 
                &NofSegs, Line, Image, Segs); 
   } 
   free (Line); 
   return (NofSegs); 

} 

Fig. 7.13: 

C realization of the tracking (frame procedure). Data types LinTyp, LinTypH and SegTyp as well as 
procedure GenLine are defined in Appendix A. 

 
In order to realize the tracking, the straight line which determines the track should be represented by a 
chain of pixels. The generation of such a chain is carried out by the procedure GenLine which is 
defined in Appendix A. The current chain is stored in the array Line. Before the start of the tracking, 
the parameter Line requires the allocation of sufficient memory space. 

The actual tracking is carried out by the procedure ScanLine (Fig. 7.14). Formal parameters are: 

ImSize: image size 

Dir: direction of the straight line 

GlidLen: length of the glider 

MinDif: minimum graylevel which is considered to be significant 

NofHit: minimum number of significant graylevel differences detected by the glider 

LineLen: length of the pixel chain 

NofSegs: number of segments detected along the pixel chain Line 

Line: pixel chain 

Image: source image to be analyzed 

Segs: list of segments detected by the glider. 
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void ScanLine (ImSize, Dir, GlidLen, MinDif, NofHit, LineLen, 
               NofSegs, Line, Image, Segs) 
int     ImSize, Dir, GlidLen, MinDif, NofHit, LineLen, *NofSegs; 
LinTyp  *Line; 
BYTE    **Image; 
SegTyp  *Segs; 
{ 
   int  i,j, r,c, rc,cc, r0,c0,r1,c1, n, Start, Stop; 
 
   Start = -1; 
   for (i=0; i<LineLen-GlidLen; i++) { 
      n = 0; 
      for (j=0; j<GlidLen; j++) { 
         r = Line[i+j].r; 
         c = Line[i+j].c; 
         NeighInds (ImSize, Dir, r,c, &r0,&c0,&r1,&c1); 
         if (abs (Image [r0][c0] - Image [r1][c1]) > MinDif)  n++; 
      } 
      if (n>=NofHit) { 
         if (Start<0)  Start = i; 
      }else{ 
         if (Start>=0) { 
            Stop = i+GlidLen-1; 
            Segs[*NofSegs].r0  = Line[Start].r; 
            Segs[*NofSegs].c0  = Line[Start].c; 
            Segs[*NofSegs].r1  = Line[Stop].r; 
            Segs[*NofSegs].c1  = Line[Stop].c; 
            ++*NofSegs; 
            Start = -1; 

}  }  }  } 

Fig. 7.14: 

C realization of the tracking (core procedure). Data types LinTyp and SegTyp are defined in Appendix A. 

 
The whole procedure is embedded in a for loop, which scans the pixel chain Line with the aid of the 
index i. This index, so to speak, “pushes” the glider (with length GlidLen). Those pixels in the chain 
which are covered by the glider are addressed by index j. The image coordinates of these pixels are r 
and c. The procedure NeighInds (see below) determines the coordinates of the right and left 
neighbor pixels of the glider (Fig. 7.15). For each of these pairs of neighboring pixels the absolute 
magnitude of the graylevel difference is computed (abs (Image [r0][c0] - Image [r1][c1])). 
If this difference is greater than the threshold MinDif (which is defined by the user), then the counter 
n is incremented. 

This counter serves as an indicator for a significant graylevel difference along the entire glider: if n 
exceeds the threshold chosen by the user (NofHit), then the glider is very likely to “sit” at the edge of 
an object. In order to determine this edge by a segment, we only need the first and last encounters of 
the glider. The corresponding indices of the pixel chain are Start and Stop. 

 

r

c

 

Fig. 7.15: 

Principle of the glider realization. 
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Finally consider the procedure NeighInds which has already been mentioned (Fig. 7.16). Formal 
parameters are: 

ImSize: image size 

Dir: direction of the straight line the glider is “moving” along 

r,c: coordinates of the current pixel of the straight line 

r0,c0: coordinates of the right (left) neighbor 

r1,c1: coordinates of the left (right) neighbor. 

This procedure is self-explanatory. 

 
void NeighInds (ImSize, Dir, r,c, r0,c0,r1,c1) 
int ImSize, Dir, r,c, *r0,*c0,*r1,*c1; 
{ 
   if (80<=Dir && Dir<112) { 
      *r0 = r-1;   c0 = c+1;  / NO-SW */ 
      *r1 = r+1;   *c1 = c-1; 
   }else if (48<=Dir && Dir<80) { 
      *r0 = r-1;   c0 = c;    / N-S */ 
      *r1 = r+1;   *c1 = c; 
   }else if (16<=Dir && Dir<48) { 
      *r0 = r-1;   c0 = c-1;  / NW-SO */ 
      *r1 = r+1;   *c1 = c+1; 
   }else{ 
      *r0 = r;   c0 = c+1;    / O-W */ 
      *r1 = r;   *c1 = c-1; 
   } 
   if (*r0>=ImSize)  *r0 = ImSize-1;   if (*r0<0)  *r0 = 0; 
   if (*c0>=ImSize)  *c0 = ImSize-1;   if (*c0<0)  *c0 = 0; 
   if (*r1>=ImSize)  *r1 = ImSize-1;   if (*r1<0)  *r1 = 0; 
   if (*c1>=ImSize)  *c1 = ImSize-1;   if (*c1<0)  *c1 = 0; 

} 

Fig. 7.16: 

C realization of the determination of the glider’s pixel positions. 

 

7.4 Supplement 

In Section 7.1 the basic principle of the Hough transform and its application were discussed. In 
practice one has to deal with the following problems: 

• The proposed procedure is restricted to straight contours. In principle the expansion of the 
transformation to include other contour shapes is not difficult, since a “shape-to-point transform” 
exists for any particular curve [7.16] [7.17]. A typical example of expansion is the circle-to-point 
transform proposed by Wallace [7.21], who analyzes workpieces with circular and straight contours. 

• The tracking mechanism requires a comparatively large amount of computing time. Consequently 
the procedure is only useful in the case of a few straight lines or object contours. 

• The accumulator array requiresa lot of memory since the quantization of the accumulator 
coordinates r and θ corresponds to the image resolution. For a gradient image of size 512 * 512 the 
maximum distance to the origin is r = ±512 √2. The gradient direction of a contour point is 
represented by 1 byte. Thus, the gradient direction ranges from 0 to 255, while the scale of the 
angle of inclination θ is 0 to 127. Therefore the memory requirement for the entire accumulator array 
is 360k bytes. This is an enormous amount of memory especially in view of the limited number of 
straight lines the accumulator yields. An image representing simple objects is unlikely to comprise 
more than 100 of such straight lines. Their specification requires at most 400 bytes. 

• Usually, the accumulator increments the entries of its cells. Thus, a “long” straight contour causes a 
high entry independently of the graylevel difference along this contour. This is desirable, since due 
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to its length the contour is very likely to be significant. On the other hand, short contours which 
separate regions with significantly differed graylevels, would also be expected to yield a high 
accumulator entry. Due to their shortness, however, they only cause a low entry. The simple 
solution to this problem is the accumulation of the gradient magnitudes. But in this case the 
weighting of long (and thus significant) contours with low gradient magnitudes may be too low. 

• At first sight it seems useful to carry out the accumulator analysis with the aid of standard clustering 
algorithms. But these procedures are too expensive and (more importantly in the context of our 
application) cause unacceptable errors: ultimately they lead to a coarser quantization of the 
accumulator which may have serious consequences. Fig. 7.17 illustrates the fundamental problem 
of quantization. For a straight line r x cos ysin 0= θ + θ =  running through the origin we obtain 
y x cot= − θ . With θ = 90º the straight line equals the x-axis. Considering a deviation of one degree 
(e.g. θ = 91º) at x = 511 the corresponding straight line is 9 pixels away from the x-axis. This is a 
worst-case example, but it illustrates the vulnerability of the procedure to false (or too coarsely 
quantisized) accumulator coordinates. Such errors cause serious problems for the tracking 
mechanism. 
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Fig. 7.17: 

Different positions of two straight lines the inclinations θ of which differ by only 
1 degree. 

 
Unfortunately, the solution of one problem increases another problem. For instance, a finer 
quantization of θ and r is only feasible at the expense of memory. In practice, the application of the 
Hough transform is restricted by the following rules (though doubtless none of these rules is without 
an exception): 

• The contour to be detected must be of simple shapes like straight lines or circles. 

• The number of such contours must be low. 

• The quantization of θ and r must avoid misplacements. 

Thus, the enormous memory requirements of the accumulator seem at first glance to be unavoidable. 
In some cases, however, the following strategy can be used: if only point or local operations (Chapter 
2 and Chapter 3) are applied to the accumulator, its realization by a two-dimensional array is 
unnecessary. Since the cleaning of the accumulator involves a certain danger, it is sometimes best 
avoided. In this case the accumulator may be realized by a one-dimensional array representing the 
rows of the original accumulator. Thus, we are only able to vary the column index r. This restriction 
requires a sorting of the contour points according to their inclination θ. Since a thinned gradient image 
usually consists of only a few contour points the sorting procedure does not consume much 
computing time. 

Starting with θ = 0 the Hough transform computes the parameter r for each contour point which holds 
θ = 0 and increments the entry of the corresponding accumulator cell. The final step is similar to the 
analyzing procedure in the case of a two-dimensional accumulator: a threshold extracts the 
accumulator entries, the coordinates of which determine straight lines. 

The remaining question concerns the decision on incremental accumulation vs. accumulation of the 
gradient magnitudes. This decision depends on the application in question. The most interesting 
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alternative is the combination of the two approaches. Clearly while such a combination requires more 
computing resources, the resulting procedure may be much more robust than either incremental 
accumulation or accumulation of gradient magnitudes alone. 

7.5 Exercises 

Exercise 7.1: 

Why is it very simple to identify parallel lines with the aid of the Hough transform? 

 

Exercise 7.2: 

Fig. 7.18 shows a thinned gradient image consisting of 16 contour points with gradient directions 0º, 
90º, 180º and 270º. The gradient directions of the 4 remaining contour points are 45º, 135º, 225º and 
315º. Apply the Hough transform to the source image shown in Fig. 7.18. Create an accumulator with 
θ-quantization of 45º and r-quantization of 1. 

 

Exercise 7.3: 

Analyze the accumulator obtained from the solution of Exercise 7.2 (Fig. 7.1) using every entry which 
is greater than 0 (note that such a low threshold makes no sense in practice but is only used here for 
demonstration purposes). Enter the straight lines extracted from the accumulator into a 8 * 8 image 
using the intersections with the image border. 

 

Exercise 7.4: 

If the result of Exercise 7.3 is not completely satisfying the reason is likely to be the displacement of 
the diagonal straight lines. This is due to the quantization effects of calculating r and the intersection 
points at the image border. Re-calculate the intersection points at the image border using the non-
quantized values of r. Enter the straight lines into a Cartesian coordinate system. 
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Fig. 7.18: 

This is a thinned gradient image which is used as the source image for 
Exercise 7.2. 

 
Exercise 7.5: 

Given the parametric equation for a circle: 

x a rcos

y b r sin

= + θ
= + θ

  

Define the Hough transform for detecting circles. How can the transform be optimized if the 
approximate radius of a circle is known? 
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Exercise 7.6: 

Write a program which realizes the 1-dimensional Hough transform described in Section 7.4. 

 

Exercise 7.7: 

Write a program which realizes the circle-to-point transform as described in Section 7.4. 

 

Exercise 7.8: 

Become familiar with every Hough operation offered by AdOculos (AdOculos Help). 
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8 Morphological Image Processing 

8.1 Foundations 

The requirements of understanding this chapter are: 

• to be familiar with basic mathematics 

• to have read Chapter 1 (Introduction) and Section 3.1 (Foundations of Local Operations). 

8.1.1 Binary Morphological Procedures 

As the example of the median operator has already shown, there are interesting alternatives to classic 
linear convolution (Section 3.4). Yet another alternative is morphological image processing 
(morphology = science of shapes) which should not be confused with morphing, a technique used to 
manipulate the shape of regions of an image for aesthetic purposes [8.3]. The basic idea of 
morphological image processing is to exploit prior knowledge of the shape of image distortions in 
order to support the removal of these distortions. In the context of binary images such distortions are 
regions of 0 or 1, which are clearly distinguishable from „useful image regions“ due to their 
predictable shapes. Note that „distortion“ is not limited to noise, it also describes an image 
background which is to be suppressed. 

A simple example illustrating the application of morphological image processing descends from the 
analysis of chromosomes. Fig. 8.1 shows so-called metaphases. These are blobs formed by 
chromosomes belonging to one nucleus. Thus, the blobs are the „useful image region“ while the fine 
(1 or 2 pixel broad) vertical strokes are due to noise. The shapes of the „useful image region“ and the 
distortion are obviously different. Moreover, the variation of the two basic forms is slight. This 
information can simplify the morphological procedure considerably but is not a prerequisite. 
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Fig. 8.1: 

This example illustrates the application of morphological image processing 
to chromosome analysis. The source image shows the so-called 
metaphases. These blobs are formed by chromosomes belonging to one 
nucleus. Thus, the blobs are the „useful image region“ while the (1 or 2 pixel 
broad) vertical strokes are due to noise. The shapes of the „useful image 
region“ and the distortion are obviously different. (X marks the current pixel). 

 
In the context of morphological image processing the so-called structuring element  and the basic 
operators erosion and dilation   are the focus of attention (Fig. 8.1). As the name suggests, erosion 
removes pixels from region borders. In contrast dilation adds pixels to a border. The removal or 
addition is determined by a structuring element which is an operator mask of a given shape. It is 
handled like the local operators described in Chapter 3. The crosses in the structuring elements (Fig. 
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8.1) mark the current pixel. The operations using the structuring element are based on the following 
rules: 

Erosion: If the whole structuring element lies inside a region in the source image, then set the current 
pixel in the output image to 1. 

Dilation: If at least one pixel of the structuring element lies inside a region in the source image, then 
set the current pixel in the output image to 1. 

Applied to the source image shown in Fig. 8.1, a simple erosion with a 3 * 3 structuring element 
completely removes the noisy background: the structuring element does not „fit“ any of the fine 
vertical degrading strokes. However, it is evident that the blobs are smaller. It is possible to 
compensate for this „side effect“ with the aid of a dilation, but it is not possible to reverse the 
shrinking process, since morphological operators are non-linear. 

Imagining erosion and dilation as the „atoms“ of morphological image processing, simple 
combinations of erosion and dilation are, so to speak, „molecules“. These combinations bear their 
own names: 

Opening: An erosion followed by a dilation. The opening is used for removing the borders of frayed 
regions borders and for eliminating tiny regions.  

Closing: A dilation followed by an erosion. As the name suggests, the closing procedure fills the gaps 
between „fringes“.  

Fig. 8.2 shows two simple examples. A more complex example is depicted in Fig. 8.3. This example 
demonstrates the detection of a region whose shape is known. Consider the small rectangle in the 
middle of the source image to be the desired region. The first step of the extraction procedure uses a 
structuring element, which completely removes this rectangle with the aid of an opening (erosion, 
dilation). Obviously smaller regions that are not part of the desired region are also eliminated. Thus, 
the image resulting from the opening contains only the larger regions (the borders of which have been 
smoothed) of the source image. Therefore, this image only approximately represents the background 
of the image. Hence, the first step of the procedure, as well as the resulting image, are refered to as 
background estimation.  

The second step compares source image and background estimation with the aid of an XOR function. 
The resulting image contains: 

• the desired region 

• the borders of the large regions 

• all of the smaller regions. 
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Fig. 8.2: 

Erosion and dilation may be considered as the „atoms“ of morphological image 
processing. The „molecules“ are closing (dilation, erosion) which fills the gaps between 
the „fringes“ and opening (erosion, dilation) which is used to remove frayed region 
borders and to eliminate tiny regions. 
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Fig. 8.3: 

This example demonstrates the detection of a region the whose shape is 
known (in the case of binary images). Consider the small rectangle in the 
middle of the source image to be the desired region. The initial opening 
(erosion, dilation) realizes a so-called background estimation. The second 
step compares the source image and background estimation with the aid 
of a XOR function. A second opening eliminates the undesired regions. 

 
A second opening eliminates the undesired regions. For this purpose the structuring element is 
shaped so that the erosion leaves a small part of the desired region behind. The subsequent dilation 
expands the desired region to approximately its original size. 
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Fig. 8.4: 

This example demonstrates the extraction of contours with the aid of 
an erosion and an XOR operation. Note, that in contrast to the gradient 
operation discussed in Chapter 6 the current operation yields no 
information concerning the contour direction. 
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Fig. 8.5: 

This example demonstrates the extraction of a region’s skeleton (top right). 

 
The applications shown so far are typical, but the influence of morphological image processing is 
much broader.  The example shown in Fig. 8.4 demonstrates the extraction of contours, a subject 
which has already been discussed in Chapter 6. 

Fig. 8.5 shows the extraction of the skeleton  of a region. Like the outline, a skeleton yields structural 
features of a region. Typical application areas of skeletonizing are character recognition and the 
thinning of gradient images (discussed in Section 6.1.2). 

Apart from its broad range of applications the attraction of morphological image processing is due to 
three essential advantages: 

• Even complex image processing problems can be reduced to simple elementary operations 
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• These elementary operations are based on Boolean algebra 

• It is easy to realize morphological image processing on parallel machines These features make 
morphological image processing suitable for hardware realizations. 

8.1.2 Morphological Processing of Graylevel Images 

In the case of morphological processing of binary images the steps from graylevel 0 to graylevel 1 
determine the shape of the desired regions in an image. Thus, this is a two-dimensional problem. The 
morphological processing of graylevel images requires a third dimension which represents the 
graylevels. A good way of visualizing this is the idea of graylevel mountains. In this context an erosion 
clears the top layer of the mountains away, while a dilation covers the mountains with a new layer. An 
opening is used to remove peaks, a closing fills valleys. The shape of such peaks or valleys 
determines the shape of the three-dimensional structuring element. Fig. 8.6 illustrates the procedures 
with the aid of a non-digitized image. The structuring elements are balls. In the case of the closing, the 
ball is rolled along the ridge of the mountains and the valleys below the ball are filled. In order to apply 
the opening, the ball is rolled along the inner contour of the ridge of the mountains and any peak 
which the ball does not make contact with is removed. 

Fig. 8.7 shows a detailed example of a dilation. On the left a cross-section of a graylevel mountain is 
depicted. The origin of the structuring element (middle of Fig. 8.7) is marked by a cross which 
corresponds to the current pixel during processing. The structuring element is applied upside down to 
the graylevel mountain: coming from the top, it moves downward until at least one of its pixels and at 
least one pixel of the top mountain layer overlap. For the last step the position of the origin of the 
structuring element is decisive. Its spatial coordinates determine the position of the current pixel in 
the resulting image, while its coordinate on the graylevel axis determines the graylevel of this current 
pixel. Doing this for each pixel of the source image, the result shown in Fig. 8.7 (right) is obtained. 
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Fig. 8.6: 

Illustration of closing and opening in the 
case of graylevel images: the figure 
shows cross-sections of two graylevel 
mountains and ball-shaped structuring 
elements. 

  

Space Space

Graylevel Graylevel

- - - -  

Fig. 8.7: 

Carrying out the dilation of graylevel 
images. 

 
The border problem, which is typical for local operations (Section 3.1), is simply but effectively solved 
with the aid of the following definitions: 

• Everywhere outside the image, the graylevel is 0 

• All pixels with graylevel 0 (including the pixels in the image) are handled as if their graylevel were -∞. 

• Thus a structuring element never collides with the „floor“ 
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• If the position of the current pixel is out of the image, its graylevel „drops“ to -∞. 

Fig. 8.8 shows the procedure in the case of an erosion with the structuring element scanning the 
graylevel mountains from below: it moves upward until it encounters the highest position where all its 
pixels are inside the mountains. The remaining steps are similar to those of dilation. 
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Fig. 8.8: 

Carrying out the erosion of graylevel 
images. 

 
Fig. 8.3 shows an example of the detection of binary image regions (representing an object) which has 
a known shape. The corresponding problem for graylevel images is depicted in Fig. 8.9. The aim is to 
extract the top corner of the mug’s handle from the source image. A practical application for such an 
example is hard to imagine, but it illustrates the use of asymmetrical structuring elements. 
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Fig. 8.9: 

Example of detection of an image region, the shape of which is known (in the case 
of graylevel images). The basic procedure is similar to that used in the case of 
binary images shown in Fig. 8.3. 

 
The basic structure of the procedure is similar to that used for binary images: it starts with an 
estimation of the background, followed by its subtraction from the source image and finishes by 
enhancing the difference image. The background estimation is carried out by an opening with a 
structuring element which removes the handle. The design of such a structuring element is 
straightforward: it must be just big enough not to fit inside the handle. The subtraction of the images 
yields absolute magnitudes. Signs are of no interest. Obviously the difference image contains the 
desired region but also several degraded regions too, none of which is similar to the desired region. 
Thus an erosion with a structuring element adapted to the graylevel mountains of the handle corner 
removes the degraded regions. Now the position of the handle has been detected. If the desired 
region is to be emphasized, a dilation with the same structuring element is required. 
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8.2 AdOculos Experiments 

8.2.1 Binary Morphological Procedures 

To become familiar with morphological image processing we realize the New Setup shown in Fig. 8.10 
as described in Section 1.1. For the current experiment the structuring element 3X3.SEB was selected. 
A structuring element has to be loaded by clicking of the right mouse button on the function symbol 
of a morphological operator. AdOculos offers several structuring elements which can be found in the 
STRELEM subdirectory. A structuring element is represented by a text file which may be manipulated 
with any text editor in order to change its elements. 

