Übungsblatt04 - Semientscheidbarkeit - Musterlösung

TH Mittelhessen, FB MNI, Berechenbarkeit und Komplexität, Prof. Dr. B. Just

Aufgabe 1

Bitte beweisen Sie die folgenden Aussagen, ohne währenddessen noch einmal in Ihre Mitschrift zu schauen :):

- a.) $\text{HALT}_{\text{TM}} = \{(M, \omega) : \text{Turingmaschine } M \text{ hält bei Input } \omega\}$ ist aufzählbar (d.h., semi-entscheibar).
- b.) $A_{TM} = \{(M, \omega) : \text{Turingmaschine } M \text{ akzeptiert Input } \omega\}$ ist aufzählbar (d.h., semi-entscheibar).
- c.) NotEmpty_{TM} = $\{M : \text{Turingmaschine } M \text{ akzeptiert mindestens einen Input } \}$ ist aufzählbar (d.h., semi-entscheibar).
- d.) $\overline{\text{HALT}}_{\text{TM}} = \{(M, \omega) : \text{Turing$ $maschine } M \text{ hält nicht bei Input } \omega \}$ ist nicht aufzählbar.
- e.) $\overline{\mathcal{A}}_{\text{TM}}=\{(M,\omega):$ Turingmaschine Makzeptiert nicht den Input $\omega\}$ ist nicht aufzählbar.
- f.) Empty_{TM} = $\{M : \text{Turingmaschine } M \text{ akzeptiert keinen Input } \}$ ist nicht aufzählbar.

Lösung Aufgabe 1:

a.) Zu zeigen ist: Es gibt eine Turingmaschine H mit $L(H) = \mathrm{HALT_{TM}}$. D.h., H muss für jeden Input (M,ω) einer TM M und eines Inputs ω für diese TM erfüllen:

$$H(M,\omega) = \text{accept}$$
, falls M bei Input ω anhält, und $H(M,\omega) \in \{\text{reject, loop}\}$, falls M bei Input ω nicht anhält.

Die Turingmaschine H, die bei Input (M, ω) die Berechnung von M auf ω simuliert, und akzeptiert, sobald M anhält, erfüllt das.

b.) Zu zeigen ist: Es gibt eine Turingmaschine A mit $L(A) = A_{TM}$. D.h., A muss für jeden Input (M, ω) einer TM M und eines Inputs ω für diese TM erfüllen:

$$A(M, \omega) = \text{accept}$$
, falls M bei Input ω akzeptiert, und $A(M, \omega) \in \{\text{reject, loop}\}$, falls M bei Input ω nicht akzeptiert.

Die Turingmaschine A, die bei Input (M, ω) die Berechnung von M auf ω simuliert, und akzeptiert, sobald M akzeptiert, erfüllt

$$L(A) = A_{TM}$$
.

c.) Zu zeigen ist: Es gibt eine Turingmaschine X, die bei Input einer Turingmaschine M erfüllt:

```
X(M) = \text{accept}, falls M irgendeinen Input akzeptiert, und X(M) \in \{\text{reject, loop}\}, falls M keinen Input akzeptiert.
```

```
X sei die Turingmaschine, die wie folgt arbeitet: for i=1, 2, 3, .... do generiere alle Inputs der Länge i Für jeden Input \omega aus diesen Inputs do führe die ersten i Berechnungsschritte von M(\omega) aus falls M dabei den akzeptierenden Zustand erreicht, akzeptiere endfor endfor.
```

Jede endliche Berechnung auf jedem Input von M wird von X bei Eingabe einer TM M simuliert. D.h., wenn es einen Input ω gibt, bei dem die Berechnung $M(\omega)$ akzeptiert, so akzeptiert auch X(M). Andernfalls akzeptiert X(M) nicht, da X(M) für keinen Input ω und keine endliche Berechnungslänge in den akzeptierenden Zustand geht. Somit ist $L(X) = \text{NotEmpty}_{TM}$, qed.

