Übungsblatt 1 - Musterlösungen

Technische Hochschule Mittelhessen, Fachbereich MNI, Diskrete Mathematik, Prof. Dr. B. Just

Aufgabe 1

$\underline{\operatorname{Satz}}$		$\underline{ ext{Wahrheitswert}}$	
21 ist durch 5 ohne Rest teilbar.	$\jmath a$	falsch (21 nicht durch 5 teilbar)	
Was heißt nochmal "ohne Rest teilbar"?	nein	Ist eine Frage	
Die Stadt x liegt in England.	ja	Abhängig von x	
Es gibt eine Stadt, die in England liegt.	ja	richtig	
Alle Städte liegen in England.	ja	falsch	
Das Quabel hält Winterschlaf.	ja	Abhängig vom Quabel	
Das Xabel frißt keine Insekten.	ja	Abhängig vom Xabel	
Das Quabel hält Winterschlaf und das Xabel frißt keine Insekten	ja	Abhängig von Quabel und Xabel.	
Das Quabel hält Winterschlaf oder das Xabel frißt keine Insekten	ja	Abhängig von Quabel und Xabel.	

Aufgabe 2

- a.) <u>Satz:</u> 21 ist durch 5 ohne Rest teilbar.
 Verneinung: 21 ist nicht durch 5 ohne Rest teilbar.
- b.) <u>Satz:</u> Was heisst nochmal "ohne Rest teilbar"? Verneinung: Entfällt, keine Aussage.
- c.) <u>Satz:</u> Die Stadt x liegt in England. Verneinung: Die Stadt x liegt nicht in England.
- d.) <u>Satz:</u> Es gibt eine Stadt, die in England liegt.

 <u>Verneinung:</u> Es gibt keine Stadt, die in England liegt.

 (Mit anderen Worten: Alle Städte liegen nicht in England.)
- e.) <u>Satz:</u> Alle Städte liegen in England.

 <u>Verneinung:</u> Es gibt eine Stadt, die nicht in England liegt.
- f.) <u>Satz:</u> Das Quabel hält Winterschlaf. Verneinung: Das Quabel hält keinen Winterschlaf.
- g.) <u>Satz:</u> Das Xabel frißt keine Insekten. Verneinung: Das Xabel frißt Insekten.
- h.) <u>Satz:</u> Das Quabel hält Winterschlaf und das Xabel frißt keine Insekten. Verneinung: Das Quabel hält keinen Winterschlaf oder das Xabel frißt Insekten.
- i.) <u>Satz:</u> Das Quabel hält Winterschlaf oder das Xabel frißt keine Insekten. Verneinung: Das Quabel hält keinen Winterschlaf und das Xabel frißt Insekten.

Aufgabe 3

a)

α_j					
a	$\mid b \mid$	$a \Leftrightarrow b$	$(a \Rightarrow b) \land (b \Rightarrow a)$	$a \Rightarrow b$	$b \Rightarrow a$
0	0	1	1	1	1
0	1	0	0	1	0
1	0	0	0	0	1
1	1	1	1	1	1

Die Einträge in den Spalten $a \Leftrightarrow b$ und $a \Rightarrow b \land b \Rightarrow a$ sind überall gleich, also sind die Aussagen gleichwertig.

Die Spalten $a\Rightarrow b$ und $b\Rightarrow a$ sind Zwischenschritte, die benutzt wurden um $a\Rightarrow b\wedge b\Rightarrow a$ zu berechnen.

b)

,					
a	$\mid b \mid$	$a \Rightarrow b$	$\neg b \Rightarrow \neg a$	$\neg b$	$\neg a$
0	0	1	1	1	1
0	1	1	1	0	1
1	0	0	0	1	0
1	1	1	1	0	0

Die Einträge in den Spalten $a\Rightarrow b$ und $\neg b\Rightarrow \neg a$ sind überall gleich, also sind die Aussagen gleichwertig.

Die anderen Spalten sind Zwischenwerte, die benutzt wurden um $\neg b \Rightarrow \neg a$ zu berechnen.

Aufgabe 4

a)

es regnete \Rightarrow die Straße ist nass

Die Aussage / Folgerung ist wahr, denn immer wenn es regnet, ist die Straße nass

b)

die Straße ist nass \Rightarrow es regnete

Die Aussage / Folgerung ist $\underline{\text{falsch}}$, denn es gibt Situationen, in der die Straße nass ist und es nicht geregnet hat

(sondern z.B. ein Auto gewaschen wurde)

c)

es regnete nicht \Rightarrow die Straße ist nicht nass

Die Aussage / Folgerung ist $\underline{\text{falsch}}$, denn es gibt Situationen, in der es nicht regnete, die Straße aber trotzdem nass ist.

(wieder Autowäsche)

ď

die Straße ist nicht nass \Rightarrow es regnete nicht

Die Aussage / Folgerung ist $\underline{\text{wahr}}$, denn immer wenn die Straße nicht nass ist, kann es auch nicht geregnet haben

('hätte es geregnet, wäre die Straße nass' ist die Formulierung $\neg b \Rightarrow \neg a$)

e)

es regnete \Leftrightarrow die Straße ist nass

Die Aussage / Äquivalenz ist <u>falsch</u>, denn die eine Aussage wahr und die andere falsch ist (z.B. wenn es nicht regnete und die Straße nass ist, weil ein Auto gewaschen wurde)