 

 

Fig. 8.10: 

This chain of procedures is the basis of experiments with morphological image processing. The New 
Setup is realized according to the steps described in Section 1.1. The results are shown in Fig. 8.11. 

 
In Section 8.1 the extraction of metaphases from a source image was used as an introductory 
example. Fig. 8.11 (METASRC) shows the original image. The picture has low contrast and is degraded 
by interference bands. The purpose of the subsequent process is therefore to isolate the metaphases 
from the noisy background. 
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Fig. 8.11: 

The example image (METASRC.128) is the original metaphases image as discussed in Section 8.1. 
The picture has low contrast and is degraded by interference bands. The task here is to isolate the 
metaphases from the noisy background. (2) is the result of thresholding the source image at 
graylevel 143 while (3) is the inverted version of (2). (4) and (5) are the erosion and dilation results 
of the inverted binary image while the complementary dilation and erosion of the original binary 
image is demonstrated with (6) and (7). 

 
The mean graylevel of the metaphasis is clearly lower than that of the background. Thus, the first step 
should be a binarization using a threshosld. Fig. 8.11 (2) shows the binarization result. The threshold 
was 143. Usually the pixels with a graylevel of 0 (black in Fig. 8.11) are defined as background. In order 
to keep to this convention the binary image must be inverted (3). 

At first glance the background disturbance seems to be really bad. However, on closer inspection the 
disturbance turns out to consist of tiny regions which seem to have aquired their value (‘0’ or ‘1’) by 
chance. In contrast to this the metaphases are represented by comparatively large regions. Therefore 
an opening with a 3 * 3 structuring element removes the disturbances without any difficulty. The 
result of the erosion is image (4). The subsequent dilation yields the resulting image (5). 

The inversion of the source image would not be very expensive, and is in any case unnecessary. So, 
consider the original binarization result (2) as the starting point. In order to remove the disturbances 
(now represented by ‘0’ pixels) the first step should be a dilation. The result is image (6). Consistently 
the second step is an erosion yielding the final result image (7). 

 

8.3 Source Code 

8.3.1 Binary Morphological Procedures 

Fig. 8.12 shows a procedure which realizes a binary erosion and dilation. Formal parameters are: 

ImSize: image size 
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InIm: input image 

OutIm: output image 

StrEl: list of the structuring element coordinates which relate to the origin of the 
 structuring element (Fig. 8.2) 

Black: code representing binary 0 (background) 

White: code representing binary 1 (desired region). 

The procedure starts by initializing the output image. The subsequent part of the procedure carries out 
the erosion. It is embedded in two for loops, which „guide“ the current pixel (represented by the 
coordinates r and c) through the whole image, ignoring the border problem. The inner for loop tests 
the erosion condition for each element of the structuring element (Section 8.1.1): in order to obtain an 
entry in the output image the desired region (in the input image) has to enclose the structuring 
element completely. y and x are those row and column coordinates of the input image which are 
covered by the structuring element positioned at the current pixel (r, c). Before the test of the erosion 
condition the coordinates y and x have to be checked to see if they cross the image border. The 
actual test is simple: if pixel (y, x) belongs to the background (InIm [y][x] == Black), the inner 
for loop is stopped. This break-off takes place unless every pixel (y, x) belongs to the desired region. 
In this event a 1 is entered into the output image OutIm. 
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void EroBin (ImSize, InIm, OutIm, StrEl, Black, White) 
int     ImSize; 
BYTE    **InIm; 
BYTE    **OutIm; 
StrTypB *StrEl; 
BYTE    Black, White; 
{ 
   int  r,c,y,x,i; 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  OutIm [r][c] = Black; 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         for (i=1; i<=StrEl[0].r; i++) { 
            y = r + StrEl[i].r; 
            x = c + StrEl[i].c; 
            if (y>=0 && x>=0 && y<ImSize && x<ImSize) 
               if (InIm [y][x] == Black)  goto Failed; 
         } 
         OutIm [r][c] = White; 
Failed:  ; 
}  }  } 
 
 
 
void DilBin (ImSize, InIm, OutIm, StrEl, Black, White) 
int     ImSize; 
BYTE    **InIm; 
BYTE    **OutIm; 
StrTypB *StrEl; 
BYTE    Black, White; 
{ 
   int   r,c,y,x,i; 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  OutIm [r][c] = Black; 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         for (i=1; i<=StrEl[0].r; i++) { 
            y = r - StrEl[i].r; 
            x = c - StrEl[i].c; 
            if (y>=0 && x>=0 && y<ImSize && x<ImSize) 
               if  (InIm [y][x] == White)  { 
                  OutIm [r][c] = White; 
                  goto Leave; 
         }     } 
Leave:   ; 

}  }  } 

Fig. 8.12: 

C realization of the binary erosion and dilation. Data type StrTypB is defined in Appendix 1. 

 
The realization of dilation is very similar to that of erosion. Only the inner for loops differ (Fig. 8.12). 
This loop realizes the dilation condition: if at least one pixel of the desired region and one pixel of the 
structuring element overlap, then a 1 is entered into the output image. Note that the structuring 
element has to be applied upside down. 

8.3.2 Binary Morphological Processing of Graylevel Images 

Fig. 8.13 shows a procedure which realizes erosion and dilation of graylevel images. Formal 
parameters are: 

ImSize: image size 
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InIm: input image 

OutIm: output image 

StrEl: list of the structuring element coordinates which relate to the origin of the 
 structuring element (Fig. 8.2). 

 
void EroGray (ImSize, InIm, OutIm, StrEl) 
int     ImSize; 
int     **InIm; 
int     **OutIm; 
StrTypG *StrEl; 
{ 
   int   r,c,y,x,i,gv,min; 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  OutIm [r][c] = 0; 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         min = 32767; 
         for (i=1; i<=StrEl[0].r; i++) { 
            y = r + StrEl[i].r; 
            x = c + StrEl[i].c; 
            if (y>=0 && x>=0 && y<ImSize && x<ImSize) { 
               gv = InIm[y][x] - StrEl[i].g; 
               if  (gv < min)  min = gv; 
         }  } 
         OutIm [r][c] = min; 
}  }  } 
 
 
 
void DilGray (ImSize, InIm, OutIm, StrEl) 
int     ImSize; 
int     **InIm; 
int     **OutIm; 
StrTypG *StrEl; 
{ 
   int  r,c,y,x,i,gv,max; 
 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  OutIm [r][c] = 0; 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         max = -32768; 
         for (i=1; i<=StrEl[0].r; i++) { 
            y = r - StrEl[i].r; 
            x = c - StrEl[i].c; 
            if  (y>=0 && x>=0 && y<ImSize && x<ImSize) { 
               gv = InIm[y][x] + StrEl[i].g; 
               if (gv > max)  max = gv; 
         }  } 
         OutIm [r][c] = max; 

}  }  } 

Fig. 8.13: 

C realization of the graylevel erosion and dilation. Data type StrTypB is defined in Appendix 1. 

 
The procedure starts by initializing the output image. The frame of the following erosion algorithm is 
similar to the binary case. However, obviously the kernel of the algorithm does not correspond to the 
idea of graylevel erosion proposed in Section 8.1.2: the graylevels of the structuring element 
StrEl[i].g are subtracted from the graylevels of the input image InIm[y][x] and the minimum 
min of these values is entered into the output image OutIm[y][x]. Thus, the graylevels of the 
structuring element realize the third dimension of the structuring element (Section 8.1.2). 



8 Morphological Image Processing - 8.4 Supplement 

 

Ad Oculos 209

The algorithm realizing dilation differs from that of erosion in the following respects: 

• Since the structuring element has to be applied „upside down“ (Section 8.1.2), the coordinates y 
and x are obtained by subtracting the coordinates of the structuring element from r and c. 

• The graylevels of the structuring element have to be added to the corresponding graylevels of the 
input image. 

• The result of the dilation is the maximum sum. 

8.4 Supplement 

Morphological image processing is based on mathematical morphology which has been mainly 
developed by Serra [8.5] [8.6]. The following Sections 8.1.1 and 8.1.2 offer a short introduction to 
these more or less theoretical aspects of morphological image processing. Readers more interested in 
applications will find information for further work in the papers or books of Giardina and Dougherty 
[8.1], Schalkoff [8.4] and Sternberg [8.7]. 

8.4.1 Binary Morphological Procedures 

The theoretical base of morphological image processing as well as mathematical morphology is set 
theory. Against this background a binary image is a function f(r,c) (discrete in space and value), which 
depends on the row coordinate r and the column coordinate c. The function yields the values 0 
(background) or 1 (desired region). In the case of only one desired region, it is simply represented by 
the set of all pixels (r,c) for which f(r,c)=1. The background is the complement of this set. 

Now consider that a desired region is represented by set A and the structuring element is represented 
by set B. The coordinate origin of the structuring element corresponds to the current pixel p=(r,c). 

Then the set Bp is the structuring element at place p. A dilation requires a structuring element *
pB  

which is upside down. Now the definitions of erosion and dilation are: 

{ }
{ }

p

*
p

Erosion:A B p : B A

Dilation:A B p : B A

= ⊆

⊕ = ∩ ≠ ∅

Θ
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Fig. 8.14: 

Example illustrating the definition of erosion with the aid of transition and a set difference 
operations. 
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Fig. 8.15: 

Example illustrating the definition of dilation with the aid of a transition and a set union 
operations. 

 
Another definition of the basic morphological operations is illustrated by the example shown in Fig. 
8.14 and Fig. 8.15. The individual elements (pixels) of the structuring element determine a transition in 
the source image. For instance, the element with the coordinates (0,-1) causes a transition of one 
column to the left in the case of a dilation and one column to the right in the case of an erosion. Since 
each of the structuring elements shown in Fig. 8.14 and Fig. 8.15 consists of three single elements, 
three variations on the source image are generated. They are represented by the sets A(0,-1), A(0,0) and 
A(0,1). With these sets the basic morphological operations are: 
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( ) ( ) ( )

( ) ( ) ( )

0, 1 0,0 0,1

0, 1 0,0 0,1

Erosion:A B A A A

Dilation:A B A A A

−

−

= ∩ ∩

⊕ = ∪ ∪

Θ
 

or more generally 

( )
( )

( )
( )

r,c
r,c B

r,c
r,c B

Erosion:A B A

Dilation:A B A

∈

∈

=

⊕ =

∩

∪

Θ

 

Furthermore it is possible to replace the set operations ∩ and ∪ by the Boolean operators and and or. 

8.4.2 Binary Morphological Processing of Graylevel Images 

Similar to the binary morphological procedures the starting point is an image, which is defined by a 
function f(r,c) (discrete in space and value). This function yields values ranging from 0 to 255. Such an 
image may be illustrated by a tower block landscape (Fig. 8.16). The number of floors of the 
towerblock on „grid square“ (r,c) corresponds to the graylevel of the pixel with coordinates (r,c). 

In order to transfer the morphological operations from the binary domain to the graylevel domain, the 
graylevel function has to be described by a set. For this purpose Sternberg [8.7] developed the 
operations „umbra“ and „top surface“.   

Suppose the „tower blocks“ (Fig. 8.16) are illuminated by an infinitely distant light source which is 
positioned exactly above the blocks, so that the blocks cast a downwardly-directed shadow continuing 
to infinity. Thus the blocks produce a basement consisting of an infinite number of subterranean 
floors. Now „umbra“ is the set consisting of all (underground and overground) floors, or alternatively 
an operation which generates this set with the aid of the top floors (black in Fig. 8.16) causing the 
shadow. Then „top surface“ is the set consisting of all these floors, or alternatively an operation which 
extracts the set of top floors from the „umbra“ set. 

 

c

r

f(r,c)

 

Fig. 8.16: 

Illustration of the morphological processing of 
graylevel functions. 

 
The set of floors which causes shadows corresponds to the graylevel function f(r,c). Thus, the „umbra“ 
operation may be defined as a function U[f] of the graylevel function. The „top surface“ operation acts 
in reverse: f=T[U[f]]. Now the desired link between functions and sets is created. The brackets are to 
indicate that we have a function of a function. 

Among others, two equivalences between set operations and function operations of two graylevel 
functions f(r,c) and g(r,c) are: 

( ) ( ){ }
( ) ( ){ }

T U f U g min f r,c ,g r,c

T U f U g max f r,c ,g r,c

 ∩ =       
 ∪ =       

 

In this context the definitions of erosion and dilation are: 

Erosion:f g T U f U g

Dilation:f g T U f U g

 = ∩       
 ⊕ = ∪       

Θ
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The linking of the sets U[f] and U[g] is a binary erosion whilst the linking of the functions f and g 
represents the desired graylevel erosion. A corresponding process applies to dilation. Let f(r,c) be the 
graylevel function of the image. Then g(r,c) is the graylevel structuring element (also known as the 
structuring function).  

8.5 Exercises 

Exercise 8.1: 

Perform erosion and dilation using the structuring element shown in Fig. 8.17. Comment on the result. 

 

Erosion

Dilation

 

Fig. 8.17: 

Exercise 8.1 demonstrates the relation between erosion 
and dilation. 

 
Exercise 8.2: 

Design a morphological procedure which removes the angular fragments in the top corners of the 
source image shown in Fig. 8.18. 

 

 

Fig. 8.18: 

Exercise 8.2 demonstrates the removal of the angular 
fragments in the top corners of this image. 

 
Exercise 8.3: 

Extract the contours of the image shown in Fig. 8.19 with the aid of a morphological procedure. 
Compare the results of applying the two structuring elements one after the other. 
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Fig. 8.19: 

Exercise 8.3 demonstrates the extraction of contours. 

 
Exercise 8.4: 

Extract the skeleton of the two images shown in Fig. 8.5. Comment on the result. 

 

 

Fig. 8.20: 

Exercise 8.4 demonstrates the extraction of skeletons. 

 
Exercise 8.5: 

Become familiar with every morphological operation offered by AdOculos (see AdOculos Help). 

 

Exercise 8.6: 

As discussed in Section 8.1.1, Fig. 8.3 demonstrates the extraction of a small rectangle. This example 
originates from the AdOculos example image BOLTSRC.128 showing a pin welded on a piece of 
bodywork. Construct an AdOculos setup which realizes the example shown in Fig. 8.3 using binary 
morphological operations. The first step would be the binarization of BOLTSRC.128. 

 

Exercise 8.7: 

As discussed in Section 8.1.2, Fig. 8.9 demonstrates the extraction of part of a cup. This example 
originates from the AdOculos sample image CUPSRC.128. Construct an AdOculos setup which 
realizes the example shown in Fig. 8.9 using morphological operations for graylevel images. 

 

Exercise 8.8: 

Experiment with morphological operations to manipulate images from an aesthetic point of view. 
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9 Texture Analysis 

9.1 Foundations 

The requirements of understanding this chapter are 

• to be familiar with basic mathematics 

• to be familiar with local operations (Section 3.1) 

• to have read Chapter 1. 

Compared to other subjects of image processing texture analysis is an unpopular topic. The problem 
begins with the attempt to define „Texture“. Two typical examples of texture are shown in Fig. 9.1. A 
pullover’s cuff is easily distinguishable from its sleeve due to different textures (Fig. 9.1(a)). Fig. 9.1 (b) 
depicts an example arising from a completely different context: the image suggests a path which is 
paved with round tiles or a riverbed which has been cracked because of a drought. Furthermore, the 
image gives a strong impression of space. A third example occurs in the context of satellite pictures: 
certain regions like urban or forest areas are separable from their surroundings, due to their texture. 

 

(a) (b)  
Fig. 9.1: 

Two typical examples of texture: A pullover’s cuff is easily distinguishable 
from its sleeve due to different textures. Fig. 9.1 depicts an example arising 
from a completely different context, the image suggests a path which is 
paved with round tiles or a riverbed which has been cracked because of a 
drought. Furthermore, the image gives a strong impression of space. 

 
The attempt to find an exact and generally accepted definition of „Texture“ has failed up to now and 
may be impossible anyway. Therefore, this section will simply not make the attempt. 

 



9 Texture Analysis - 9.1 Foundations 

 Ad Oculos 217

Current pixel

 

Fig. 9.2: 

The purpose of the co-occurrence matrix is to describe the relationships 
between the current pixel and the graylevels of the neighboring pixels. 
However, in contrast to local operators the co-occurrence matrix only 
needs certain „graylevel samples“ from the neighborhood. In this 
drawing typical sample pixels have been shaded. 

 
Let us start with a source image which is completely filled with a single uniform texture. Our aim is to 
find characteristic features of this texture. Very simple features are the mean and variance of the 
graylevels in a small operation mask (local mean, local variance). A spectral analysis offers further 
possibilities of describing a texture. However, a more common tool for texture analysis is the so-called 
co-occurrence matrix , which is also known as a spatial graylevel dependence matrix (SGLD).  

The purpose of the co-occurrence matrix is to describe the relationships between the current pixel and 
the graylevels of the neighboring pixels. However, in contrast to local operators the co-occurrence 
matrix only needs certain „graylevel samples“ from the neighborhood. In Fig. 9.2 typical sample pixels 
have been shaded. 

The realization of a co-occurrence matrix is best described with the aid of an example. Fig. 9.3 shows 
a simple source image and 4 co-occurrence matrices originating from 4 different sample pixels a and 
b. The number of rows and columns of the co-occurrence matrix equals the number of graylevel 
variations in the source image. The current example uses only 4 different graylevels and the co-
occurrence matrices are rather small. The entry of the co-occurrence matrix at position (a,b) 
corresponds to the frequency of the graylevel combination (a,b) in the source image. Take the 
neighborhood „b east of a“ as an example. For this neighborhood we find the graylevel combinations 
(0,0); (1,1); (2,2); (3,3) 12 times, the graylevel combination (2,1) 4 times and the graylevel combination 
(0,3) 4 times in the source image. 

The basic operations used to realize a co-occurrence matrix are addressing pixels in the source image, 
addressing „cells“ of the co-occurrence matrix and counting. This is advantageous with regard to 
computing time. However, the memory requirement in the case of a typical image with 256 graylevels 
is enormous: the size of each of the co-occurrence matrices is 256 * 256. Fortunately such a fine 
graylevel quantization is usually unnecessary for the purpose of texture analysis. Normally 16 
graylevels are sufficient, in which case the memory requirements decrease drastically. 

The generation of co-occurrence matrices resembles the Fourier transform  (Section 4.1) in the 
following way: both procedures transform the source image into another representation. In the case 
of the co-occurrence matrix this procedure is not reversible (in contrast to the Fourier transform). For 
both approaches the desired texture features must be extracted in a second step. Since the 
generation of a co-occurrence matrix is much faster than the computation of a Fourier transform, we 
tend to concentrate on the features extracted from co-occurrence matrices. 

Typical features derived from co-occurrence matrices are Energy, Contrast, Entropy  and Homogeneit . 
They are defined as follows (f is the co-occurrence matrix): 
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Fig. 9.3: 

This example describes the generation of co-occurrence matrices (shown on the 
right hand side). The number of rows and columns of the co-occurrence matrix 
equals the number of graylevel variations in the source image. The current example 
uses only 4 different graylevels and the co-occurrence matrices are rather small. 
The entry of the co-occurrence matrix at position (a,b) corresponds to the frequency 
of the graylevel combination (a,b) in the source image. 
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As one might have guessed from the experience of image processing so far, the definition of these 
parameters is partly an improvisation and different authors propose different definitions. 

The parameters described above are appropriate for describing only one particular texture. The 
realization of a texture segmentation algorithm is however much more difficult but uses essentially the 
same ideas as region-oriented and contour-oriented segmentation (Chapter 5 and Chapter 6). Recalling 
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the previous example of the pullover’s cuff and sleeve, it can be said that the aim of texture 
segmentation is to extract the cuff and the sleeve as independent regions from the source image, or 
to determine the dividing line between cuff and sleeve (Fig. 9.1). 

To carry out texture segmentation, the well-known texture analysis methods have to be applied in the 
form of local operations. Typical sizes of such operators range from 9 * 9 to 15 * 15. The application of 
larger masks usually causes low-pass effects which are not acceptable: the borders between the 
texture regions become too blurred. Alternatively, smaller operators process only a few pixels and the 
resulting extraction of texture features is not robust. Partly due to this contradiction, the results of 
simple texture segmentation methods are often unsatisfactory. Good strategies for solving these 
problems are based on pattern recognition methods (Chapter 10). 

9.2 AdOculos Experiments 

To become familiar with co-occurence matrices realize the New Setup shown in Fig. 9.4 as described 
in Section 1.6. This setup is used to compare the co-occurrence matrices of four sample images 
derived from the „textile trade“. The parameters used by Co-Occurence Matrix were: 

... x direction: 0 

... y direction: 1 

Size of Co-Occurence Matrix:128 

 

 

Fig. 9.4: 

This chain of procedures is the basis for experiments 
with co-occurrence matrices. The New Setup is realized 
according to the steps described in Section 1.6. The 
results are shown in Fig. 9.5. 

 
Thus the neighborhood consists of the current pixel and its southern neighbor. These parameters may 
be varied by clicking the right mouse button on the function symbol Co-Occurence Matrix. 