Vorbemerkung zu d.), e.) und f.): Alle drei Beweise sind in ihrer Struktur gleich. Die Sprachen sind die Komplemente semi-entscheidbarer Mengen. Wären sie ebenfalls semi-entscheidbar, so wären die Sprachen entscheidbar (nach dem in der Vorlesung bewiesenen Satz, dass eine Sprache genau dann entscheidbar ist, wenn sie selbst und ihr Komplement semi-entscheidbar sind).

d.)

• Das Komplement der gegebenen Menge, also die Menge

```
HALT_{TM} = \{(M, \omega) : Turing maschine M hält bei Input \omega\},\
```

ist aufzählbar nach Aufgabe 1.a.

- Weiter hatten wir in der Vorlesung bewiesen, dass eine Sprache entscheidbar ist, genau dann, wenn sie selbst und ihr Komplement aufzählbar sind.
- Wäre also $\overline{\text{HALT}}_{\text{TM}}$ aufzählbar, so wäre A_{TM} entscheidbar. Dies ist jedoch nicht der Fall, also kann $\overline{\text{HALT}}_{\text{TM}}$ nicht aufzählbar sein.

e.)

• Das Komplement der gegebenen Menge, also die Menge

$$A_{TM} = \{(M, \omega) : Turing maschine M akzeptiert Input \omega\},\$$

ist aufzählbar nach Aufgabe 1.b.

- Weiter hatten wir in der Vorlesung bewiesen, dass eine Sprache entscheidbar ist, genau dann, wenn sie selbst und ihr Komplement aufzählbar sind.
- Wäre also $\overline{A_{TM}}$ aufzählbar, so wäre A_{TM} entscheidbar. Dies ist jedoch nicht der Fall, also kann $\overline{A_{TM}}$ nicht aufzählbar sein.

f.)

• Das Komplement der gegebenen Menge, also die Menge

 $NotEmpty_{TM} = \{M : Turing maschine M akzeptiert mindestens einen Input \}$

ist aufzählbar nach Aufgabe 1.c.

- Weiter hatten wir in der Vorlesung bewiesen, dass eine Sprache entscheidbar ist, genau dann, wenn sie selbst und ihr Komplement aufzählbar sind.
- \bullet Wäre also Empty_{TM} aufzählbar, so wäre Empty_{TM} entscheidbar. In einem früheren Übungsblatt wurde aber gezeigt, dass dies jedoch nicht der Fall ist, also kann Empty_{TM} nicht aufzählbar sein.

Aufgabe 2

Bitte beweisen Sie, dass die folgende Menge nicht aufzählbar und auch nicht coaufzählbar ist:

$$EQ_{TM} = \{(M_1, M_2) : M_1, M_2 \text{ sind Turingmaschinen mit } L(M_1) = L(M_2)\}$$

Hinweis: Anspruchsvoll, aber spannend:). Beides wird mit Widerspruchsbeweis gemacht.

Man zeigt mit den Bezeichnungen aus Aufgabe 1: Wäre EQ_{TM} aufzählbar (also, semi-entscheidbar), so wäre auch $Empty_{TM}$ aufzählbar, im Widerspruch zu Aufgabe 1. Und man zeigt: Wäre EQ_{TM} co-aufzählbar, so wäre \overline{A}_{TM} aufzählbar, ebenfalls im Widerspruch zu Aufgabe 1.

Lösung Aufgabe 2:

Es werden folgende beiden Aussagen gezeigt:

- a.) $EQ_{TM} = \{(M_1, M_2) : M_1, M_2 \text{ sind Turingmaschinen mit } L(M_1) = L(M_2)\}$ ist nicht semi-entscheidbar, und
- b.) $\overline{\mathrm{EQ}_{\mathrm{TM}}} = \{(M_1, M_2) : M_1, M_2 \text{ sind Turingmaschinen mit } L(M_1) = L(M_2)\}$ ist nicht semi-entscheidbar.