The first source image (FURSRC.128; Fig. 9.5) to be loaded into (1) shows part of a glove lining. The 
material is synthetic fur. The transitions from light to dark are mainly smooth. The highest entries of 
the corresponding co-occurrence matrix (2) are concentrated on the main diagonal. These entries yield 
the texture features depicted in (3). 
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Fig. 9.5: 

The four sample images the co-occurrence matrices of which are compared here are derived from the „textile 
trade“. (FURSRC.128) shows part of a glove lining. (RHOMBSRC.128) shows a sponge-like cloth with a rhombic 
patterned napped surface. (SILKSRC.128) shows part of a silk scarf. (KNITSRC.128) shows part of a pullover. The 
parameters used by Co-Occurence Matrix were ... x direction: 0, ... y direction: 1, Size of Co-Occurence Matrix: 7. 
These parameters may be varied by clicking the right mouse button on the function symbol Co-Occurence Matrix. 

 
The second sample image comes from the kitchen. (RHOMBSRC.128) shows a sponge-like cloth with 
a rhombic patterned napped surface. The image is characterized by a lot of regions of almost 
homogeneous graylevels. Thus the high entries in the co-occurrence matrix (5) are concentrated in a 
small region on the main diagonal. The corresponding texture features are depicted in (6). 

(SILKSRC.128) shows part of a silk scarf. Due to its fine structure, light and dark pixels are in close 
proximity. Therefore the high entries of the co-occurrence matrix accumulate in two regions next to 
the main diagonal (8). This pattern leads to the texture features listed in (9). 

The last example is (KNITSRC.128). This section of a pullover is characterized by different forms of 
graylevel transition. This variety causes a comparatively large „cloud“ of entries (11). Concentrations of 
high entries do not exist. The texture features are depicted in (12). 

The contrast of the co-occurrence images (2), (5), (8) and (11) is low. Thus the Image Attributes have 
been changed (by clicking the right mouse button on the image) as follows: 

Min Graylevel: 0 

Max Graylevel: 20 

 

9.3 Source Code 

Fig. 9.6 shows a procedure for calculating the mean and the variance of the graylevels in an operator 
mask. Formal parameters are 

ImSize: image size 
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WinSize: size of the operator mask 

InIm: input image 

MeanIm: output image of mean 

VarIm: output image of variance. 

The procedure starts by initializing the output images VarIm and MeanIm as well as the parameters 
Cen and WinArea. Cen serves to determine the coordinates of the current pixel, WinArea serves as a 
normalization factor. 

The following step of the procedure calculates the mean of the graylevels in the operator mask. r and 
c are the coordinates of the top left corner of the operator mask. Its central coordinates are r+Cen 
and c+Cen. The actual mean calculation is realized by adding the graylevels together and normalizing 
the sum by the number of pixels in the mask. 

 
void Variance (ImSize, WinSize, InIm, MeanIm, VarIm) 
int  ImSize, WinSize; 
BYTE ** InIm; 
BYTE ** MeanIm; 
int  ** VarIm; 
{ 
   int   r,c, y,x, Cen, WinArea, Mean; 
   long  Sum, Diff; 
 
   Cen = WinSize/2; 
   WinArea = WinSize*WinSize; 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         MeanIm [r][c] = 0; 
         VarIm [r][c]  = 0; 
   }  } 
 
   for (r=0; r<ImSize-WinSize; r++) { 
      for (c=0; c<ImSize-WinSize; c++) { 
         Sum = 0; 
         for (y=r; y<r+WinSize; y++) 
            for (x=c; x<c+WinSize; x++)   Sum += (long) InIm [y][x]; 
 
         Sum /= WinArea; 
         MeanIm [r+Cen][c+Cen] = (BYTE) Sum; 
   }  } 
 
   for (r=0; r<ImSize-WinSize; r++) { 
      for (c=0; c<ImSize-WinSize; c++) { 
         Mean = MeanIm [r+Cen] [c+Cen]; 
         Sum = 0; 
         for (y=r; y<r+WinSize; y++) { 
            for (x=c; x<c+WinSize; x++) { 
               Diff = (long) Mean - InIm [y][x]; 
               Sum += Diff*Diff; 
         }  } 
         Sum /= WinArea-1; 
         VarIm [r+Cen][c+Cen] = (int) Sum; 
}  }  } 

Fig. 9.6: 

C realization for calculating local mean and variance. 

 
The frame of the following variance calculation is similar to that of the mean calculation. The variance 
is obtained as the sum of the squares of the deviations between the current graylevel InIm[y][x] 
and the mean graylevel in the current operator mask Mean. The normalization factor is the number of 
mask pixels minus 1. This Bessel correction of the sample variance only affects the results obtained 
with small masks. 
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Fig. 9.7 shows the procedures Cooccurrence and EvalCooc which generate and analyze the co-
occurrence matrix. Formal parameters of Cooccurrence are: 

ImSize: image size 

CoSize: size of the co-occurrence matrix 

Dy: column distance between the current pixel and the neighbor pixel under 
 consideration 

Dx: row distance between the current pixel and the neighbor pixel under 
 consideration 

InIm: input image 

CoMa: co-occurrence matrix. 

The procedure starts by initializing the co-occurrence matrix CoMa. Then the factor Resol is 
calculated, to determine the resolution of the co-occurrence matrix. The maximum graylevel of the 
source image is 255. Thus, the co-occurrence matrix would be of size 256 * 256. If this size is too 
large, the graylevels have to be quantized more coarsely by using Resol. 

The following step of the procedure generates the co-occurrence matrix. For each current pixel 
[r][c] the graylevel a as well as the graylevel b of the neighbor pixel [r+Dy][c+Dx] are 
determined. Then a and b are the coordinates of the current element of the co-occurrence matrix. The 
last step of the procedure increments the entry of this element. The solution of the border problem is 
straightforward: the two differences Dx and Dy determines the width of the image border which is not 
to be processed. 

The analysis of the co-occurrence matrix is carried out by the procedure EvalCooc (Fig. 9.7). Formal 
parameters are: 

ImSize: image size 

CoSize: size of the co-occurrence matrix 

CoMa: co-occurrence matrix which is to be analyzed. 

EvalCooc returns the features Energy, Contrast, Entropy and Homogeneity extracted from the 
co-occurrence matrix. The computation of these features is based on the formulas described in 
Section 9.1. 

In order to perform the texture segmentation each pixel of the source image requires the texture 
features. Thus the co-occurrence technique needs to be realized as a local operator. This is carried out 
by the procedure LocalCooc (Fig. 9.8). Formal parameters are: 

ImSize: image size 

CoSize: size of the co-occurrence matrix 

WinSize: size of the operator mask 

Dy: column distance between the current pixel and the neighbor pixel under 
 consideration 

Dx: row distance between the current pixel and the neighbor pixel under 
 consideration 

InIm: input image 

CoMa: co-occurrence matrix which is to be analyzed 

EnerMa: output image of the feature Energy 

ContMa: output image of the feature Contrast 

EntrMa: output image of the feature Entropy 

HomoMa: output image of the feature Homogeneity. 

The procedure starts by initializing the co-occurrence matrix CoMa as well as the output images 
EnerMa, ContMa, EntrMa and HomoMa. The parameters o, Cen and Resol have already been 
described in the context of the procedures Variance and Cooccurrence. 
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The subsequent step of the procedure is also similar to the procedures which generate the co-
occurrence matrix and extract the texture features from this matrix. The only difference is the 
performance of these procedures in an operator mask of size WinSize. This mask is stepped through 
the source image InIm pixel by pixel under the control of the two outer for loops. 

Note the basic problems of texture segmentation described in Section 9.1. This also applies to 
procedure LocalCooc. 

 
void Cooccurrence (ImSize, CoSize, Dy,Dx, InIm, CoMa) 
int  ImSize, CoSize, Dy,Dx; 
BYTE ** InIm; 
int  ** CoMa; 
{ 
   int  r,c, a,b, o, Resol; 
 
   Resol = 256 / CoSize; 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  CoMa [r][c] = 0; 
 
   o = MaxAbs (Dx,Dy); 
   for (r=o; r<ImSize-o; r++) { 
      for (c=o; c<ImSize-o; c++) { 
         a = InIm [r][c] / Resol; 
         b = InIm [r+Dy][c+Dx] / Resol; 
         CoMa [a][b] ++; 
}  }  } 
 
 
 
EvalTyp EvalCooc (ImSize, CoSize, CoMa) 
int  ImSize, CoSize; 
int  ** CoMa; 
{ 
   int     r,c; 
   EvalTyp Eval; 
 
   Eval.Energy = Eval.Contrast = Eval.Entropy = Eval.Homogen = (float)0; 
 
   for (r=0; r<CoSize; r++) 
      for (c=0; c<CoSize; c++) 
         Eval.Energy += (float) CoMa[r][c] * CoMa[r][c]; 
 
   for (r=0; r<CoSize; r++) 
      for (c=0; c<CoSize; c++) 
         Eval.Contrast += (float) (r-c) * (r-c) * CoMa[r][c]; 
 
   for (r=0; r<CoSize; r++) 
      for (c=0; c<CoSize; c++) 
         if (CoMa[r][c]) 
            Eval.Entropy += (float) CoMa[r][c] * log((double)CoMa[r][c]); 
 
   for (r=0; r<CoSize; r++) 
      for (c=0; c<CoSize; c++) 
         if (CoMa[r][c]) 
            Eval.Homogen += (float) CoMa[r][c] / (1 + abs(r-c)); 
 
   return (Eval); 
} 

Fig. 9.7: 

C realization for generating and analyzing the co-occurrence matrix. Data type EvalTyp and procedure MaxAbs are 
defined in Appendix A. 
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void LocalCooc (ImSize, CoSize, WinSize, Dy,Dx, InIm, CoMa, 
                EnerMa, ContMa, EntrMa, HomoMa) 
int   ImSize, CoSize, WinSize, Dy,Dx; 
BYTE  ** InIm; 
int   ** CoMa; 
float ** EnerMa; 
float ** ContMa; 
float ** EntrMa; 
float ** HomoMa; 
{ 
   int   j,i, y,x, r,c, a,b, o, Resol, Cen; 
   long  l; 
 
   o     = MaxAbs (Dx,Dy); 
   Cen   = WinSize / 2; 
   Resol = 256 / CoSize; 
 
   for (r=0; r<CoSize; r++) 
      for (c=0; c<CoSize; c++)  CoMa [r][c] = 0; 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         EnerMa [r][c] = (float)0; 
         ContMa [r][c] = (float)0; 
         EntrMa [r][c] = (float)0; 
         HomoMa [r][c] = (float)0; 
   }  } 
 
   for (r=o; r<ImSize-WinSize-o; r++) { 
      for (c=o; c<ImSize-WinSize-o; c++) { 
      
         for (j=0; j<CoSize; j++) 
            for (i=0; i<CoSize; i++)  CoMa [j][i] = 0; 
 
         for (y=r; y<r+WinSize; y++) { 
            for (x=c; x<c+WinSize; x++) { 
               a = InIm [y][x] / Resol; 
               b = InIm [y+Dy][x+Dx] / Resol; 
               CoMa [a][b] ++; 
         }  } 
         /*--------------------------------------- Gen Features */ 
         for (j=0; j<CoSize; j++) 
            for (i=0; i<CoSize; i++) 
               EnerMa [r+Cen][c+Cen] += (float) CoMa[j][i] * CoMa[j][i]; 
 
         for (j=0; j<CoSize; j++) 
            for (i=0; i<CoSize; i++) 
               ContMa [r+Cen][c+Cen] += (float) (j-i) * (j-i) * CoMa[j][i]; 
 
         for (j=0; j<CoSize; j++) 
            for (i=0; i<CoSize; i++) 
               if (CoMa[j][i]) 
                  EntrMa [r+Cen][c+Cen] += (float) CoMa[j][i] * 
log((double)CoMa[j][i]); 
 
         for (j=0; j<CoSize; j++) 
            for (i=0; i<CoSize; i++) 
               if (CoMa[j][i]) 
                  HomoMa [r+Cen][c+Cen] += (float) CoMa[j][i] / (1 + abs(j-i)); 
}  }  } 

Fig. 9.8: 

C realization which applies the co-occurrence technique locally. Procedure MaxAbs is defined in Appendix A. 
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9.4 Supplement 

Certainly the co-occurrence approach introduced in the preceding sections is the most popular tool of 
texture analysis. However, many other methods exist, which may be more or less successful 
depending on the actual application. The following 4 examples represent a small selection of 
alternative methods: 

Fourier Analysis:  Obviously, texture characteristics influence the spatial frequency domain 
representation of an image. An image consisting of large homogeneous regions corresponds to 
a spectrum predominantly consisting of low frequencies. In contrast, „busy“ images yield more 
harmonics (Chapter 4). 

Morphology: If it is possible to describe the structure of a texture with the aid of structuring elements, 
morphological image processing is likely to be an appropriate tool to analyze this texture 
(Chapter 8). 

Orientation: If the texture under consideration is characterized by regions of homogeneous orientation 
(e.g. fibrous material) the image may be preprocessed by gradient operations. The gradient 
direction is likely to represent the texture orientation. The gradient magnitude is useful for 
describing the „strength“ of the transitions from light to dark caused by the texture (Chapter 6). 

Pattern Recogniton: The purpose of pattern recognition is the classification of objects (of whatever 
kind) based on features representing these objects (Chapter 10). In the case of texture analysis 
the objects are texture regions to be detected and separated. The features are derived from the 
local graylevel variations caused by the texture. The best method for describing such graylevel 
changes is dependent on the actual application. The advantage of pattern recognition methods 
is their ability to „adapt themselves“ to different textures. Thus, these methods are an 
appropriate tool for solving the texture segmentation problems (Section 9.1). However, it is 
important to understand that the success of a pattern recognition approach mainly depends on 
the appropriate selection of features. The choice of the actual classification procedure is of 
secondary importance. 

In view of the problems involved in defining „texture“, further work should be based on several 
different references. Surveys of texture analysis are presented by Ballard and Brown [9.1], Haralick 
[9.2], Jain [9.3] and Schalkoff [9.4]. 

9.5 Exercises 

Exercise 9.1: 

Compute the global graylevel mean and variance of each of the two images shown in Fig. 9.9. For the 
sake of simplicity normalize the variance with n instead of n-1. 
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Fig. 9.9: 

Exercise 9.1 and Exercise 9.2 demonstrate the use of graylevel mean and variance 
to describe different textures. 

 
Exercise 9.2: 

Compute the local graylevel mean and variance of each of the two images shown in Fig. 9.9. Use a 3 * 
3 mask. 

 

Exercise 9.3: 

Compute the co-occurrence matrices of the three images shown in Fig. 9.10 according to the example 
illustrated in Fig. 9.3. 

 

Exercise 9.4: 

Take the sample images used in Section 9.2 and apply a Fourier transform to them (see Chapter 4). 
Compare the results with texture analysis using co-occurrence matrix approach. 

 

Exercise 9.5: 

Become familiar with every texture operation offered by AdOculos (see AdOculos Help). 

 

Exercise 9.6: 

Acquire different texture images and compare the performance of the mean/variance, the co-
occurrence and the Fourier approach. 
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Fig. 9.10: 

Exercise 9.3 demonstrates application of the co-occurrence matrix. 
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10 Pattern Recognition 

10.1 Foundations 

The requirements of understanding this chapter are: 

• to be familiar with basic mathematics 

• to be familiar with probability theory (to understand the supplement section) 

• to have read Chapter 1. 

The purpose of pattern recognition is to place objects in a given world in categories. The interface 
between the world and the pattern recognition system is provided by sensors. The first step of the 
procedure extracts features from the input data which characterize the objects represented by these 
data. Based on these features the final step identifies the object and sorts them into certain classes. 

Fig. 10.1 illustrates the basic method with the aid of a simple example. The „world“ consists of various 
types of fruit. The sensor is a camera. Appropriate features to describe fruit are „color“ and „shape“ 
(Section 5.1.3). If the fruit is to be sorted, the pattern recognition system needs information 
concerning the typical features of apples, bananas, oranges etc. Figuratively speaking the system 
needs a label for each type of fruit (note that the meaning of „label“ as used here is not to be 
confused with the meaning of „label“ used in Chapter 5). 
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Fig. 10.1: 

This simple example illustrates the basic method of pattern recognition. The 
„world“ consists of types of fruit. The sensor is a camera. Appropriate 
features for describing fruit are „color“ and „shape“. If the fruit is to be 
sorted the pattern recognition system needs information concerning the 
typical features of apples, bananas, oranges etc. Figuratively speaking the 
system needs a label for each type of fruit (note that the meaning of „label“ 
as used here is not to be confused with the meaning of „label“ used in 
Chapter 5). 

 
Certain pattern recognition systems are able to generate these labels themselves, assigning them to 
those objects with similar features to the same class. Note that these un-supervised classifiers do not 
yield information about the kind of object they „recognize“ (e.g. „Banana“). In contrast, the supervised 
classifiers are „taught“ such information as „This is a banana“. These classifiers work in two stages. 
The first step (training step) needs a teacher who gives the classifier the typical representations of a 
class. The second step (classification step) compares the features of an actual object with the typical 
features which have been thaught. Then the object is assigned to the class which fits it best. 
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Suppose somebody smuggles a pocket calculator into the world of fruit. Surely a class exists in which 
this calculator „fits better“ than in any other. Clearly such a classification should be avoided, for 
instance by introducing a rejection level which tests the limits of similarity. 

In the following section the single components of a pattern recognition system are described in more 
detail. The features extracted from the input data span a so-called feature space.  Fig. 10.2 depicts a 
two-dimensional feature space for a small fruit world comprising the classes „Apple“, „Banana“, 
„Orange“ and „Plum“. The feature „Compactness“ represents the ratio of surface area to volume of 
the fruit. In this sense the compactness of a ball is low, while that of a pyramid is high (Section 5.1.3). 
The ovals shown in Fig. 10.2 form the boundaries of the possible feature combinations constituting 
the single classes. For instance, bananas are more or less tubular (high compactness) and their color 
ranges from green to yellow. Oranges have colors from yellow to red and minimum compactness 
since they are spherical. 
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Fig. 10.2: 

This is a two-dimensional feature space for a small fruit world 
comprising the classes „Apple“, „Banana“, „Orange“ and „Plum“. The 
feature „Compactness“ represents the ratio of surface to volume of the 
fruit. In this sense the compactness of a ball is low, whilst that of a 
pyramid is high (Section 5.1.3). The ovals form the boundaries of the 
possible feature combinations constituting the single classes. For 
instance, bananas are more or less tubular (high compactness) and 
their color ranges from green to yellow. Oranges have colors from 
yellow to red and low compactness since they are spherical. 

 
The color variations of the „model apples“ used in the example shown in Fig. 10.2 are rather limited. In 
reality the colors of apples range from green to red. Admittedly this range would cause an overlapping 
of the classes „Apple“ and „Orange“. This leads us to a typical problem of pattern recognition: too few 
or unsuitable features result in classes which are not separable. Thus the classification is not 
completely faultless. If an appropriate choice of features is not possible or is too expensive, the aim 
should obviously be to use features leading to a minimum classification error. To avoid these errors, it 
may be possible to „reduce“ the world, for instance by limiting the color range of apples as in the 
current example. However, if red apples are indispensable a third feature must be introduced (e.g. 
surface quality). 

In order to describe classification procedures, let us consider the more abstract feature space shown 
in Fig. 10.3. In a computer any feature space must be realized by an array. Thus the features are 
discrete. Our feature space contains 11 entries a to k which are named feature vectors. To simplify 
matters, the current example permits a feature vector to occur only once. 
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Fig. 10.3: 

This more abstract feature space is the basis for the description of classification 
procedures. In a computer any feature space must be realized by an array. Thus the 
features are discrete. This example feature space contains 11 entries a to k which 
are named feature vectors. 

 
Two simple and straightforward classification methods will be described: the non-supervised  and the 
supervised minimum distance classifier. Fig. 10.4 traces the non-supervised classification in the case 
of the feature space shown in Fig. 10.3. The left column lists the distances between pairs of feature 
vectors. To calculate these distances the city block distance (this is the sum of the vertical and 
horizontal distances) is used. Let the rejection level be 6. 

Since classes are not trained, non-supervised classifiers build classes during processing. The search 
for classes usually starts in the top left corner of the feature space and proceeds row by row. The 
search algorithm first encounters the feature vector a, which is used as the center of the first class k0. 
The next feature vector is b. The distance between a and b is 3. Thus it does not exceed the rejection 
level and b is therefore a member of the class k0. The search continues, encountering the feature 
vectors c, d, e and f. The distance between f and the center of k0 exceeds the rejection level and so it 
is the center of a new class k1. 
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Fig. 10.4: 

This is the trace of the non-supervised 
classification applied to the feature space 
shown in Fig. 10.3. 

 
Since two classes exist, the distance between the next feature vector g and the centers of both the 
classes k0 and k1 have to be determined. The distance between g and f is less than the distance 
between g and a. Thus, g belongs to class k1. Each of the remaining feature vectors is treated similarly 
until every feature vector is assigned to a class. 

The advantage of non-supervised classification is the avoidance of the training step. Such a 
classification is thus able to process data without having any previous information. Obviously, a 
prerequisite for a successful classification is a feature space in which classes do not overlap. Often 
this condition is unrealizable. 

If it is possible to previously take samples from the world to be classified, supervised classification 
may be used. Suppose a teacher has access to the different types of fruit in the fruit world. The 
teacher takes sample classes of fruit based on his or her knowledge about this world. For instance, the 
teacher assigns everything which he or she thinks of as being an apple to the sample class „Apple“. 
The sample classes composed in this way serve as a basis for enabling the teacher to train the 
classifier. 
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Fig. 10.5: 

This is the training result of the supervised classification applied to the 
feature space shown in Fig. 10.3. The center of sample class k0 is (3.2; 
11.4). The radius of the border of k0 is 1.7, since usually the greater value 
of both the variances is taken. The parameters of the classes k1 and k2 are 
obtained in a similar way. 

 
With the aid of the example shown in Fig. 10.5 the procedure is simple to illustrate. Now the feature 
vectors from a to k represent the samples taken by the teacher. Suppose this teacher composes the 
sample classes k0 = {a,b,c,d,e}, k1 = {f,g,h} and k2 = {i,j,k}. During the training step the classifier 
computes mean and variance of the features of the sample classes. The mean values represent the 
centers of the sample classes, while the variances constitute the borders. Fig. 10.5 depicts the 
training result of the current example. The center of sample class k0 is (3.2; 11.4). The radius of the 
border of k0 is 1.7, since the higher value of the variances is usually taken. The parameters of the 
classes k1 and k2 are obtained in a similar way. 

The classification of a new feature vector comprises three steps: 

• Determination of the distances between the new feature vector and the center of every sample 
class. 

• Provisional assignment of the new feature vector to the sample class with the shortest distance. 

• Final assignment if the distance is within the rejection level of the sample class. 

10.2 AdOculos Experiments 

To become familiar with non-supervised classification realize the New Setup shown in Fig. 10.6 as 
described in Section 1.6. The examples used in this section originate from remote sensing. Fig. 10.7 
(CH0SRC.128), (CH1SRC.128) and (CH2SRC.128) show three LANDSAT pictures of Cologne, Germany. 
These are loaded into the input images (1), (2) and (3) (Fig. 10.6). They represent the spectral channels 
ranging from 0.45-0.52 µm (Blue), 0.76-0.90 µm (Infrared) and 2.08-2.35 µm (Infrared). The aim of 
classification is to assign each pixel to a class like „Water“, „Coniferous Forest“ or „Urban Region“. 
The three graylevels of a pixel yielded by the three spectral channels are the features on which the 
classification of this pixel is based. Thus, the feature space is three-dimensional. The scaling of the 
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features corresponds to the range of the „spectral graylevels“ (in our case 0 to 255). Take a „water 
pixel“ as an example. In each of the three channels the graylevel of such a pixel is low. The typical 
„water pixel“ would thus be placed near the origin of the feature space. 

 

 

Fig. 10.6: 

The aim of the first experiment is to become familiar with the 
Non-Supervised Class. function. This New Setup is realized 
according to the steps described in Section 1.6. The results are 
shown in Fig. 10.7. 

  

 

Fig. 10.7: 

The examples originate from remote sensing: (CH0SRC.128), 
(CH1SRC.128) and (CH2SRC.128) show three LANDSAT 
pictures of Cologne, Germany which are loaded into the input 
images (1), (2) and (3) (Fig. 10.6). They represent the spectral 
channels ranging from 0.45-0.52 µm (Blue), 0.76-0.90 µm 
(Infrared) and 2.08-2.35 µm (Infrared). The aim of classification 
is to assign each pixel to a class like „Water“, „Coniferous 
Forest“ or „Urban Region“. (4), (5) and (6) show the result of 
non-supervised minimum distance classification with rejection 
levels of 20, 30 and 40. As mentioned above, the scaling 
ranges from 0 to 255. 

 
Note that a serious classification of satellite pictures requires considerably larger images. The 
examples used in this section only serve to demonstrate the classification procedures. 
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The non-supervised minimum distance classification starts with the top left pixel in the three source 
images. The three graylevels determine the center of the first class in the feature space. The 
classification proceeds by scanning the subsequent pixels row by row and checking whether their 
distance from the center of the first class is sufficiently small. The maximum distance (rejection level) 
must be determined by the user. If the current distance does not exceed the rejection level, the 
current pixel is assigned to the first class. Otherwise it is used as the center of the second class. Each 
of the following pixels must be checked to determine whether it is closer to the center of the first or 
the second class: it can then be classified accordingly. However, if both distances exceed the 
rejection level, a third class must be established. The classification proceeds in this way until the end 
of the image. Fig. 10.7 (4), (5) and (6) show the result of non-supervised minimum distance 
classification with rejection levels of 20, 30 and 40. As mentioned above, the scaling ranges from 0 to 
255. 

A rejection level of 20 yields 26 classes. Obviously the threshold is too „strict“: too many small 
fragmented regions appear. On the other hand a threshold of 40 is too lax. 10 classes result from this 
classification. This is acceptable but parts of the industrial areas (especially the extensive railway 
installation) are assigned to the same class as water. Using a threshold of 30 results in 20 classes. 
Now the classification is satisfactory. Nevertheless, a supervised minimum distance classification (Fig. 
10.8) yields better results. 

 

 

Fig. 10.8: 

The aim of the second experiment is to become familiar with the 
Supervised Class. function. This New Setup is realized according 
to the steps described in Section 1.6. The results are shown in 
Fig. 10.10. 

 
In this case a teacher who marks the regions of the image which belong to one class is needed, for 
instance „Water“. The three mean values of the graylevels of these training areas determine the center 
of the class (the „typical water pixel“). The graylevel variance establishes the rejection level of the 
class. This threshold is usually manipulated by the user. In some cases the variance yields a rejection 
level which is too strict, so that the user has to increase it. 

In our example the minimum distance classifier is trained to detect „Water“. After the start of 
Supervised Class. the dialog box shown in Fig. 10.9 appears. The user has to enter training regions by 
pressing the CTRL key and clicking the left mouse button in the top left corner of the training region. 
Holding the mouse button down and dragging the mouse changes the size of the region. 

Fig. 10.10 (4) and (5) show the classification results using the original variance and twice the variance 
as rejection levels. Obviously in this case the original variance yields a better result. 

The outcome of a simple classification method depicted in Fig. 10.10 is quite satisfactory. 
Nevertheless, the „water pixels“ are fairly easy to classify due to their homogeneity. Even for a 
„human classifier“ the other classes are not that obvious. 
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Fig. 10.9: 

This window appears at the start of Supervised Class. (Fig. 10.8). The 
example shows the choice of three training region for the class „Water“. 
Training regions are entered by pressing the CTRL key and clicking the 
left mouse button at the top left-hand corner of the training region. 
Holding the mouse button down and dragging the mouse changes the 
size of the region. The graylevel variance establishes the rejection level of 
the class. This threshold may be manipulated by the user entering a 
Variance Factor. In the current case the graylevel variance will not be 
changed since the multiplyingfactor is 1. 

 

 

Fig. 10.10: 

The source images shown here are identical to those used in 
Fig. 10.7. (4) and (5) show the results of the supervised 
classification (Fig. 10.8) based on the training of „Water“ and 
on the application of the original variance (4) and twice the 
variance (5) as the rejection level (Fig. 10.9). Obviously in this 
case the original variance yields a better result 

 

10.3 Source Code 

The procedures described in this section are designed for the classification of satellite images as 
illustrated in Section 10.2. 

Fig. 10.11 shows a procedure which realizes the supervised minimum distance classification. Formal 
parameters are: 

ImSize: image size 
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MaxDist: rejection level 

MaxCen: maximum number of classes (must not exceed 255) 

Ch0,Ch1,Ch2: first, second and third input image 

ClasIm: output image representing the extracted classes. 

The procedure returns the number of classes found in the image. The first step of MinDist are 
certain initializations: 
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int MinDist (ImSize, MaxDist, MaxCen, Ch0, Ch1, Ch2, ClasIm) 
int ImSize, MaxDist, MaxCen; 
BYTE ** Ch0; 
BYTE ** Ch1; 
BYTE ** Ch2; 
BYTE ** ClasIm; 
{ 
   int    r,c, i, NofCen, FitCent; 
   int    *Cent0, far *Cent1, far *Cent2; 
   float  Dist, MinDist, D0,D1,D2; 
 
   NofCen = 1; 
   for (r=0; r<ImSize; r++) 
      for (c=0; c<ImSize; c++)  ClasIm [r][c] = 0; 
 
   Cent0 = malloc (MaxCen * sizeof(int)); 
   Cent1 = malloc (MaxCen * sizeof(int)); 
   Cent2 = malloc (MaxCen * sizeof(int)); 
 
   Cent0 [0] = Ch0 [0][0]; 
   Cent1 [0] = Ch1 [0][0]; 
   Cent2 [0] = Ch2 [0][0]; 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         MinDist = (float)1.0e37; 
         FitCent = 0; 
         for (i=0; i<NofCen; i++) { 
            D0 = (float) Ch0[r][c] - Cent0[i];   D0 *= D0; 
            D1 = (float) Ch1[r][c] - Cent1[i];   D1 *= D1; 
            D2 = (float) Ch2[r][c] - Cent2[i];   D2 *= D2; 
 
            Dist = (float) sqrt ((double) D0 + D1 + D2); 
 
            if (Dist < MinDist)  { 
               MinDist = Dist; 
               FitCent = i; 
         }  } 
         ClasIm [r][c] = (BYTE) FitCent+1; 
 
         if ((int)MinDist > MaxDist) { 
            Cent0 [NofCen] = Ch0 [r][c]; 
            Cent1 [NofCen] = Ch1 [r][c]; 
            Cent2 [NofCen] = Ch2 [r][c]; 
            NofCen++; 
            if (NofCen >= MaxCen) { 
               NofCen = -1; 
               goto Leave; 
            } 
            ClasIm [r][c] = (BYTE) NofCen; 
   }  }  } 
 
Leave: 
   return (NofCen); 
} 

Fig. 10.11: 

C realization of a non-supervised minimum distance classifier. 

 
• The variable counting the number of classes found, NofCen, is set to a start value of 1. 

• Every pixel of the output image ClasIm receives the value 0. This value means „pixel not classified“. 

• The three coordinates of the class centers NofCen are stored in the vector elements 
Cent0[NofCen] Cent1[NofCen] Cent2[NofCen]. In preparation sufficient memory must be 
allocated for the vectors. 

• The center of the first class (Cent0[0], Cent1[0], Cent2[0]) is assigned as the graylevels 
(spectral values) of the coordinate origin of the input images. 
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The classification of the current pixel [r][c] is carried out in two steps. The first step compares the 
Euclidean distances between the class centers (Cent0[i], Cent1[i], Cent2[i]) and the spectral 
values (Ch0[r][c], Ch1[r][c], Ch2[r][c]) of the current pixel. The minimum distance is assigned 
to MinDist. The index (FitCent) of the corresponding class center is stored in the output image 
ClasIm. Since a zero in ClasIm indicates an unclassified pixel, FitCent must be incremented. 

The second step checks the result of the first step. If MinDist exceeds the user-defined threshold 
MaxDist the values (Ch0[r][c], Ch1[r][c], Ch2[r][c]) of the current pixel do not match those 
of any existing class. Consequently a new class has to be established. To simplify matters the values 
of the current pixel are used as the center of this new class. Thus, the former assignment of 
FitCent+1 to the output image ClasIm has to be corrected. 

Since the data type of the output image ClasIm is BYTE and the value zero means „not classified“ 
the number of classes must not exceed 255. Nevertheless, in practice a considerably lower maximum 
value is useful. The user may determine this value with the assistance of parameter MaxCen. If 
MaxCen is exceeded the procedure stops and returns the value -1. 

The realization of supervised classifiers requires more effort. In preparation some „auxiliary 
procedures“ are needed. Fig. 10.12 shows a procedure which computes the local mean. Formal 
parameters are: 

WinSize: size of the window to be processed 

r0,c0: row and column coordinates which determine the top left corner of this window 

Ch0,Ch1,Ch2: first, second and third input image 

m0,m1,m2: mean of the values in the window for each of the three images. 

 
void ChanMean (WinSize, r0,c0, Ch0,Ch1,Ch2, m0,m1,m2) 
int   WinSize, r0,c0; 
BYTE  ** Ch0; 
BYTE  ** Ch1; 
BYTE  ** Ch2; 
float *m0,*m1,*m2; 
{ 
   int  r,c,N; 
 
   N = WinSize*WinSize; 
   *m0 = *m1 = *m2 = (float)0; 
   for (r=r0; r<r0+WinSize; r++) { 
      for (c=c0; c<c0+WinSize; c++) { 
         *m0 += (float)Ch0 [r][c]; 
         *m1 += (float)Ch1 [r][c]; 
         *m2 += (float)Ch2 [r][c]; 
   }  } 
   *m0 /= N; 
   *m1 /= N; 
   *m2 /= N; 
} 

Fig. 10.12: 

C realization for determining the local mean. 

 
Fig. 10.13 shows a procedure which determines the local variance. Formal parameters are: 

WinSize: size of the window to be processed 

r0,c0: row and column coordinates which determine the top left corner of this window 

Ch0,Ch1,Ch2: first, second and third input image 

m0,m1,m2: local mean values 

v0,v1,v2: corresponding variances. 

Both procedures are used by a supervised minimum distance classifier the realization of which is 
depicted in Fig. 10.14. Formal parameters are: 
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ImSize: image size 

VarFac: parameter which is used to manipulate the rejection level computed by the 
 procedure 

Ch0,Ch1,Ch2: first, second and third input image 

ClasIm: output image which illustrates the extracted classes 

TrainFile: name of the file containing position and size of the training areas for one class 
 (e.g. „water“). 

 
void ChanVar (WinSize, r0,c0, Ch0,Ch1,Ch2, m0,m1,m2, v0,v1,v2) 
int   WinSize, r0,c0; 
BYTE  ** Ch0; 
BYTE  ** Ch1; 
BYTE  ** Ch2; 
float m0,m1,m2; 
float *v0,*v1,*v2; 
{ 
   int    r,c,N; 
   float  d0,d1,d2; 
 
   N = WinSize*WinSize; 
   *v0 = *v1 = *v2 = (float)0; 
   for (r=r0; r<r0+WinSize; r++)  { 
      for (c=c0; c<c0+WinSize; c++)  { 
         d0 = Ch0 [r][c] - (float)m0;   *v0 += d0*d0; 
         d1 = Ch1 [r][c] - (float)m1;   *v1 += d1*d1; 
         d2 = Ch2 [r][c] - (float)m2;   *v2 += d2*d2; 
   }  } 
   *v0 /= N-1; 
   *v1 /= N-1; 
   *v2 /= N-1; 
} 

Fig. 10.13: 

C realization for determining the local variance. 

 
The procedure starts by reading the parameters NofTrn (number of samples) and WinSize (window 
size of the samples) from the file TrainFile. This file also contains the coordinates [r0] and [c0] 
of the top left corner of the sample windows. Based on the data of these windows the following for 
loop computes the mean values (M0, M1, M2) and variances (V0, V1, V2) of each window as well as the 
total mean values (M0tot, M1tot, M2tot) and variances (V0tot, V1tot, V2tot). The total mean 
values establish the center of the class (e.g. „water“) represented by the samples. The largest of the 
three total variances determines the rejection level Border of the class. The rejection level may be 
varied by the user with the assistance of parameter VarFac. 

After these preparations the actual classification is carried out. For each pixel the distance Dist 
between the center (M0tot, M1tot, M2tot) of the trained class and the three values of the current 
pixel are determined. If the distance does not exceed the rejection level Border the current pixel of 
the output image ClasIm[r][c] is given the (arbitrary) value 255. Otherwise the current pixel does 
not belong to the trained class and therefore obtains the value zero. 
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void SupMD (ImSize, VarFac, Ch0,Ch1,Ch2, ClasIm, TrainFile) 
int   ImSize; 
float VarFac; 
BYTE  ** Ch0; 
BYTE  ** Ch1; 
BYTE  ** Ch2; 
BYTE  ** ClasIm; 
char  TrainFile[]; 
{ 
   int    r,c, r0,c0, i,NofTrn, WinSize; 
   float  M0,M1,M2, D0,D1,D2, V0,V1,V2; 
   float  M0tot,M1tot,M2tot, V0tot,V1tot,V2tot; 
   float  Dist, Border; 
   FILE   *Stream; 
 
   Stream = fopen (TrainFile, “r”); 
   fscanf (Stream, “%d%d”, &NofTrn, &WinSize); 
 
   M0tot = M1tot = M2tot = (float)0; 
   V0tot = V1tot = V2tot = (float)0; 
 
   for (i=0; i<NofTrn; i++) { 
      fscanf (Stream, “%d%d”, &r0,&c0); 
      ChanMean (WinSize, r0,c0, Ch0,Ch1,Ch2, &M0,&M1,&M2); 
      ChanVar  (WinSize, r0,c0, Ch0,Ch1,Ch2, M0,M1,M2, &V0,&V1,&V2); 
      M0tot += M0;   V0tot += V0; 
      M1tot += M1;   V1tot += V1; 
      M2tot += M2;   V1tot += V2; 
   } 
   fclose (Stream); 
   M0tot /= NofTrn;  V0tot /= NofTrn; 
   M1tot /= NofTrn;  V1tot /= NofTrn; 
   M2tot /= NofTrn;  V2tot /= NofTrn; 
 
   Border = max (V0tot, max(V1tot,V2tot)); 
   Border *= (float)VarFac; 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         D0 = M0tot - Ch0[r][c];  D0 *= D0; 
         D1 = M1tot - Ch1[r][c];  D1 *= D1; 
         D2 = M2tot - Ch2[r][c];  D2 *= D2; 
 
         Dist = (float) sqrt ((double) D0 + D1 + D2); 
 
         if (Dist <= Border)  ClasIm [r][c] = 255; 
                        else  ClasIm [r][c] = 0; 
}  }  } 

Fig. 10.14: 

C realization of a supervised minimum distance classifier. 

 

10.4 Supplement 

Section 10.1 describes supervised and non-supervised minimum distance classifiers. These are so-
called geometrical classifiers. 

An alternative to this approach is numerical classification. As an example this section describes the 
maximum likelihood approach. Let us start with a simple example: the classification problem is to 
assign a piece of music either to category C „Classical“ or P „Punk“. The decision is based on only one 
feature, namely the volume (v). Let the decision rule of the classifier be: assign a piece of music the 
volume of which is below a threshold V to „Classical“. Otherwise it is „Punk“. 

The obvious question concerns the calculation of V. To obtain this value a teacher who is able to 
identify classical or punk music is needed. A lot of pieces of music have to be analyzed in order to 
determine the frequency of appearance of classical hC(v) and punk music hP(v) depending on the 
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volume in question v. This produces a histogram similar to the example shown in Fig. 10.15 (a). After 
this training period the classifier proceeds according to the decision rule: if hC(v) > hP(v) is valid for the 
current piece of music with volume v, it is classical music, otherwise it is punk. 

Unfortunately if the teacher does not like punk music then he or she will mainly listened to classically 
oriented radio stations or recordings and therefore the histogram has to be corrected by dividing the 
absolute frequencies hC(v) and hP(v) by the respective number of samples listened to, in order to 
obtain the relative frequencies HC(v) and HP(v). Now the histogram may be similar to the example 
shown in Fig. 10.15 (b). 

This more or less general form of classifying music may be varied to allow a more detailed procedure. 
A useful variation is to include the „sources“ of the music. For instance, it is clear from the start (a 
priori) that Radio Bremen 2 (RB2, a station devoted to „people of culture“) rarely (if ever) presents punk 
music while Radio Bremen 4 (RB4, a station for the „young“) avoids classical music. Mathematically 
expressed: the a priori probabilities p(P|RB2) (probability of Punk given that the music is broadcasted 
by Radio Bremen 2) and p(C|RB4) are low while the a priori probabilities p(C|RB2) and p(P|RB4) are 
high. Accordingly modified histograms are shown in Fig. 10.15 (c) and Fig. 10.15 (d). Now the decision 
rule for Radio Bremen 2 is: if the volume of a piece of music is v and if 

( ) ( ) ( ) ( )C Pp C | RB2 H v p P | RB2 H v<  

then it is classical music, otherwise it is punk. If this rule is considered separately from the music 
example, it represents the basic maximum likelihood decision rule. 
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Fig. 10.15: 

The classification problem for this simple example is to assign a piece of music either to 
category „Classical“ (c) or to „Punk“ (P). The decision is based on only one feature, namely the 
volume (v). Let the decision rule of the classifier be: assign a piece of music the volume of 
which is below a threshold V to „Classical“, otherwise it is „Punk“. 

 
A more detailed description requires the following definitions: 

(a) Starting point is a sample of n classes k0, k1 to kn-1. For instance, k0 may represent „Classical“, k1 
„Punk“ and k2 „Jazz“. 

(b) The data obtained by any sensor are represented by a feature vector g consisting of m elements. 
Possible musical features are „Volume“, „Rhythm“ or „Harmonic Structure“. 

(c) Furthermore the a priori probability p(ki) of the appearance of class ki is available. This probability is 
assessable by experiment. 

(d) p(g|ki) is the probability of the appearance of the feature vector g provided that class ki exists. In 
other words: p(g|ki) determines the probability distribution that a class ki yields measurement g. 



10 Pattern Recognition - 10.4 Supplement 

 

Ad Oculos 244

This distribution is assessable on the basis of a histogram similar to the examples shown in Fig. 
10.15. 

(e) p(ki|g) is the probability of the appearance of class ki provided that the feature vector g exists. The 
decision process is based on this value. 

(f) The normalization parameter p(g) is defined as follows: 

 ( ) ( )n 1

i
i 0

p g p g | k
−

=
= ∑  

Based on these definitions the so-called Bayes decision rule is: a feature vector g is to be assigned to 
that class ki for which p(ki|g) is a maximum. 

This rule is intuitive but he merit of Bayes is to have backed it up theoretically. The starting point of the 
idea is the minimization of classification error. Unfortunately several kinds of errors may occur which 
are „bad“ in different ways. To simplify matters consider all the errors to be identical. 