Die erste Aussage besagt, dass EQ_{TM} nicht aufzählbar ist. Die zweite besagt, dass EQ_{TM} auch nicht co-aufzählbar ist.

Beweis von a.):

Angenommen, es gäbe eine Turingmaschine X mit $L(X) = \mathrm{EQ}_{\mathrm{TM}}$. D.h., für jedes beliebig Paar (M_1, M_2) von Turingmaschinen ist

$$X(M_1, M_2) = \text{accept}, \quad \text{falls } L(M_1) = L(M_2), \quad \text{und}$$

 $X(M_1, M_2) \in \{\text{reject, loop}\}, \quad \text{falls } L(M_1) \neq L(M_2).$

Sei M_E ("E" für "empty") eine Turingmaschine, die jeden Input verwirft. Eine solche kann man leicht konstruieren. Und sei M eine beliebige Turingmaschine. Dann ist

$$X(M_E, M) = \text{accept}, \text{ falls } L(M) = \{\}, \text{ und } X(M_E, M) \in \{\text{reject, loop}\}, \text{ falls } L(M) \neq \{\}.$$

Sei Y die Turingmaschine, die bei Input einer beliebigen Turingmaschine M die Turingmaschine X anwendet auf M_E und M, also

$$Y(M) = X(M_E, M).$$

Dann ist $L(Y) = \text{Empty}_{TM}$.

Somit ist $\mathrm{Empty_{TM}}$ semi-entscheidbar, ein Widerspruch zu Aufgabe 1f. Also gibt es die $\mathrm{TM}~X$ nicht, und $\mathrm{EQ_{TM}}$ ist nicht semi-entscheidbar.

Beweis von b.):

Angenommen, es gäbe eine Turingmaschine U mit $L(U) = \overline{EQ_{TM}}$.

Wir konstruieren aus U eine Turingmaschine V, die \overline{A}_{TM} erkennt (d.h., akzeptiert, wenn der Input in \overline{A}_{TM} ist, und ansonsten verwirft oder loopt). Das ist dann ein Widerspruch zu Aufgabe 1 b.

Bei Input (M, ω) arbeitet V wie folgt:

i. Kontruiere M_{ω} , die Turingmaschine, die bei allen Inputs außer ω verwirft, und bei Input ω die Turingmaschine M auf ω anwendet. Es ist

$$L(M_{\omega}) = L(M) \cap \{\omega\}.$$

Man sieht:

$$L(M_{\omega}) = \begin{cases} \{\omega\}, & \text{falls } M(\omega) = \text{accept} \\ \{\}, & \text{falls } M(\omega) \in \{\text{reject, loop}\}. \end{cases}$$

ii. Konstruiere NUR_{ω} , die Turingmaschine, die den Input ω akzeptiert und alle anderen Inputs verwirft. Es ist

$$L(NUR_{\omega}) = \{\omega\}.$$

iii. Wende U auf M_{ω} und NUR_{ω} an. Es ist also

$$V(M, \omega) = U(M_{\omega}, \text{NUR}_{\omega}).$$

Man überzeugt sich:

Falls M bei Input ω akzeptiert, ist $\{\omega\} = L(M_{\omega}) = L(\text{NUR}_{\omega})$, also ist $U(M_{\omega}, \text{NUR}_{\omega}) \neq \text{acc}$, also auch $V(M, \omega) \neq \text{acc}$.

Falls M bei Input ω nicht akzeptiert (also verwirft oder loopt), ist $\{\omega\} = L(NUR_{\omega}) \neq L(M_{\omega}) = \{\}$, also ist $U(M_{\omega}, NUR_{\omega}) = acc$, also auch $V(M, \omega) = acc$.

Somit ist tatsächlich $L(V) = \overline{A_{TM}}$, was nicht sein kann, denn $\overline{A_{TM}}$ ist nicht semi-entscheidbar. Somit kann es die TM U nicht gegeben haben, also ist EQ_{TM} nicht co-aufzählbar. Q.e.d.