The decisive question is how to obtain p(ki|g). Again the answer originates from Bayes. He found that: 

( ) ( ) ( )
( )
i i

i

p g | k p k
p k | g

p g
=  

Thus, Bayes’ decision rule is: 

( ) ( )
( )
i ip g | k p k

max
p g

→  

Since this is a maximization problem the rule may be expressed more briefly: 

( ) ( ) ( )i i id g p g | k p k max= →  

Against the background of Bayes’ decision rule, the pattern recognition procedure is realized by the 
following steps: 

(1) Training: 

(a) Define the desired classes ki (i=0,1,...,n-1) (e.g. „Classical“ and „Punk“). 

(b) Define features and the structure of the feature vector g={g0, g1, ..., gm-1} (e.g. „Volume“). 

(c) Take samples (e.g. measure volume of known pieces of music). 

(d) Produce a histogram for the m-dimensional feature space and normalize this histogram. In the 
context of the example shown in Fig. 10.15 this would be, for instance, HC(v). In a general sense 
this is p(g|ki). 

(e) Determine the a priori probabilities p(ki) for each class and weight the histogram accordingly (Fig. 
10.15). 

(2) Classification: 

(a) Ensure that the feature vector g to be classified exists. 

(b) Interpret the values of the features as coordinates of the histogram and thus address the „location“ 
of these features. 

(c) Determine the histogram entries (corresponding to di(g)) for each class i at these locations. 

(d) Apply Bayes’ decision rule: assign the current feature vector g to the class associated with the 
maximum di(g). 

The advantages of this approach are obvious: 

• The classification is fast, since only addressing and comparing operations have to be carried out. 

• Assuming a sufficient training the classification is very exact. 

Unfortunately these advantages are confronted with the striking disadvantage of a 

• „data explosion“. 
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The following two examples illustrate the problem: Let the number of classes n be four and the 
number of features m be two. The features are quantized into 16 steps. Hence, the feature space 
comprises 162 = 256 entries. Suppose the frequencies to be entered in the histogram do not exceed 
256 (represented by a byte). Therefore, the amount of data required by the histogram is 256 bytes * 4 
classes. For this example the training and classification procedures as discussed above are obviously 
useful. 

The case of the classification of satellite pictures as presented in Section 10.2 requires n = 16 classes, 
m = 3 features and 256 quantization steps. Now the feature space comprises 2563 = 16 Mbyte 
entries. Further consideration is unnecessary: this amount of data is only manageable at tremendous 
expense. 

\The so-called parametric classifiers offer a solution to this problem. This approach approximates the 
histogram entries by a known function (Fig. 10.15). Usually this function is a multi-dimensional 
Gaussian distribution. Now p(g|ki) is no longer determined by the frequencies retained in the 
histogram (like HC(v)), but by (Appendix F): 

( )
1T

i ii
1

- (g z ) C (g z )
2

i i m / 2
i

1
d (g) p k exp

(2 ) detC

−− −
=

π
 

In most cases it is sufficient to use the exponent: 

1T
i ii(g z ) C (g z )−− −  

instead of the whole Gaussian function. This expression is known as the Mahalanobis distance and 
consequently one talks about a Mahalanobis classifier. 
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Fig. 10.16: 

Supervised Mahalanobis classification used in an example of satellite pictures. 

 
The classification of satellite pictures as described in Section 10.2 proceeds as follows (Fig. 10.16): 

(1) Training: 
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(a) Define the desired classes ki (i = 0,1,...,n-1) In the context of satellite pictures a pixel has to be 
assigned to a class, such as „Water“. 

(b) Define features and the structure of the feature vector g = {g0, g1, ..., gm-1} In the case of the 
satellite pictures, three features are available for each pixel. These are the graylevels of the 
spectral channels. 

(c) Take samples. For the current example this means choosing training areas which typically 
represent the classes. 

(d) Determine the mean values of the features in the samples and put them together to form a vector 
zi. In the current case these are the mean values m0, m1 and m2 of the graylevels of all „Water“ 
samples. Thus 

 
0

1i

2

m

z m

m

 
 =  
 
 

 

(e) Generate the covariance matrix Ci. In the current case the training areas are based on three spectral 
channels. This leads to the 3 * 3 covariance matrix: 
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(f) Invert the covariance matrix 
1

iC−
. 

(g) Determine a deviation vector si. The covariance matrix yields this vector: 
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(h) Compute the rejection level 
izd  based on the Mahalanobis distance: 

 
i

T 1
z i i id s C s−=  

(2) Classification: 

(a) Ensure that the feature vector g to be classified exists. In the current case the feature vector 
consists of the three „spectral graylevels“ of a pixel. 

(b) Compute the deviations from the mean values (g-zi). 

(c) Determine the Mahalanobis distance di 

 1T
i i iid (g z ) C (g z )−= − −  

(d) For all values of i search for the minimum Mahalanobis distance di. If this distance is less than the 

rejection level ( )ii zd d< , ki is the class to which the pixel should be assigned. 

Finally the procedure of Mahalanobis classification is demonstrated with the assistance of the 
example shown in Fig. 10.3: Suppose the entries of the feature space a to e are the samples for class 
k0. Now the training yields: 
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The Mahalanobis distance d0 between the mean vector z0 and the entry e (coordinate pair (5, 10)) is 
2.2. The distance between z0 and coordinate pair (6, 9) is 5.7 and thus already exceeds the rejection 
level 

0zd = 4.64 . The „strictness“ of the Mahalanobis distance may be illustrated with the assistance 

of entry i (coordinate pair (3, 4)): now d0 is 64. 

Exceptionally, the section „Supplement“ uses a procedure in order to promote the understanding of 
the Mahalanobis classifier. In preparation this procedure needs some „auxiliary procedures“. Fig. 
10.17 shows such a procedure which calculates the covariance matrix. Formal parameters are: 

WinSize: size of the window to be processed 

r0,c0: row and column coordinates determining the top left corner of this window 

Ch0,Ch1,Ch2: first, second and third input image 

m0,m1,m2: mean of the values in the window for each of the three images 

CoVar: resulting covariance matrix. 

 
void ChanCoVar (WinSize, r0,c0, Ch0,Ch1,Ch2, m0,m1,m2, CoVar) 
int   WinSize, r0,c0; 
BYTE  ** Ch0; 
BYTE  ** Ch1; 
BYTE  ** Ch2; 
float m0,m1,m2; 
float CoVar[3][3]; 
{ 
   int    r,c,N; 
   float  cv01,cv02,cv12; 
 
   N = WinSize*WinSize; 
 
   ChanVar (WinSize, r0,c0, Ch0,Ch1,Ch2, m0,m1,m2,  
            &CoVar[0][0], &CoVar[1][1], &CoVar[2][2]); 
 
   cv01 = cv02 = cv12 = (float)0; 
   for (r=r0; r<r0+WinSize; r++) { 
      for (c=c0; c<c0+WinSize; c++) { 
         cv01 += ((float)Ch0[r][c] - (float)m0) * ((float)Ch1[r][c] - (float)m1); 
         cv02 += ((float)Ch0[r][c] - (float)m0) * ((float)Ch2[r][c] - (float)m2); 
         cv12 += ((float)Ch1[r][c] - (float)m1) * ((float)Ch2[r][c] - (float)m2); 
   }  } 
   CoVar[0][1] = CoVar[1][0] = cv01/(N-1); 
   CoVar[0][2] = CoVar[2][0] = cv02/(N-1); 
   CoVar[1][2] = CoVar[2][1] = cv12/(N-1); 
} 
Fig. 10.17: 

C realization for computing the covariance matrix. 

 
Fig. 10.18 shows a procedure which inverts the covariance matrix. Formal parameters are: 

CoVar: covariance matrix 
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CoInv: inverted covariance matrix. 

 
void InvCoVar (CoVar,CoInv) 
float CoVar[3][3]; 
float CoInv[3][3]; 
{ 
   float  D; 
 
   D = CoVar[0][0] * CoVar[1][1] * CoVar[2][2]  +  CoVar[0][1] * CoVar[1][2] * 
CoVar[2][0] + 
       CoVar[0][2] * CoVar[1][0] * CoVar[2][1]  -  CoVar[0][2] * CoVar[1][1] * 
CoVar[2][0] - 
       CoVar[0][0] * CoVar[1][2] * CoVar[2][1]  -  CoVar[0][1] * CoVar[1][0] * 
CoVar[2][2]; 
 
   CoInv[0][0] = (CoVar[1][1] * CoVar[2][2] - CoVar[1][2] * CoVar[2][1]) / D; 
   CoInv[1][0] = (CoVar[1][2] * CoVar[2][0] - CoVar[1][0] * CoVar[2][2]) / D; 
   CoInv[2][0] = (CoVar[1][0] * CoVar[2][1] - CoVar[1][1] * CoVar[2][0]) / D; 
 
   CoInv[0][1] = (CoVar[0][2] * CoVar[2][1] - CoVar[0][1] * CoVar[2][2]) / D; 
   CoInv[1][1] = (CoVar[0][0] * CoVar[2][2] - CoVar[0][2] * CoVar[2][0]) / D; 
   CoInv[2][1] = (CoVar[0][1] * CoVar[2][0] - CoVar[0][0] * CoVar[2][1]) / D; 
 
   CoInv[0][2] = (CoVar[0][1] * CoVar[1][2] - CoVar[0][2] * CoVar[1][1]) / D; 
   CoInv[1][2] = (CoVar[0][2] * CoVar[1][0] - CoVar[0][0] * CoVar[1][2]) / D; 
   CoInv[2][2] = (CoVar[0][0] * CoVar[1][1] - CoVar[0][1] * CoVar[1][0]) / D; 
} 

Fig. 10.18: 

C realization for inverting the covariance matrix. 

 

A procedure which determines the Mahalanobis distance is depicted in Fig. 10.19. Formal parameters 
are: 

d0,d1,d2: deviations from the mean values of the three channels 

CoInv: inverted covariance matrix. 

 
float MahaDist (d0,d1,d2,CoInv) 
float d0,d1,d2; 
float CoInv[3][3]; 
{ 
   return( 
     (float)d0 * (CoInv[0][0] * (float)d0 + CoInv[1][0] * (float)d1 + CoInv[2][0] * 
(float)d2) + 
     (float)d1 * (CoInv[0][1] * (float)d0 + CoInv[1][1] * (float)d1 + CoInv[2][1] * 
(float)d2) + 
     (float)d2 * (CoInv[0][2] * (float)d0 + CoInv[1][2] * (float)d1 + CoInv[2][2] * 
(float)d2) 
   ); 
} 

Fig. 10.19: 

C realization for computing the Mahalanobis distance. 

 
The „auxiliary procedures“ ChanCoVar, InvCoVar and MahaDist are used by the procedure realizing 
the supervised maximum likelihood classifier (Fig. 10.20). Formal parameters are: 

ImSize: image size 

BorderFac: parameter which is used to manipulate the rejection level computed by the 
 procedure 

Ch0,Ch1,Ch2: first, second and third input image 

ClasIm: output image which illustrates the extracted classes 
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TrainFile: name of the file containing position and size of the training areas for one class 
 (e.g. „water“). 

The procedure starts by reading the parameters NofTrn (number of samples) and WinSize (window 
size of the samples) from the file TrainFile. Furthermore, this file contains the coordinates [r0] 
and [c0] of the top left corner of the sample windows. 

After initializing the total mean values M0tot, M1tot and M2tot as well as the covariance matrix 
CoVarTot and the inverted covariance matrix CoInvTot these parameters are determined with the 
aid of the procedures ChanMean (Fig. 10.12), ChanCoVar and InvCoVar. The results are used by 
procedure MahaDist which computes the Mahalanobis distance MahaSample of the samples. Thus, 
MahaSample is the rejection level. 
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void MaxLike (ImSize, BorderFac, Ch0,Ch1,Ch2, ClasIm, TrainFile) 
int   ImSize; 
float BorderFac; 
BYTE  ** Ch0; 
BYTE  ** Ch1; 
BYTE  ** Ch2; 
BYTE  ** ClasIm; 
char  TrainFile[]; 
{ 
   int    r,c, y,x, r0,c0, i,NofTrn, WinSize; 
   float  M0,M1,M2, CoVar[3][3], CoInv[3][3]; 
   float  M0tot,M1tot,M2tot, CoVarTot[3][3], CoInvTot[3][3]; 
   float  MahaSample, Maha; 
   FILE   *Stream; 
 
   Stream = fopen (TrainFile, “r”); 
   fscanf (Stream, “%d%d”, &NofTrn, &WinSize); 
 
   M0tot = M1tot = M2tot = (float)0; 
   for (y=0; y<3; y++) 
      for (x=0; x<3; x++)  CoVarTot[y][x] = CoInvTot[y][x] = (float)0; 
 
   for (i=0; i<NofTrn; i++) { 
      fscanf (Stream, “%d%d”, &r0,&c0); 
      ChanMean  (WinSize, r0,c0, Ch0,Ch1,Ch2, &M0,&M1,&M2); 
      ChanCoVar (WinSize, r0,c0, Ch0,Ch1,Ch2, M0,M1,M2, CoVar); 
      InvCoVar  (CoVar,CoInv); 
      M0tot += M0; 
      M1tot += M1; 
      M2tot += M2; 
      for (y=0; y<3; y++) { 
         for (x=0; x<3; x++) { 
            CoVarTot[y][x] += CoVar[y][x]; 
            CoInvTot[y][x] += CoInv[y][x]; 
   }  }  } 
 
   M0tot /= NofTrn; 
   M1tot /= NofTrn; 
   M2tot /= NofTrn; 
   for (y=0; y<3; y++) { 
      for (x=0; x<3; x++) { 
         CoVarTot[y][x] /= NofTrn; 
         CoInvTot[y][x] /= NofTrn; 
   }  } 
 
   MahaSample = MahaDist (BorderFac * sqrt(CoVarTot[0][0]), 
                          BorderFac * sqrt(CoVarTot[1][1]), 
                          BorderFac * sqrt(CoVarTot[2][2]), 
                          CoInvTot); 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         Maha = MahaDist (Ch0[r][c] - M0tot, 
                          Ch1[r][c] - M1tot, 
                          Ch2[r][c] - M2tot, 
                          CoInvTot); 
         if (Maha < MahaSample)  ClasIm[r][c] = 255; 
                           else  ClasIm[r][c] = 0; 
}  }  } 

Fig. 10.20: 

C realization of a maximum likelihood classifier. 

 
The actual classification is very simple: the first step determines the Mahalanobis distance Maha 
between the class center (M0tot, M1tot, M2tot) and the graylevels of the current pixels. If Maha is 
less than the rejection level MahaSample, the current pixel of the output image ClasIm[r][c] is 
assigned the (arbitrary) value 255. Otherwise this value is 0. 
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Numerous books and papers are devoted to the subject of „Pattern Recognition“. Horn [10.1], 
Niemann [10.3], Pao [10.5], Schalkoff [10.4], Shirai [10.6] as well as Young and Fu [10.7] offer various 
surveys and application notes. Nagy [10.2] gives some remarkable hints concerning the practical 
implementation of pattern recognition. Of course, pattern recognition applications are not confined to 
digital image processing. The above reference list contains example in domains such as speech 
recognition, medical data analysis etc. 

10.5 Exercises 

Exercise 10.1: 

Apply a non-supervised minimum distance classification according to the example shown in Fig. 10.4 
to the feature space shown in Fig. 10.21 representing a collection of coins. Use rejection levels 2, 3, 4, 
5 and 6. 
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Fig. 10.21: 

This feature space represents a collection of coins in terms of their weight (m) 
and their diameter (d). 

 
Exercise 10.2: 

Suppose an experimental world consists of 37 objects of type ‘a’ and 33 objects of type ‘b’. Fig. 10.22 
illustrates this world in terms of two features x and y. Train a supervised minimum distance classifier 
to distinguish between ‘a’ and ‘b’. 

(a) Use as samples for ‘a’ (x=3, y=10), (x=4, y=13) and (x=3, y=10), for ‘b’ (x=9, y=3), (x=12, y=6) 
and (x=14, y=3). Compute the center and the border of the sample classes. 

(b) Find examples for good and bad samples. 

(c) Compare the sample results (center and border) with center and border of the whole population of 
‘a’ and ‘b’. 
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Fig. 10.22: 

This feature space depicts an experimental world consisting of 37 objects of type 
‘a’ and 33 objects of type ‘b’. Exercise 10.2 demonstrates the choice of sample 
classes for training a supervised minimum distance classifier. 

 
Exercise 10.3: 

Become familiar with every aspect of pattern recognition offered by AdOculos (see AdOculos Help). 

 

Exercise 10.4: 

Find and discuss everyday examples of pattern recognition. 

 

Exercise 10.5: 

The programs described in Section 10.3 and delivered with AdOculos are devoted to the analysis of 
satellite pictures. Write a program which realizes a more general form of supervised minimum 
distance classifier and a supervised Mahalanobis classifier. 
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11 Image Sequence Analysis 

11.1 Foundations 

The requirements of understanding this chapter are: 

• to be familiar with terms like derivative, gradient, convolution and correlation 

• to be familiar with basic calculus of variations (to understand the supplement section; see also 
Appendix B) 

• to have read Chapter 1 

Analysis of image sequences is one of the most exciting areas of digital image processing, but it is 
also one of the most difficult. The enormous amount of data mentioned in Section 1.5 has already 
hinted at this fact. 

 

0 1Source image at time t Source image at time t

Velocity field  

Fig. 11.1: 

This is an example of a velocity field. The velocity vectors 
(needles) describe the direction and the velocity of displacement 
of each pixel in the source image pair. 

 
The main topic of this chapter is the extraction of velocity fields. Fig. 11.1 depicts an example: the 
velocity vectors describe the direction and the speed of displacement of each pixel in the source 
image pair. When trying to calculate these vectors correctly two fundamental problems are 
encountered (Fig. 11.2): 

The correspondence problem: How does a pixel under consideration at time t1 „know“, to which pixel 
it corresponded at time t0? At first glance the answer seems to be easy: consider a 
neighborhood of sufficient size around the pixel in one image and search for the best fitting 
neighborhood in the other image. This procedure creates another problem: how to choose the 
size of this neighborhood? The neighborhood shown in Fig. 11.2 (visualized by the zoomed 
circles) is certainly too small. It is not at all clear whether the vertical edge of the basket is 
positioned near the top or near the bottom. There is alternatively no such problem at a corner 
of the basket. In this case the size of the neighborhood shown in Fig. 11.2 is sufficient to find 
the corresponding corner. 

The aperture problem:  The search for corresponding image parts is a local operation (Chapter 3). The 
search algorithm „looks“ through a (more or less) small aperture (zoomed in Fig. 11.2) at the 
image pair. An inconvenient consequence of this approach is shown by the example depicted 
in Fig. 11.2: it is not possible to determine the vertical component of the movement. The 
basket seems to move only horizontally from left to right. Again, the problem does not occur at 
the corners of the basket. Thus, the aperture problem is eased by avoiding small apertures. 
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Fig. 11.2: 

This is an example of the correspondence problem and 
the aperture problem. The question „How does a pixel 
under consideration at time t1 know, to which pixel it 
corresponded at time t0?” reflects the correspondence 
problem. The search for corresponding image parts is a 
local operation. The search algorithm „looks“ through a 
(more or less) small aperture (zoomed part of the figure) 
at the image pair. As a consequence the basket only 
seems to have move horizontally from left to right. 

 
On the other hand, the computing time rises rapidly if the size of the neighborhoods is increased. 
Therefore, incorrect velocity vectors are unavoidable in practice and the errors have to be corrected by 
a subsequent correction procedure. 

To summarize: procedures which extract velocity fields basically need two steps: 

• A local displacement detector determines the initial vector field. 

• A correction procedure corrects the errors in the initial vector field. 

An obvious procedure for the local detection of velocity vectors is a correlation  algorithm. An example 
of such a procedure is depicted in Fig. 11.3. Consider a small neighborhood (matching window) 
around the current pixel (r0, c0) in the left image. The right image is then scanned with a window of the 
same size in order to find the best match. However, scanning the whole image would be extremely 
time-consuming. Therefore the search is limited to a window around the current pixel (r0, c0). For each 
pixel in this search window the graylevels of the small matching windows have to be compared. The 
comparison, which yields the least square error, provides the displacement data, i.e. direction and 
velocity. 

At this point another fundamental problem which has not been mentioned so far is encountered: the 
determination of the spatial parameter velocity vector is based on the comparison of graylevels. 
Therefore, the illumination has to remain constant, otherwise the relationship between graylevel 
variations and movement is no longer predictable. Imagine a source of light, the intensity of which 
increases. Exactly the same effect occurs if a source of light of constant intensity moves towards the 
observer. 
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Fig. 11.3: 

An obvious procedure for local detection of velocity vectors is a 
correlation algorithm as shown here. Consider a small neighborhood 
(matching window) around the current pixel (r0, c0) in the image on the 
left. The image on the right is then scanned with a window of the same 
size in order to find the best match. However, scanning the whole image 
would be extremely time-consuming. Therefore the search is limited to a 
search window around the current pixel (r0, c0). For each pixel in this 
search window the graylevels of the small matching windows have to be 
compared. The comparison which yields the least square error, provides 
the displacement data, i.e. direction and velocity. 

 
Correlation procedures must be followed by a procedure which corrects the correspondence and 
aperture errors. Such correction procedures are not discussed in this book. Instead an alternative will 
be described which merges the initial detection of velocity vectors with the correction procedure: the 
classic algorithm introduced by Horn and Schunk [11.3] [11.4]. To explain their idea some 
mathematical derivation is needed. Therefore, this section only outlines the procedure (Fig. 11.4), 
while Section 11.4 is devoted to its mathematical derivation. 

In the first step the partial derivatives space and time are taken from the source images 
( )0tE  and 

( )1tE : 

x y t
E E E

E E E
x y t

∂ ∂ ∂= = =
∂ ∂ ∂
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Fig. 11.4: 

Flowchart scheme of Horn’s and Schunk’s procedure: In the first step the 
components of the velocity vector u and v are calculated based on the partial 
derivatives of space (Ex, Ey) and time (Et) which are taken from the source images 

( )0tE  and ( )1tE . The second step is an iterative procedure which corrects these 
components. The iteration ends if a criteria for stopping (ε) is met. At the end of 
this process the velocity field is obtained. 

 
The components of the velocity vector u and v are defined as follows: 

dx dy
u v

dt dt
= =  

The second step is an iterative procedure which corrects these components. The iteration ends if a 
criteria for stopping (ε in Fig. 11.4) is met. At the end of this process the velocity field is obtained. As 
will be shown in Section 11.4, the correction procedure is based on the minimization of a global error 
which represents two single errors. A parameter α determines the influence of these single errors on 
the global error. 

The new values u(n+1) and v(n+1) are obtained following the (n+1)-th iteration from the local mean values 
( )n

u  and 
( )n

v  and the results of the preceding iteration (u(n) and v(n)), using the following formulas (for 
derivation see Section 11.4): 
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

n n
x x y tnn 1

22 2 2
x y

n n
y x y tnn 1

22 2 2
x y

E E u E v E
u u

E E

E E u E v E
v v

E E

+

+

 + + 
 = −

α + +

 + + 
 = −

α + +

 

11.2 AdOculos Experiments 

To become familiar with Horn’s and Schunk’s procedure realize the New Setup shown in Fig. 11.5 as 
described in Section 1.6. The example uses two images of an apple (Fig. 11.6 (ASRC0-32.IV) and 
(ASRC1-32.IV)). (ASRC1-32.IV) is slightly reduced in size with the aid of camera zoom. The format of 
the source images was chosen to be only 32 * 32 due to the time-consuming iterative procedure. 
Moreover, the representation of the needle diagram (Fig. 11.7) is more satisfactory if the resolution of 
the image is low. 

 

 

Fig. 11.5: 

This chain of procedures is the basis for experiments concerning the Horn and Schunk algorithm. The New Setup is 
realized according to the steps described in Section 1.6. The results are shown in Fig. 11.6. 
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Fig. 11.6: 

This example uses two images of an apple (ASRC0-32.IV) and (ASRC1-32.IV)). The second image has been slightly 
reduced in size with the aid of the camera zoom. The format of the source images was chosen to be only 32 * 32 
due to the time-consuming iterative procedure. (3), (4) and (5) show the partial derivatives Ex, Ey and Et of the 
source images. Dark areas represent negative values, the light parts represent positive values and values which are 
approximately zero are represented by a medium gray color. (6) and (7) are the result of the first iteration of the 
enhancement procedure. Satisfactory results are obtained after 10 ((8) and (9)) and 50 ((10) and (11)) iterations. The 
needle image is shown in Fig. 11.7. The parameters used by Iterative Enhancement were No. of Iterations: 1, 10 
and 50 and for Alpha Value: 50. This parameter may be varied by clicking the right mouse button on the function 
symbol. 

 
In preparation for the iterative part of the procedure the partial derivatives Ex, Ey and Et of the source 
images is needed. The results for the apple example are shown in Fig. 11.6 (3), (4) and (5). In these 
figures the dark areas represent negative values, the light parts represent positive values and values 
which are approximately zero are represented by a medium gray color. 

The results of the first step of the iteration procedure are (6) and (7). The direction of movement (7) is 
according to the palette. The necessity for a correction is obvious considering the irregularities 
(especially of the direction). Already after 10 iterations a nearly faultless result is obtained ((8 and (9)). 
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Fig. 11.7: 

This needle image combines the velocity and direction images (10) and (11) 
shown in Fig. 11.6. 

 
After 50 iterations no further improvement is discernible ((10) and (11)). 

The movement direction of all pixels points to the center of the apple. The remaining inhomogeneities 
of the velocity field are mainly due to the small graylevel variations in the lower parts of the source 
images. Fig. 11.7 combines the velocity and direction images (10) and (11) to form a needle diagram. 

The parameters used by Iterative Enhancement were: 

No. of Iterations: 1, 10 and 50 

Alpha Value: 50. 

This parameter may be varied by clicking of the right mouse button on the function symbol. 

 

11.3 Source Code 

Fig. 11.9 shows a procedure which computes the partial derivates Ex, Ey and Et. Formal parameters 
are: 

ImSize: image size 

In0,In1: first and second input image 

Ex,Ey,Et: output image of the partial derivatives Ex, Ey and Et. 

The procedure starts with initialization of the output images Ex, Ey and Et. The following part realizes 
the computation, of the three derivatives, which has to be carried out for each pixel. r and c are the 
coordinates of the current pixel. 



11 Image Sequence Analysis - 11.3 Source Code 

 

Ad Oculos 261

 

-1

-1

-1-1

-1

-1 -1

-1-1 -1 -1

-1 -1

+1+1

+1

+1

+1 +1 +1

+1+1

+1 +1

+1 +1

1/ 1/ 1/

1/ 1/

1/1/1/

12 6 12

12 12

6 6

6

-1

 

Fig. 11.8: 

Masks to approximate partial derivatives and the 
Laplace operator. 

 
The problem of approximating partial derivatives has already been discussed in Chapter6. For the 
current case, the time-consuming procedures described in Chapter6 are unnecessary. For the present 
case the two spatial derivatives Ex and Ey are computed with the aid of the graylevel differences in a 2 
* 2 neigborhood (Fig. 11.8). Since there are two source images, the differences are computed for each 
of these images separately. The mean of the two resulting differences is utilized as the spatial 
derivative. The temporal derivative Et is obtained by the difference between the source images. 

 
void GenDerivates (ImSize, In0,In1, Ex,Ey,Et) 
int  ImSize; 
BYTE ** In0; 
BYTE ** In1; 
int  ** Ex; 
int  ** Ey; 
int  ** Et; 
{ 
   int  r,c; 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         Ex[r][c] = 0; 
         Ey[r][c] = 0; 
         Et[r][c] = 0; 
   }  } 
 
   for (r=0; r<ImSize-1; r++) { 
      for (c=0; c<ImSize-1; c++) { 
         Ex[r][c] = (int) In0[r][c+1] - In0[r][c] + In0[r+1][c+1] - In0[r+1][c] + 
                          In1[r][c+1] - In1[r][c] + In1[r+1][c+1] - In1[r+1][c]; 
         Ey[r][c] = (int) In0[r+1][c] - In0[r][c] + In0[r+1][c+1] - In0[r][c+1] + 
                          In1[r+1][c] - In1[r][c] + In1[r+1][c+1] - In1[r][c+1]; 
         Et[r][c] = (int) In1[r][c]   - In0[r][c]   + In1[r+1][c]   - In0[r+1][c] + 
                          In1[r][c+1] - In0[r][c+1] + In1[r+1][c+1] - In0[r+1][c+1]; 
         Ex[r][c] /= 4; 
         Ey[r][c] /= 4; 
         Et[r][c] /= 4; 
}  }  } 

Fig. 11.9: 

C realization for computing Ex, Ey and Et. 

 
The procedure shown in Fig. 11.10 realizes the algorithm by Horn and Schunk. Formal parameters are: 

ImSize: image size 

Alpha: parameter which determines the ratio of errors (Section 11.1 and Section 11.4 

Ex, Ey, Et: input image containing the partial derivatives Ex, Ey and Et 

Un1,Vn1: (n+1)-th iteration of the output images representing the horizontal and vertical 
 components of movement 

Un,Vn: n-th iteration of the output images representing the horizontal and vertical 
 components of movement. 
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void GenFlow (ImSize, Alpha, ExIm,EyIm,EtIm, Un1,Vn1, Un,Vn) 
int ImSize, Alpha; 
int ** ExIm; 
int ** EyIm; 
int ** EtIm; 
float ** Un1; 
float ** Vn1; 
float ** Un; 
float ** Vn; 
{ 
   int    r,c, Ex,Ey,Et, Alpha2; 
   float  u,v, um,vm, a,b; 
 
   for (r=0; r<ImSize; r++) { 
      for (c=0; c<ImSize; c++) { 
         Un[r][c] = Un1[r][c]; 
         Vn[r][c] = Vn1[r][c]; 
   }  } 
   Alpha2 = Alpha*Alpha; 
 
   for (r=1; r<ImSize-1; r++) { 
      for (c=1; c<ImSize-1; c++) { 
         um = (Un[r-1][c]  + Un[r][c+1]  + Un[r+1][c]  + Un[r][c-1])   /6 + 
              (Un[r-1][c-1]+ Un[r-1][c+1]+ Un[r+1][c+1]+ Un[r+1][c-1]) /12; 
         vm = (Vn[r-1][c]  + Vn[r][c+1]  + Vn[r+1][c]  + Vn[r][c-1])   /6 + 
              (Vn[r-1][c-1]+ Vn[r-1][c+1]+ Vn[r+1][c+1]+ Vn[r+1][c-1]) /12; 
 
         Ex = ExIm[r][c]; 
         Ey = EyIm[r][c]; 
         Et = EtIm[r][c]; 
 
         a = Ex*um + Ey*vm + Et; 
         b = (float)Alpha2 + Ex*Ex + Ey*Ey; 
         u = um - (Ex*a)/b; 
         v = vm - (Ey*a)/b; 
  
         Un1[r][c] = u; 
         Vn1[r][c] = v; 
}  }  } 

Fig. 11.10: 

C realization of the Horn and Schunk algorithm. 

 
The procedure starts by moving the results of the preceding (n+1)-th iteration (Fig. 11.4) into the data 
array Un and Vn which retains the n-th iteration. Furthermore, in order to save computing time, the 
product Alpha2 = Alpha*Alpha is computed in advance. 

The procedure which determines the new iteration of the movement components is embedded in the 

following two for loops. At the beginning of this procedure the mean values um (for u ) and vm (for v ) 
are computed. They are used to realize an approximation of the Laplace operator according to the 

formula ( )2u u u∇ ≈ − . Here u  represents a weighted mean. The weights for a 3 * 3 mask are shown 

in Fig. 11.8. Note that the central pixel is not included. This pixel is represented by the parameter u. 

The variables Ex, Ey and Et serve merely for better readability. Now all the parameters are present for 
running the iteration formulas: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

n n
x x y tnn 1

2 2 2
x y

n n
y x y tnn 1

2 2 2
x y

E E u E v E
u u

E E

E E u E v E
v v

E E

+

+

 + + 
 = −

α + +

 + + 
 = −

α + +

 



11 Image Sequence Analysis - 11.4 Supplement 

 

Ad Oculos 263

Obviously large parts of these formulas are identical, and are therefore represented by new variables a 
and b. Then the iteration formulas reduce to u = um - (Ex*a)/b; and v = vm - (Ey*a)/b; 

To keep this section short the software implementation of the iteration control based on the stopping 
criterion ε (Fig. 11.4) is not described. 

The original representation of the movement components is Cartesian. A polar representation (i.e. 
velocity and direction of movement) can be obtained using the algorithm introduced in Section 6.3.1. 
Algorithms for plotting needle diagrams are not part of image sequence analysis, they depend on the 
graphics environment being used and are therefore not discussed in this book. 

11.4 Supplement 

The main topic of the following section is a derivation of the algorithm by Horn and Schunk which was 
introduced in Section 11.1. The notation used is similar to that of the original work [11.3]. The 
algorithm basically aims to interpretat graylevel changes as movement. The fundamental problems of 
this approach have already been described in Section 11.1. 

The idea behind Horn’s and Schunk’s algorithm originates from a moving graylevel pattern. The scene 
must obey three constraints: 

• The illumination is constant. Therefore, all temporal changes of graylevels are caused by the 
movement of graylevel patterns. 

• The changes are smooth. Hence, the graylevel function is differentiable. 

• The moving objects must not overlap. 

Let the graylevel of a pixel the coordinates of which are (x,y) at time t be E(x,y,t). Relating the position 
of this pixel to the origin of the image function, it will be seen that ist graylevel will have changed in 
the event of pixel movement. However, if the position of the pixel is related to a pattern which has 
moved (the pixel under consideration is part of this pattern), then its graylevel does not change. The 
graylevel is described by: 

( ) ( )E x, y, t E x x, y y, t t= + δ + δ + δ  

δx, δy and δt represent the spatial and temporal displacement of the pattern. A Taylor expansion of the 
right term around the point (x,y,t) yields (Appendix D) 

( ) ( ) E E E
E x, y, t E x, y, t x y t R

x y t

∂ ∂ ∂= +δ +δ +δ +
∂ ∂ ∂

. 

Thus 

E E E
x y t R 0

x y t

∂ ∂ ∂δ +δ +δ + =
∂ ∂ ∂

 

Disregarding the remaining part R and dividing by δt it follows: 

x E y E E
0

t x t y t

δ ∂ δ ∂ ∂+ + =
δ ∂ δ ∂ ∂

 

If δt becomes infinitesimally small, the equation which describes the spatial and temporal changes of 
graylevels is obtained: 

E dx E dy E
0

x dt y dt t

∂ ∂ ∂+ + =
∂ ∂ ∂

 

or in short form: 

x y tE u E v E 0+ + =  

The partial derivatives of the graylevel (Ex, Ey and Et) can be obtained without problems. However, for 
determination of the two unknown parameters u und v more than one differential equation is needed. 
The second equation is based on the so-called „Smoothness Constraint“. The idea which  leads to this 
constraint is that single points in the image do not move irregularly. Adjacent pixels are very likely to 
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move similarly. In order to describe this idea Horn and Schunk use the spatial change of the 
movement components: 

2 22 2
u u v v

and
x y x y

   ∂ ∂ ∂ ∂   + +      ∂ ∂ ∂ ∂      
 

Now the smoothness constraint has to be joined with the differential equation. For this purpose two 
errors are defined as follows: 

b x y tE u E v Eε = + +  

2 22 2
2
c

u u v v

x y x y

   ∂ ∂ ∂ ∂   ε = + + +      ∂ ∂ ∂ ∂      
 

These errors are computed for each pixel of the source images and the overall error: 

( )2 2 2 2
b cb dxdyε = ε + α ε∫∫  

is to be minimized. α controls the ratio of the influence of the single errors on the overall error. 

Minimizing the overall error 

The classic tool used to solve minimization problems like this one is the calculus of variations 
(Appendix B). The function to be integrated is structured as follows: 

( )x y x yF x, y,u,v,u ,u ,v ,v dxdy∫∫  

Hence we have the following two Euler equations: 

x y

x y

F F F
0

u x u y u

F F F
0

v x v y v

  ∂ ∂ ∂ ∂ ∂ − − =    ∂ ∂ ∂ ∂ ∂   
  ∂ ∂ ∂ ∂ ∂
 − − =    ∂ ∂ ∂ ∂ ∂   

 

With 

( ) ( )2 2 2 2 2 2
x y t x y x yF E u E v E u u v v= + + +α + + +  

the partial derivatives of the first Euler equation are 

( )2
x x y x t
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∂

 ∂ ∂ = α  ∂ ∂ 
 ∂ ∂  = α
 ∂ ∂ 

 

The derivatives of the second Euler equation are determined in the 

same manner. Substituting the partial derivatives in the Euler 

equations we obtain: 
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( )
( )

2 2 2
x x y x t xx yy

2 2 2
y x y y t xx yy

2 E u E E v E E 2 u 2 u 0

2 E v E E u E E 2 v 2 v 0

+ + − α − α =

+ + − α − α =
 

or with ∇2u = uxx+uyy 

2 2 2
x x y x t

2 2 2
y x y y t

E u E E v E E u 0

E v E E u E E v 0

+ + − α ∇ =

+ + − α ∇ =
 

Using the approximation 
2u u u∇ ≈ −  the equation system becomes 

( )
( )

2 2 2
x x y x t

2 2 2
x y x y t

E u E E v u E E

E E u E v u E E

α + + = α −

+ α + = α −
 

Isolation of u and v makes it possible to apply the Gauss-Seidel iteration, and thereby solving the 
equations (Appendix E): 

( )
( ) ( )

( )
( ) ( )

n n2
x t x yn 1
2 2

x

n n2
y t x yn 1
2 2

y

u E E E E v
u

E

v E E E E u
v

E

+

+

α − −
=

α +

α − −
=

α +

 

In their original work Horn and Schunk isolate u and v, ending up with the well-known formulas 
(Section 11.1): 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

n n
x x y tnn 1

22 2 2
x y

n n
y x y tnn 1

22 2 2
x y

E E u E v E
u u
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+

+

 + + 
 = −

α + +

 + + 
 = −

α + +

 

These expressions allow the computing time to be reduced since large parts of the formulas are 
identical. 

Besides this classic algorithm by Horn and Schunk, there are several alternative approaches. 
Unfortunately, little work surveying „Image Sequence Analysis“ has been published. Jähne [11.5] 
however provides a detailed consideration of this topic. Early survey work has been largely due to 
Nagel [11.7] [11.8]. Schalkoff [11.9] also describes image sequence analysis fairly intensively. 

11.5 Exercises 

Exercise 11.1: 

Fig. 11.11 and Fig. 11.12 show a sequence of two images representing a moving block. Apply a 3 * 3 
matching window according to the example shown in Fig. 11.3. Omit a search window. Determine for 
every moving pixel in Fig. 11.11 the corresponding pixel in Fig. 11.11. Sketch a needle image based on 
these results. 

 



11 Image Sequence Analysis - 11.5 Exercises 

 

Ad Oculos 266

0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

c

r

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

555

5

5

555

10 10

10 10

555

5

5

5

5

5 5 5 5 5 5

5

5

5

5

10

10

10 10 10 10

10

10

101010

10

10

10

10

10

555

 

Fig. 11.11: 

Exercise 11.1 demonstrates the application of the correlation procedure 
for analyzing image sequences. The second image is shown in Fig. 
11.12. 
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Fig. 11.12: 

See Fig. 11.11. 
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Exercise 11.2: 

Acquire image sequences the graylevels of which vary due to illumination changings. Analyze the 
„pseudo motion“ with the procedures demonstrated in Section 11.2. 

 

Exercise 11.3: 

Write a program which realizes the correlation procedure demonstrated in Fig. 11.3. 

 

Exercise 11.4: 

Write a program which is able to track small moving objects. Acquire sequences of several images (for 
instance showing a moving light) to test your program. Alternatively generate artificial sequences. 

 

Exercise 11.5: 

Become familiar with every aspect of image sequence analysis offered by AdOculos (see AdOculos 
Help). 
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A General Purpose Procedures 

A.1 Definitions 

Fig. A.1 shows a list of data types used in the context of the Realization sections of this book. 

Since the „classic“ graylevel image is based on an unsigned 8 bit data type, the definition of a 
corresponding type BYTE is useful. 

The handling of region features (Section 5.3.3) requires some special data structures: CGStruc 
combines the coordinates of centers of gravity while PolStruc is used during the evaluation of polar 
distances. 

To represent a chain of contour points (Section 6.3.3) we need a data type which combines the 
coordinates of a contour point and its index for indicating its position in the chain. This is the purpose 
of the structure ChnStruc. The approximation of such chains by segments (Section 6.3.4) yields the 
coordinates of the segment terminating points. The points of one segment are determined with the 
aid of the structure SegStruc. The representation of a segment on a discrete grid is a basic problem 
of computer graphics. A well-known algorithm for solving this problem will be described in Appendix 
A.5. The handling of the pixels representing such a segment requires a data type which combines the 
coordinates of these pixels. The structure LinStruc serves this purpose. 
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#define  3.1415 
#define  BYTE  unsigned char 
 
struct CGStruc { 
   int r; 
   int c; 
}; 
 
struct PolStruc { 
   float Min; 
   float Max; 
}; 
 
struct ChnStruc { 
   int r; 
   int c; 
   int i; 
}; 
 
struct SegStruc { 
   int r0; 
   int c0; 
   int r1; 
   int c1; 
}; 
 
struct LinStruc { 
   int r; 
   int c; 
}; 
 
struct StrucStrucBin { 
   int r; 
   int c; 
}; 
 
struct StrucStrucGrey { 
   int r; 
   int c; 
   int g; 
}; 
 
struct EvalStruc { 
   float Energy; 
   float Contrast; 
   float Entropy; 
   float Homogen; 
}; 
 
typedef  struct CGStruc         CGTyp; 
typedef  struct PolStruc        PolTyp; 
typedef  struct LinStruc        LinTyp; 
typedef  struct ChnStruc        ChnTyp; 
typedef  struct SegStruc        SegTyp; 
typedef  struct StrucStrucBin   StrTypB; 
typedef  struct StrucStrucGrey  StrTypG; 
typedef  struct EvalStruc       EvalTyp; 

Fig. A.1:  

Definition of non-standard data types. 

 
The heart of morphological image processing (Section 8.3) is the structuring element. The shape of a 
structuring element is represented by coordinates relating to the origin of this structuring element. In 
the case of the morphological processing of graylevel images, the coefficients („graylevel“ of the 
structuring element) are added. The handling of the structuring elements is based on the data 
structures StrucStrucBin and StrucStrucGrey. 
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The evaluation of various textures (Section 9.3) with the aid of a co-occurrence matrix yields different 
texture features. The structure EvalStruc combines four features which are used in Section 9.3. 

A.2 Memory management 

A basic problem underlying of the procedures described in this book is memory management. Since 
the realization of memory management functions depends on the operating system, only the purpose 
of the functions used in the Realization sections is described: 

ImAlloc: serves to allocate memory for an image. The data type of a pixel (usually BYTE) 
 and the image size must be defined before the allocation is carried out 

ImFree: frees the memory previously allocated with the aid of ImAlloc 

GetMem: extends a list by an element of any data type. 