Aufgabe 3

Bitte entscheiden Sie, ob die folgenden Sprachen entscheidbar, aufzählbar, co-aufzählbar oder weder aufzählbar noch co-aufzählbar sind. Es geht dabei vor allem darum, ein Gefühl für die Sprachen zu bekommen, formale Beweise sind nicht erforderlich.

- a.) $\{p \in \mathbb{N} : p \text{ ist prim}\}.$
- b.) $\{G = (V, E) : G \text{ ist zusammenhängender Graph}\}.$
- c.) $\{G = (V, E) : G \text{ ist nicht zusammenhängender Graph}\}$
- d.) Die Menge aller Turingmaschinen, die das Wort "Katze" akzeptieren.
- d.) Die Menge aller Turingmaschinen, die nur das Wort "Katze" akzeptieren.
- e.) Die Menge aller Turingmaschinen, die gar nichts akzeptieren.
- f.) Die Menge aller Turingmaschinen, die jedes Wort akzeptieren.
- g.) Die Menge aller C++ Programme, die stets anhalten.
- h.) Die Menge aller C++ Programme, die syntaktisch korrekt sind.

Lösung Aufgabe 3:

a.) $\{p \in \mathbb{N} : p \text{ ist prim}\}.$

Ist entscheidbar. Der Algorithmus (die TM), der für i=1 bis n die Teilbarkeit prüft, und akzeptiert, wenn kein Rest bleibt, und ansonsten verwirft, entscheidet die Sprache.

b.) $\{G = (V, E) : G \text{ ist zusammenhängender Graph}\}.$

Ist entscheidbar. Mithilfe eines breath-first-search-Algorithmus kann festgestellt werden, ob ein Graph eine oder mehrere Zusammenhangskomponenten hat.

c.) $\{G = (V, E) : G \text{ ist nicht zusammenhängender Graph}\}.$

Ist entscheidbar mit dem Algorithmus aus c. (Man sieht: Komplemente entscheidbarer Sprachen sind ebenfalls entscheidbar).

d.) Die Menge aller Turingmaschinen, die das Wort "Katze" akzeptieren.

Ist aufzählbar. Die Turingmaschine K, die die Sprache semi-entscheidet, arbeitet wie folgt:

Bei Input einer Turingmaschine M simuliert K die Berechnung von M auf dem Input "Katze". K akzeptiert, falls die Berechnung akzeptierend endet, verwirft, falls die Berechnung verwerfend endet, und loopt ansonsten wie die Berechnung selbst. L(K) ist das Wort "Katze", wenn M das Wort akzeptiert, und andernfalls die leere Menge.

d.) Die Menge aller Turingmaschinen, die nur das Wort "Katze" akzeptieren.

Ist weder aufzählbar noch co-aufzählbar.

(Beweis läuft ähnlich aufwändig wie Aufgabe 2, entfällt hier)

- e.) Die Menge aller Turingmaschinen, die gar nichts akzeptieren. co-aufzählbar, siehe Aufgabe 1f.
- f.) Die Menge aller Turingmaschinen, die jedes Wort akzeptieren. Ist weder aufzählbar noch co-aufzählbar (Beweis wieder aufwändig, entfällt hier).
- g.) Die Menge aller C++ Programme, die stets anhalten. Ist weder aufzählbar noch co-aufzählbar (Beweis schon wieder aufwändig, entfällt hier auch).
- h.) Die Menge aller C++ Programme, die syntaktisch korrekt sind. Ist entscheidbar (durch einen Parser).

Aufgabe 4

Bitte überlegen Sie sich selbst Sprachen, die entscheidbar, aufzählbar, co-aufzählbar oder weder aufzählbar noch co-aufzählbar sind. Wieder geht es dabei darum, ein Gefühl für die Sprachen zu bekommen, formale Beweise sind nicht erforderlich.

Lösung Aufgabe 4:

Hier gibt es keine Musterlösung;).