A.3 The procedures MaxAbs and MinAbs 

Fig. A.2 shows two functions returning the minimum (or maximum) absolute value of the two input 
values x and y. They are mainly used to support a fast transformation from Cartesian to polar 
representation (for an instance see Section 6.3.1). Both functions are self-explanatory. 

 
int MinAbs (x,y) 
int x,y; 
{ 
   int  ax,ay; 
   ax = (x<0) ? -x : x; 
   ay = (y<0) ? -y : y; 
   return ((ax<ay) ? ax : ay); 
} 
 
int MaxAbs (x,y) 
int x,y; 
{ 
   int  ax,ay; 
   ax = (x<0) ? -x : x; 
   ay = (y<0) ? -y : y; 
   return ((ax<ay) ? ay : ax); 
} 

Fig. A.2: 

C realization of procedures for calculating absolute values. 

 

A.4 The discrete inverse tangent 

The standard implementation of trigonometrical functions usually requires a lot of computing time. 
Image processing algorithms rarely depend on high-accuracy trigonometry. For instance, the gradient 
direction is mainly quantisized only by 3 (0 to 7 „degree“) 4 (0 to 15 „degree“), or 8 (0 to 255 „degree“) 
bits. The 4 bit quantization is illustrated in Fig. A.3: 16 where partitions divide the circle into segments 
of 22.5°. The partition borders are 11.25°, 33.75°, ..., 348.75°. The corresponding values of the inverse 
tangent are depicted in the boxes. A typical application for such an inverse tangent is the fast 
transformation from Cartesian to polar representation (Section 6.3.1). 

Fig. A.4 shows a procedure which derives the polar direction (quantized in 16 steps) from the 
Cartesian coordinates dy and dx. The calculation of the inverse tangent is required for only one 
quadrant. Therefore the procedure starts by calculating the absolute values of dy and dx. Using these 



A General Purpose Procedures - A.4 The discrete inverse tangent 

 

Ad Oculos 272

values the special cases of horizontal and vertical lines are checked and if necessary a corresponding 
value returned. 

 

0

1

2

345

6

7

8

9

10

11 12 13

14

15

y

x

101,25 -5,03

123,75 -1,50

146,25 -0,67

168,75 0,20

131,25 0,20

223,75 0,67

236,25 1,50

258,75 5,03 281,25 -5,03

303,75 -1,50

326,25 -0,67

348,75 -0,20

11,25 0,20

33,75 0,67

56,25 1,50

78,75 5,03

 

Fig. A.3: 

Strategy for the realization of the discrete inverse tangent. 

 
However, if none of the coordinates is zero, we need the quotient Ady/Adx. To avoid floating-point 
arithmetic in further steps the quotient is mutiplied by 100. This value is due to the following 
pragmatic approach: the accuracy of the quotient quo is sufficient while the range of Ady is large 
enough in the context of the current application. Please note that Ady is a long variable. 

The actual calculation of the inverse tangent is based on a comparison of the quotient quo and the 
partition borders (obviously also multiplied by 100) shown in Fig. A.3. This comparison yields angle 
values ranging from 0 to 4 for the first quadrant (Fig. A.4). The actual quadrant is determined by the 
signs of the coordinates dy and dx. Consequently the basic angle value must be corrected (by a type 
of shifting operation; see last return statement in Fig. A.4) according to the actual quadrant. 
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int DiscAtan16 (dy,dx) 
int dy,dx; 
{ 
   int   phi; 
   long  quo, Adx, Ady; 
 
   Adx = (long) abs (dx); 
   Ady = (long) abs (dy); 
 
   if (Adx==0 || Ady==0) 
      return  ((Adx==0 && Ady==0)  ?  0 : 
              ((Adx==0) ? 
              ((dy < 0) ?  12 : 4) : 
              ((dx < 0) ?   8 : 0))); 
   else{ 
      quo = (100*Ady) / Adx; 
 
      phi = ((quo <   20)  ?  0 : 
            ((quo <   67)  ?  1 : 
            ((quo <  150)  ?  2 : 
            ((quo <  503)  ?  3 : 4 )))); 
 
      return ((dy > 0)  ? 
             ((dx > 0)  ?  phi   : 8-phi) :     /* 1.quad : 2.quad */ 
             ((dx < 0)  ?  8+phi :              /* 3.quad */ 
             ((phi==0)  ?  0     : 16-phi)));   /* 4.quad */ 
}  } 

Fig. A.4: 

C realization of the discrete inverse tangent. 

 
This realization of the inverse tangent is easily extended to any angle range. Only the comparison 
algorithm need to be changed. In the case of a range of 256 angle values (leading to 64 comparisons) 
this algorithm does not seem very elegant but the approach is straightforward and yields a fast and 
robust solution. 

A.5 Generation of a Digital Segment 

The representation of an ideal segment by a discrete grid is not as simple as it seems. However, since 
this is a very basic problem of computer graphics several algorithms for solving it are available. The 
realization of one of these algorithms is shown in Fig. A.5. Its input values are the coordinates of the 
terminating points y0, x0, y1 and x1. Those pixels which represent the segment are collected by 
vector Line. The procedure returns the length of this vector. Note that the vector consumes memory 
which must be allocated at the right time (GetMem(Line); Appendix A.2). 
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int GenLine (y0,x0,y1,x1, Line) 
int    y0,x0,y1,x1; 
LinTyp * Line; 
{ 
   static int  Step [2] = {-1,1}; 
   int  XDiff, YDiff, XStep, YStep, Sum, i; 
    
   XStep = Step [x0<x1];  XDiff = abs (x0-x1); 
   YStep = Step [y0<y1];  YDiff = abs (y0-y1); 
 
   GetMem (Line); 
   Line[0].r = y0; 
   Line[0].c = x0; 
   i=1; 
 
   if (XDiff > YDiff) { 
      Sum = XDiff >> 1; 
      while (x0 != x1) { 
         x0 += XStep; 
         Sum -= YDiff; 
         if  (Sum < 0) { 
            y0 += YStep; 
            Sum += XDiff; 
         } 
         GetMem (Line); 
         Line[0].r = y0; 
         Line[0].c = x0; 
         i++; 
      } 
   }else{ 
      Sum = YDiff >> 1; 
      while (y0 != y1) { 
         y0 += YStep; 
         Sum -= XDiff; 
         if (Sum < 0) { 
            x0 += XStep; 
            Sum += YDiff; 
         } 
         GetMem (Line); 
         Line[0].r = y0; 
         Line[0].c = x0; 
         i++; 
   }  } 
   return (i++); 
} 

Fig. A.5: 

C realization of segment generation. The procedure GetMem and the data type LinTyp are defined in 
Fig. A.1. 

 
Since the procedure is based on a standard algorithm no further explanation concerning its details is 
given here. For more information check the specialized literature for computer graphics. 



 

 

B Calculus of Variations 

An important mathematical tool used, for instance, in image sequence analysis (Section 11.4) is the 
calculus of variations. The following sections offer a short and tool-oriented introduction to this topic. 

A typical application of the well-known differential calculus is the search for maxima or minima of a 
function. Such a function may describe a system (of any kind),the optimum states of which are 
represented by the extrema of the function. Unfortunately, we are frequently confronted with system 
optima which are not so simply defined. Assume a rocket is to transport a payload into orbit. The aim 
is to maximize the payload with regard to certain constraints. The optimum trajectory is not 
describable by simple extrema. It must be a function. The calculus of variations is a tool for finding 
such functions. 

Our everyday experience tells us that a straight line is the shortest distance between two points. 
However, what is the correct formal verification of this experience? To answer this question let us 
assume that two points (x0, y(x0)) and (x1, y(x1)) (with x0 < x1) are defined in a Cartesian system. As Fig. 
B.1 shows, these points can be connected by a smooth curve. This curve consists of infinitely short 
segments ds. The length l of the curve is: 
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Fig. B.1: On the determination of the minimum 
distance between two points. 

 
With 

( ) ( )
2

2 2 dy
ds dx dy 1 dx

dx
 = + = +  
 

 

the length is 

( )1

0

x 2

x
l 1+ y dx′= ∫  

Our aim is to find the function y(x) for which the integral yields the mimimum of l. In the context of 
calculus of variations such integrals are called functionals I: 

( )( ) ( )1

0

x 2

x
I y x 1+ y dx′= ∫  

Thus a functional is a function depending on another function. Generally an integral takes the form 
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( )( ) ( )( )1

0

x n
x

I y x F x, y, y ,..., y dx′= ∫  

Calculation of simple functionals 

The procedure of finding the optimum function y(x) is shown, as follows, with the aid of the simplest 
functional, namely: 

( )( ) ( )1

0

x

x
I y x F x, y, y dx′= ∫  

Let us assume that y(x0) and y(x1) are known. Now we „vary“ the functional with a function ( )y x  in the 

„neighborhood“ of y(x) which is defined as follows: 

( )y x y(x) n(x)= + α  

α is a parameter which may become infinitely small. n(x) is a continuous differentiable function which 

is defined in the interval x0 ≤ x ≤ x1. The values ( )0y x  and ( )1y x  must be identical to y(x0) and y(x1). 

Imagine the function y(x) as a string in a neutral position which is fixed at its terminating points (x0, 

y(x0)) and (x1, y(x1)). In terms of this example the neighborhood function ( )y x  is a string which is 

plucked gently and not released. 

The functional of the neighborhood function is 

( )( ) ( )
( ) ( )( )

1

0

1

0

x

x

x

x

I y x F x, y, y dx

F x, y n x , y n x dx

′=

′ ′= + α + α

∫

∫
 

Suppose the optimum function y(x) is already known. Furthermore assume the function ( )y x  is in 

such close proximity to y(x) that the functional ( )( )I y x  is simply describable as a function of α: 

( )( ) ( )I y x = Φ α  

Due to this „trick“ the variation problem is reduced to the well-known optimization problem, namely 
the minimization of the function Φ(α). For this purpose we need the first derivative as follows: 

( ) ( )1

0

x

x

d d
F x, y, y dx

d d

Φ α
′=

α α ∫  

According to the rules of the differentiation of integrals (Appendix C) we are allowed to put the 
differential quotient into the integral: 

( ) ( )1

0

x

x

d d
F x, y, y dx

d d

Φ α
′=

α α∫  

Shortening ( )F x,y,y′  to F, the according total differential (Appendix D) is 

F F F
dF dx dy dy

x y y

∂ ∂ ∂ ′= + + →
∂ ′∂ ∂

 

and 

dF F dx F dy F dy

d x d d dy y

′∂ ∂ ∂= + +
α ∂ α α α′∂ ∂

 

Due to ( ) ( ) ( )( )F x, y, y F x, y n x , y n x′ ′ ′= + α + α  we get 
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( ) ( )dF F F
n x n x

d y y

∂ ∂ ′= +
α ′∂ ∂

 

Thus, the integral becomes 

( ) ( ) ( )1 1

0 0

x x

x x

d F F
n x dx n x dx

d y y

Φ α ∂ ∂ ′= +
α ′∂ ∂∫ ∫  

With the aid of partial integration (Appendix C) the second integral is 

( ) ( ) ( )
1

1 1

0 0

0

x
x x

x x
x

F
d

F F y
n x dx n x n x dx

dxy y

∂
  ′∂ ∂ ∂′ = − 

′ ′∂ ∂  
∫ ∫  

The term ( )
1

0

x

x

F
n x

y

 ∂
 

′∂  
 is zero, since n(x0) = n(x1) = 0. Thus the whole integral becomes 

( ) ( )1

0

x

x

d F d F
n x dx

d dxy y

  Φ α ∂ ∂
 = −    α ′∂ ∂  

∫  

At the optimum point dΦ(α)/dα is zero. If, at the same time, α is forced to zero, we get (due to 

( )y x y(x) n(x)= + α  and ( )y x y (x) n (x)′ ′ ′= + α ) 

( )1

0

x

x

F d F
n x dx 0

dxy y

  ∂ ∂
 − =   ′∂ ∂  

∫ (B.1) 

Now the Trojan horse α has served its purpose. However, the neighborhood function n(x) must also be 
eliminated. This elimination is based on the fundamental lemma of the calculus of variation: 

Let n(x) be a continuously differentiable function with n(x0) = n(x1) = 0 and let G(x) be another 
continous function which is defined in the interval x0 ≤ x ≤ x1. If the integral 

( ) ( )1

0

x

x
n x G x dx∫  

becomes zero, then G(x) becomes zero too. 

The proof of this lemma is given in [B.1]. Applied to integral (B.1) the lemma means that the integral 
vanishes. The remaining part is 

F d F
0

y dx y

 ∂ ∂− = ′∂ ∂ 
(B.2) 

The solution to this differential equation optimizes the functional I(y(x)) with respect to the constraints 
y(x0) and y(x1). The application of the total differential (Appendix D) to the term (∂F/∂y’) yields 

F F F F
d dy dy dx

y y y y y x y

       ∂ ∂ ∂ ∂ ∂ ∂ ∂′= + +       ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂       
 

Thus the differential equation (B.2) takes the following form: 

2 2 2

2

F F F F
y y 0

y y y y xy

∂ ∂ ∂ ∂′′ ′− − − =
′ ′∂ ∂ ∂ ∂ ∂′∂

 

This equation is known as the Euler equation. It is one of the most important tools of the calculus of 
variations. To familiarize ourselves with this tool, let us apply it to the example of the search for the 
shortest distance between two points. The functional corresponding to this problem was 

( )( ) ( )1

0

x 2
x

I y x 1+ y dx′= ∫  

Thus 
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( ) ( )2
F x, y, y 1+ y dx′ ′=  

Since this equation only depends on y’ the following terms become zero: 

2 2F F F
0

y y y y x

∂ ∂ ∂= = =
′ ′∂ ∂ ∂ ∂ ∂

 

The remaining differential quotient is 

( )( )
2

2 3
2 2

F 1

y
1 y

∂ =
′∂

′+

 

Thus, the Euler equation reduces to 

( )( )
3

2 2

1
y 0

1 y

′′ =

′+

 

So it is sufficient to solve the differential equation y” = d2y/dx2 = 0. As expected the solution is 
obvious: 

1 2y c x c= +  

Calculation of functionals with several functions 

The calculation of functionals with several functions 

( ) ( ) ( )( ) ( )1

0

x
1 2 p 1 2 p 1 2 px

I y x , y x ,..., y x F x, y , y ,..., y , y , y ,..., y dx′ ′ ′= ∫  

the limits (y1(x0), y1(x1), y2(x0), y2(x1), etc.) of which are known, proceeds by variation of the single 
functions 

( )
( )

( )

1 1 1 1

2 2 2 2

p p p p

y x y (x) n (x)

y x y (x) n (x)

y x y (x) n (x)

= + α

= + α

•
•

= + α

 

Function Φ depends on α1, α2, ..., αp. So 

( ) ( )1

0

x
1 2 p 1 2 p 1 2 px
, ,..., F x, y , y ,..., y , y , y ,..., y dx′ ′ ′Φ α α α = ∫  

Thus we must realize p partial derivates of Φ and force them to zero. In the end we get p Euler 
equations (i = 1,2,...,p): 

i

2 2 2

i2
i i i ii

F F F F
y y 0

y y y y xy

∂ ∂ ∂ ∂′′ ′− − − =
′ ′∂ ∂ ∂ ∂ ∂′∂

 

Calculation of functionals with two independent functions 

Let the function y depend on two independent variables x1 and x2. Now the functional is 

( )( ) ( )1 21 2 1 2 x x 1 2
R

I y x ,x F x ,x , y, y , y dx dx= ∫∫  

with 
1 2x 1 x 2y y / x , y y / x= ∂ ∂ = ∂ ∂  and the limits determined by region R. The variation takes the form 
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( ) ( ) ( )1 2 1 2 1 2y x ,x y x ,x n x ,x= + α  

Except for a few details the remaining procedure is equivalent to those discussed above. This 
procedure yields the Euler equation 

1 21 x 2 x

F d F d F
0

y dx y dx y

   ∂ ∂ ∂   − − =
   ∂ ∂ ∂   

 

or: 

x x x x x x x x x 1 x 21 1 1 2 2 2 1 2 1 2

2 2 2

y y y y y y y y y y y x y x y2 2
1 2 1 21 2

y y y y y
F 2F F F F F F F 0

x x x xx x

∂ ∂ ∂ ∂ ∂+ + + + + + − =
∂ ∂ ∂ ∂∂ ∂
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C Rules for Integration 

For your convenience there follows some integration rules which are applied in Appendix B. 

Differentiation of an Integral 

The differentiation of an integral according to the rule of Leibnitz: 

( )( )
( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )b x b x

a x a x

b x a xd
f x, t dt f x, t dt f x,b x f x,a x

dx x dx dx

∂= + −
∂∫ ∫  

If the limits are constant the last two terms vanish. There remains  

( ) ( )b b

a a

d
f x, t dt f x, t dt

dx x

∂=
∂∫ ∫  

Partial Integration 

Partial integration is based on the rule 

( ) ( ) ( ) ( ) ( ) ( )u x v x dx u x v x u x v x dx′ ′= −∫ ∫



 

 

D Taylor Series Expansion/Total Differential 

To understand the calculus of variations described in Appendix B, basic knowledge of the Taylor series 
expansion is required. This mathematical tool is widely known but to aid understanding the following 
description is adapted to the desciptive style used in Appendix B. 

Taylor series expansion 

A function f(η) is approximated at point η by the following Taylor polynomial: 

( ) ( ) ( ) ( ) ( ) ( )20 0
0 0 0

f f
f f ... R

1! 2!

′ ′′η η
η = η + η − η + η − η + +  

R is the remainder of the approximation. Assume the following example: the function f(x+δx) is to be 
approximated at point x using the Taylor polynomial to the first derivative. In this case we get η = 
x+δx, η0 = x and f’(η0) = f’(x) = df(x)/dx. The desired approximation is 

( ) ( ) ( )df x
f x x f x x R

dx
+ δ = + δ +  

In the case of a function which depends on multiple variables f(η) = f(η1, η2, ..., ηn) we approximate at 

point ( ) ( )0 0 01 2 nf f , ,...,η = η η η : 

( ) ( ) ( ) ( ) ( ) ( )0 0

2n n 20
i i i i0 0

i ii 1 i 1

f 1
f f f ... R

2!= =

∂ η  ∂η = η + η − η + η − η η + + ∂η ∂η  
∑ ∑  

Take the function f(x+δx, y+δy, t+δt) as an example. This function is to be approximated at point (x,y,t). 
Now we get 1 2 3x x, y y, t tη = + δ η = + δ η = + δ , 

0 0 01 2 3x, y, tη = η = η =  and 

( ) ( )0 0 0

0

1 2 3

1

f , , , f x, y, t f

x x

∂ η η η ∂ ∂= =
∂η ∂ ∂

 

We get ∂f/∂y and ∂f/∂t in a similar way. The result of the approximation is: 

( ) ( ) f f f
f x x, y y, t t f x, y, t x y t R

x y t

∂ ∂ ∂+ δ + δ + δ = + δ + δ + δ +
∂ ∂ ∂

 

Total differential 

In some cases it is sufficient to base the approximation merely on the first derivative of the Taylor 
polynomial: 

( ) ( ) ( ) ( )
0

n
0

i i0
ii 1

f
f f R

=

∂ η
η = η + η − η +

∂η∑  

Of special interest is the difference between the values f(η) and f(η0): 

( ) ( )
0

0

i i i

u f f∆ = η − η

∆η = η − η
 

Thus 
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( )n
0

i
ii 1

f
u R

=

∂ η
∆ = ∆η +

∂η∑  

The transition from differences to differentials and a vanishing remainder R leads to the total 
differential 

( )n
0

i
ii 1

f
u d

=

∂ η
∆ = η

∂η∑  

As application example assume that the total differential has the function u = f(η0, η1, η2): 

0 1 2
0 1 2

u u u
u d d d

∂ ∂ ∂∆ = η + η + η
∂η ∂η ∂η

 

Interpreting the differentials dη0, dη1, dη2 as unit vectors of a Cartesian system we get the gradient: 

u u u
gradu e e ex y z

0 1 2

∂ ∂ ∂= + +
∂η ∂η ∂η



 

 

E Gauss-Seidel Iteration 

The Horn and Schunk procedure analyzing image sequences is based on a linear system (Chapter 
11.4). A well-known method for a numerical solution is the Gauss-Seidel iteration. It is characterized by 
a robust convergence and insensitivity to computational errors. However, it suffers from a serious 
drawback: it is known that in some cases the iteration does not converge. 

Fortunately the convergence is secure if the system is diagonal [E.1]. The following example illustrates 
the procedure (adapted from [E.1]): 

1 2 3

1 2 3

1 2 3

10x x x 12

2x 10x x 13

2x 2x 10x 14

+ + =
+ + =
+ + =

 

The system is solved starting with the equation possessing the greatest coefficient: 

1 2 3

2 2 3

3 2 3

x 1.2 0.1x 0.1x

x 1.3 0.2x 0.1x

x 1.4 0.2x 0.2x

= − −
= − −
= − −

 

To solve the first equation we start the iteration with any start value for x2 and x3. With x2 = x3 = 0, x1 is 
1.2. With x1 = 1.2 and x3 = 0 the second equation yields x2 = 1.06. x3 is then calculated to be 0.95. 
Thus the whole procedure is carried out according to the following scheme: 

2 3 1

1 3 2

1 2 3

x x 0 x 1.20

x 1.2 x 0 x 1.06

x 1.2 x 1.06 x 0.95

= = → =
= = → =

= = → =
 

These values are then the basis for the second iteration: 

2 3 1

1 3 2

1 2 3

x 1.06 x 0.95 x 0.99

x 0.99 x 0.95 x 1.00

x 0.99 x 1.00 x 1.00

= = → =
= = → =
= = → =

 

The third iteration proceeds accordingly and yields x1 = 1, x2 = 1 und x3 = 1. The differences of these 
results compared to those of the second iteration are slight. Thus the iteration procedure can now be 
stopped. 
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F Multivariate Normal Distribution 

The parametric classifiers discussed in Section 10.4 use normal distribution to describe feature 
spaces. The one-dimensional normal distribution is well-known: 

2

2

(x )
-

21
f (x) exp

2

−µ
σ=

πσ
 

Since feature spaces are usually multi-dimensional we need a corresponding normal distribution: 

With 

 

( )

2

m / 2

x x : Vector of independent variables

: Mean vector

C : n * n-Covariance matrix

: Normalizing factor2 2

→
µ → µ

σ →

π → π

 

the one-dimensional normal distribution becomes m-dimensional: 

1T1
- (x ) C (x )
2

m / 2

1
f (x) exp

(2 ) detC

−−µ −µ
=

π
 

The multivariate normal distribution is a fairly specialized topic and might not be found in basic 
mathematical literature. However, a detailed discussion is offered by Moran [F.1]. 
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G Solutions to Exercises 

Chapter 1    Introduction 

Exercise 1.1: 

A pixel represents an area of 20*20 m. 

Exercise 1.2: 

512*512*8 = 2,097,152 bits have to be sent. Thus the transmission takes 218 seconds. Note that in 
practice the transmission protocol of the serial link consumes additional time. 

Exercise 1.3: 

A single image has 1280*1024*24 = 31,457,280 bits. The transmission of 25 such images per second 
requires 786,432,000 baud (750M bits/second or approximately 100M bytes. Note that in practice the 
transmission protocol of the serial link consumes additional time. 

Exercise 1.4: 

Fig. G1.1 and Fig. G1.2 show the sampling grids and digitized images with a resolution of 8*8 and 
16*16 pixels. 

 
x
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c

r  

Fig. G1.1: 

Sampling grid and digitized image with a resolution of 8*8 pixels. 

 
x

y

c

r  

Fig. G1.2: 

Sampling grid and digitized image with a resolution of 16*16 pixels. 
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Exercise 1.5: 

Fig. G1.3 shows that a structure which is finer than the sampling grid disappears. 

 
c

r  

Fig. G1.3: 

The answer to the question posed in Fig. 1.20 is: the structure disappears. 
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Exercise 1.6: 

Fig. G1.4 shows the complete sample and tile representation. 
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Fig. G1.4: 

This is the result of Exercise 1.6. 
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Chapter 2    Point Operations 

Exercise 2.1: 

The mapping function is shown in Fig. G2.1, the look-up table in Fig. G2.2, the resulting image in Fig. 
G2.3 and the two histograms in Fig. G2.4 and Fig. G2.5. 
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Fig. G2.1: 

This is the mapping function for Exercise 2.1. 
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Fig. G2.2: 

This is the look-up table for Exercise 2.1. 
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Fig. G2.3: 

This is the resulting image for Exercise 2.1. 
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Fig. G2.4: 

This is the histogram for Exercise 2.1. 
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Fig. G2.5: 

This is the cumulative histogram for Exercise 2.1. 
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Fig. G2.6: 

This is the mapping function for Exercise 2.2. 
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Exercise 2.2: 

The mapping function is shown in Fig. G2.6, the look-up table in Fig. G2.7, the resulting image in Fig. 
G2.8 and the two histograms in Fig. G2.9 and Fig. G2.10. 
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Fig. G2.7: 

This is the look-up table for Exercise 2.2. 
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Fig. G2.8: 

This is the resulting image for Exercise 2.2. 

 



G Solutions to Exercises - Chapter 2    Point Operations 

 

Ad Oculos 296

5

10

15

20

50 100 150 200 250

Graylevel
Occurrence

Graylevel 

Fig. G2.9: 

This is the histogram for Exercise 2.2. 
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Fig. G2.10: 

This is the cumulative histogram for Exercise 2.2. 
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Exercise 2.3: 

The mapping function is shown in Fig. G2.11, the look-up table in Fig. G2.12, the resulting image in 
Fig. G2.13 and the two histograms in Fig. G2.14 and Fig. G2.15. 
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Fig. G2.11: 

This is the mapping function for Exercise 2.3. 
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Fig. G2.12: 

This is the look-up table for Exercise 2.3. 
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Fig. G2.13: 

This is the resulting image for Exercise 2.3. 
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Fig. G2.14: 

This is the histogram for Exercise 2.3. 
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Fig. G2.15: 

This is the cumulative histogram for Exercise 2.3. 
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Exercise 2.4: 

The cumulative histogram (Fig. 2.3) of the source image (Fig. 2.1) yields the first mapping step: 
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Since the graylevels should range from 0 to 250 the mapping is as follows: 
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The resulting image and its histograms are shown in Fig. G2.16, Fig. G2.17 and Fig. G2.18. 
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Fig. G2.16: 

This is the resulting image for Exercise 2.4. 
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Fig. G2.17: 

This is the histogram for Exercise 2.4. 
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Fig. G2.18: 

This is the cumulative histogram for Exercise 2.4. 
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Exercise 2.5: 

The complete slices are shown in Fig. G2.19. 
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SFig. G2.19: 

These are the complete slices of the image shown in Fig. 2.16. 
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Exercise 2.6: 

The graylevel mapping results are shown in Fig. G2.20. Fig. G2.21 depicts the corrected image. 
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Fig. G2.20: 

These are the graylevel mappings to correct the inhomogeneous illumination 
shown in Fig. 2.17. 

 

10 10 101010101010

10 10 101010101010

10 10 101010101010

10 10 101010101010

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

10 10

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100

100100100

100

100

100

100

100

10

10

10

10

10

10 10

10

10

101010

1010

10

 

Fig. G2.21: 

This is the result of applying the mappings shown in Fig. 2.20 to the source 
image shown in Fig. 2.29. 

 
Exercise 2.7: 
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The resulting images are shown in Fig. G2.22 and Fig. G2.23. 
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Fig. G2.22: 

On the right hand side the result of adding the noisy image in Fig. 2.30 to 
the resulting image in Fig. 2.18 is shown. 
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Fig. G2.23: 

On the right hand side the result of adding the noisy image in Fig. 2.31 to 
the resulting image in Fig. 2.22 is shown. 
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Chapter 3    Local Operations 

Exercise 3.1: 

The output image resulting from the application of a Gaussian mean is shown in Fig. G3.1. 
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Fig. G3.1: 

Result of the application of a 3 * 3 Gaussian low-pass filter to the input image 
shown in Fig. 3.2. 

 
Exercise 3.2: 

The result of the max operator is shown in Fig. G3.2. 
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Fig. G3.2:: 

Complementary to the min operator (Fig. 3.5) is the 3 * 3 max operator. It cleans 
the light region of the input image (Fig. 3.2) but destroys the dark region. 

 
Exercise 3.3: 

The result of the median operator is shown in Fig. G3.3. 
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Fig. G3.3: 

The median operator has cleaned both the dark and the light regions of the 
input image (Fig. 3.2) without flattening the steep graylevel step between these 
regions. The median operator is especially successful at removing black and 
white spots (salt-and-pepper noise) from an image. 
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Exercise 3.4: 

The result of the nearest neighbor operator (k=6) is shown in Fig. G3.4. 
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Fig. G3.4: 

This is the result of a 3 * 3 nearest neighbor operator with k=6 (including the 
current pixel) applied to the input image shown in Fig. 3.2. Compared to the 
result for k=3 (Fig. 3.7) the smoothing effect is enhanced without the 
corresponding disadvantage of a flattened graylevel step. 

 
Exercise 3.5: 

Fig. G3.5 shows the result of applying min and max operations to emphasize graylevel steps. 
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Fig. G3.5: 

This is an alternative to the procedure shown in Fig. 3.13. Left: Results 
of a second lowest (top) and a second highest (bottom) operation 
applied to the source image (Fig. 3.8). Right: The absolute difference 
between the second lowest and the second highest graylevels yields 
the emphasized graylevel step between the dark and the light regions. 
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Exercise 3.6: 

Fig. G3.6 shows the result of the second iteration of the closest of min and max operator. 
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Fig. G3.6: 

The second iteration of the 3 * 3 closest of min and max operator (applied to the 
result of the first iteration shown in Fig. 3.15) yields the steepest possible 
graylevel step between the dark and the light region. 

 
Exercise 3.7: 

Fig. G3.7 shows the application of a 5 * 5 closest of min and max operator. Apart from a small peak 
the 5 * 5 operator provides a good result. The peak may be removed by a median operator (Section 
3.1.1). 
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Fig. G3.7: 

This is the result of a 5 * 5 closest of min and max operator applied to the new 
input image (Fig. 3.16). 
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Chapter 4    Global Operations 

Exercise 4.1: 

In Section 4.4 the DFT was separated into its real and imaginary part as follows: 
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To simplify the equations we first use real input signals only (bm=0). Furthermore only 8 samples 

(M=8) are used. Hence 
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Exercise 4.2: 

The spectrum representing the second harmonic is shown in Fig. G4.1. 
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Fig G4.1: 

Solution to Exercise 4.2. 
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Exercise 4.3: 

The spectrum representing the cosinusoidal signal is shown in Fig. G4.2. 

 

DFT

0
20 6 751

A
3 4A A A A A A A

0 0 0 0 0 0
20 6 751

B
3 41

0 0 0 0 0
B B B B B B B

-
2

0 00 0 00 0 0 0 0 0 0
o

CART

POL

001 -1
2

2
- 2

2
- 2

2
-- 2

2
--

x

a(x)

1

-1

00
1-
2

1-
2

1-
2 0 0

o

0
a a a a a a a a

1 2 3 4 5 6 7

0 1 2 4 5 63 7 20 6 751 3 4

 

Fig G4.2: 

Solution to Exercise 4.3. 
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Exercise 4.4: 

The spectrum representing the DC signal is shown in Fig. G4.3. 
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Fig G4.3: 

Solution to Exercise 4.4. 
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Exercise 4.5: 

The spectrum representing the pulse is shown in Fig. G4.4. 
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Fig G4.4: 

Solution to Exercise 4.5. 
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Exercise 4.6: 

Fig. G4.5 shows the 2-dimensional sinusoidal signal (first harmonic) and its spectrum. 
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Fig G4.5: 

Solution to Exercise 4.6. 
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Exercise 4.7: 

Fig. G4.6 shows the 2-dimensional sine signal (second harmonic) and its spectrum. 
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Fig G4.6: 

Solution to Exercise 4.7. 
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Exercise 4.8: 

Fig. G4.7 shows the superposition of a sinusoidal signal (second harmonic) and a cosinusoidal signal 
as well as the spectrum of the 2-dimensional signal. 
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Fig G4.7: 

Solution to Exercise 4.8. 
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Exercise 4.9: 

Fig. G4.8 shows the 2-dimensional sinusoidal signal (second harmonic) and its spectrum. 
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Fig G4.8: 

Solution to Exercise 4.9. 
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Exercise 4.10: 

The 4 resulting images are shown in Fig. G4.9. 
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Fig G4.9: 

Solution to Exercise 4.10. 

 



G Solutions to Exercises - Chapter 4    Global Operations 

 

Ad Oculos 319

Exercise 4.11: 

No, as Fig. G4.10 shows the magnitude is not invariant to rotation. 
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Fig G4.10: 

Solution to Exercise 4.11. 
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Exercise 4.12: 

No, as Fig. G4.11 shows the magnitude is not invariant to rotation. 
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Fig G4.11: 

Solution to Exercise 4.12. 
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Chapter 5    Region-Oriented Segmentation 

Exercise 5.1: 

The result of applying the "wrong" thresholds 2.5 and 8.5 are shown in Fig. G5.1 and Fig. G5.2. 
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Fig G5.1: 

A threshold of 2.5 applied to the source image shown in Fig. 5.2 yields a '1' 
region which is larger than that obtained by the threshold defined by the 
procedure shown in Fig. 5.2. 
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Fig G5.2: 

A threshold of 8.5 applied to the source image shown in Fig. 5.2 yields a '1' 
region which is smaller than that obtained by the threshold defined by the 
procedure shown in Fig. 5.2. 

 
Exercise 5.2: 

The manipulated histogram is shown in Fig. G5.3. Fig. G5.4 shows the new label image. 
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Fig G5.3: 

Averaging the original histogram shown in Fig. 5.4 fills the valley at graylevel 19 up. 
Thus only 2 thresholds have to be applied. 
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Fig G5.4: 

The thresholds found in the manipulated histogram (Fig. 5.3) 
applied to the source image (Fig. 5.3) yield the correct 
segmentation. 

 
Exercise 5.3: 

Fig. 5.5 shows the label and mark image. 
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Fig G5.5: 

This is the result of Exercise 5.3. The label image is obtained segmenting 
the source image shown in Fig. 5.35 using the thresholds 8, 13 and 17. The 
connectivity analysis yields 5 different regions plus background. Note that 
region 'b' is superfluous if we interpret its original graylevel (Fig. 5.35) as 
transition between region 'a' and 'c'. 



G Solutions to Exercises - Chapter 6    Contour-Oriented Segmentation 

 

Ad Oculos 323

Chapter 6    Contour-Oriented Segmentation 

Exercise 6.1: 

The results of the application of the gradient masks shown in Fig. 6.35 to the source image (Fig. 6.3) 
are shown in Fig. G6.1 and Fig. G6.2. 
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Fig G6.1: 

In comparison to the result of the simple gradient operator shown in Fig. 6.4 
the improvement of this 2 * 2 mask is negligible. 
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Fig G6.2: 

Compared to the results shown in Fig. 6.4 and Fig. 6.1, this 3 * 3 gradient 
operator yields superior results. 

 
Exercise 6.2: 

The neighborhood relations and the local maxima are shown in Fig. G6.3, the results of the similarity 
check are depicted in Fig. G6.4. 
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Fig G6.3: 

This is the result of the first step of a non-maxima suppression applied to 
the source image shown in Fig. 6.36. 
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Fig G6.4: 

This is the result of the similarity check applied to the local maxima image 
shown in Fig. G6.3. 

 
Exercise 6.3: 

Fig. G6.5 shows the result of the 4-to-8 transform starting bottom right. 

 

Start Result  

Fig G6.5: 

In this variation of the example shown in Fig. 6.13 the 
processing starts bottom right. Note that the results 
differ. 
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Exercise 6.4: 

Fig. G6.6 shows the result of the refined 4-to-8 transform applied to the chain of contour points shown 
in Fig. 6.37. 

 

Start

Result 

Fig G6.6: 

The application of the refined 4-to-8 transform on the chain shown in Fig. 
6.37 yields a convincing result. 
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Exercise 6.5: 

The result of the linking procedure is shown in Fig. G6.7. 
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Fig G6.7: 

This is the result of the linking procedure applied to the image shown in Fig. 
6.38. 
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Chapter 7    Hough Transform 

Exercise 7.1: 

Because in the accumulator parallel lines are indicated by equal θ values. 

Exercise 7.2: 

The accumulator resulting from the application of the Hough transform to Fig. 7.18 is shown in Fig. 
G7.1. 
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Fig G7.1: 

This is the result of the Hough transform applied to the gradient image shown in Fig. 
7.18. The four 4-entries are caused by the 16 vertically and horizontally oriented 
contour points representing the borders of the square, while the four 1-entries 
represent its corners. 

 
Exercise 7.3: 

Fig. G7.2 shows the straight lines obtained from the accumulator shown in Fig. G7.1. 
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Fig G7.2: 

The diagonal straight lines extracted from the 
accumulator (Fig. 7.1) are displaced by one pixel. This 
is due to the quantization effects calculating r and the 
intersection points at the image border. 
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Exercise 7.4: 

The correctly placed straight lines are shown in Fig. G7.3. 
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Fig G7.3: 

Avoiding quantization leads to an exact placement of the straight lines. 
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Chapter 8    Morphological Image Processing 

Exercise 8.1: 

The result shown in Fig. G8.1 demonstrates the duality of erosion and dilation. 
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Fig G8.1: 

The solution to Exercise 8.1 demonstrates the duality of erosion 
and dilation. 

 
Exercise 8.2: 

The procedure is depicted in Fig. G8.2. 
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Fig G8.2: 

The solution to Exercise 8.2. 
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Exercise 8.3: 

The result of contour extraction is shown in Fig. G8.3. 
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Fig G8.3: 

The solution to Exercise 8.3. 
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Exercise 8.4: 

The results shown in Fig. G8.4 and Fig. G8.5 demonstrate that the skeleton procedure described in 
this chapter has to be applied carefully since it may be destructive.  
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Fig G8.4: 

This is the first part of the solution to Exercise 8.4. See also Fig. G8.5. 
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Fig G8.5: 

This is the second part of the solution to Exercise 8.4. 
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Chapter 9    Texture analysis 

Exercise 9.1: 

The graylevel mean (5) and variance (25) is identical for both images. 

Exercise 9.2: 

The results of the local graylevel mean and variance operations are shown in Fig. G9.1. 
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Fig G9.1: 

Solution to Exercise 9.2. 
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Exercise 9.3: 

The co-occurrence matrices are shown in Fig. G9.2, Fig. G9.3 and Fig. G9.4.  
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Fig G9.2: 

Solution to Exercise 9.3 (a). 
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Fig G9.3: 

Solution to Exercise 9.3 (b). 
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Fig G9.4: 

Solution to Exercise 9.3 (c). 
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Chapter 10    Pattern recognition 

Exercise 10.1: 

For rejection level 2 the class centers are z = {10 Francs, 5 Marks, 1 Pound, 2 Francs, 1 Krone, 1 Mark, 
5 Cents, 10 Pfennings, 1 Pence, 10 Øres}. The following classes were generated: 

k0 = {10 Francs}, 

k1 = {5 Marks}, 

k2 = {1 Pound}, 

k3 = {2 Francs, 2 Marks}, 

k4 = {1 Krone, 1 Franc}, 

k5 = {1 Mark, 1 Quarter}, 

k6 = {5 Cents, 1/2 Franc}, 

k7 = {10 Pfennings, 25 Øres, 20 Centimes}, 

k8 = {1 Pence, 10 Centimes}, 

k9 = {10 Øres, 1 Cent}. 

 

For rejection level 3 the class centers are z = {10 Francs, 5 Marks, 1 Pound, 2 Francs, 1 Krone, 1 Mark, 
5 Cents, 10 Pfennings, 10 Øres}. The following classes were generated: 

k0 = {10 Francs}, 

k1 = {5 Marks}, 

k2 = {1 Pound}, 

k3 = {2 Francs, 2 Marks}, 

k4 = {1 Krone, 1 Franc}, 

k5 = {1 Mark, 1 Quarter}, 

k6 = {5 Cents, 1/2 Franc}, 

k7 = {10 Pfennings, 25 Øres, 20 Centimes, 1 Pence}, 

k8 = {10 Øres, 10 Centimes, 1 Cent}. 

 

For rejection level 4 the class centers are z = {10 Francs, 2 Francs, 1 Franc, 5 Cents, 25 Øres, 10 
Øres}. The following classes were generated: 

k0 = {10 Francs, 5 Marks, 1 Pound}, 

k1 = {2 Francs, 2 Marks, 1 Krone}, 

k2 = {1 Franc, 1 Mark, 1 Quarter}, 

k3 = {5 Cents, 1/2 Franc, 10 Pfennings, 1 Pence}, 

k4 = {25 Øres, 20 Centimes}, 

k5 = {10 Øres, 10 Centimes, 1 Cent}. 

 

For rejection level 5 the class centers are z = {10 Francs, 2 Francs, 1 Franc, 5 Cents, 20 Centimes, 10 
Øres}. The following classes were generated: 

k0 = {10 Francs, 5 Marks, 1 Pound}, 

k1 = {2 Francs, 2 Marks, 1 Krone}, 

k2 = {1 Franc, 1 Mark, 1 Quarter}, 

k3 = {5 Cents, 1/2 Franc, 10 Pfennings, 25 Øres, 1 Pence}, 

k4 = {20 Centimes}, 

k5 = {10 Øres, 10 Centimes, 1 Cent}. 
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For rejection level 6 the class centers are z = {10 Francs, 2 Marks, 1 Mark, 1 Pence}. The following 
classes were generated: 

k0 = {10 Francs, 5 Marks, 1 Pound, 2 Francs}, 

k1 = {2 Marks, 1 Krone, 1 Francs}, 

k2 = {1 Mark, 1 Quarter, 5 Cents, 1/2 Franc, 10 Pfennigs, 25 Øres, 20 Centimes}, 

k3 = {1 Pence, 10 Øres, 10 Centimes, 1 Cent}. 

Exercise 10.2 (a): 

The center for the sample class ‘a’ is (x=4.7, y=11.3) the radius of its close border is 2.3 the radius of 
the wider border is 4.3. Sample class ‘b’ is positioned at (x=11.7, y=4.0). The borders are 3.0 and 6.3. 
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Chapter 11    Image sequence analysis 

Exercise 11.1: 

Tab. G11.1 shows the movement of the pixels whilst the needle image is shown in Fig. G11.1. 
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Tab. G11.1: 

This table shows the movement of the pixels asked for in Exercise 
11.1. 
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Fig. G11.1: 

This is the needle image asked for in Exercise 11.1. 
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