
 The ARM Processor Architecture

Seminar: Multimedia
Vorname: Ioannis
Name: Skazikis
Matr-Nr.: 637868
E-Mail: Ioannis.Skazikis@MNI-Fh-Giessen.De

Table of contents:

1. Some words about ARM

2. Introduction of the ARM's core families and their benefits
2.1 Overview of ARM's current families of their main cores
2.2 The Evolution of the ARM architecture
2.3 Development Value
2.4 Reducing System Costs
2.5 The ARM product roadmap

3. Explanation of the ARM architecture
3.1 Architecture basics
3.2 TDMI
3.2.1 Thumb 16-bit instructions
3.2.2 Debug Extensions
3.2.3 EmbeddedICE logic

4. Archtecture details, features & comparison of the ARM7, ARM9, and ARM10 core families
4.1 ARM7TDMI Processor Core
4.1.1 ARM7TDMI-S
4.1.2 ARM720T
4.1.3 ARM7EJ
4.2 ARM SC100
4.3 Comparison of the ARM7TDMI with the ARM9TDMI families
4.4 ARM9TDMI Processor Core
4.4.1 ARM940T Macrocell
4.4.2 ARM's 940T core structure
4.4.3 ARM920T Macrocell
4.4.4 ARM922T
4.4.5 ARM920T and ARM922T MMU
4.4.6 ARM9E Family
4.4.6.1 ARM9E Core Architecture
4.4.6.2 ARM966E-S
4.4.6.3 ARM946E-S
4.4.6.4 ARM946E-S Caches
4.4.7 ARM9EJ-S Core Architecture
4.4.7.1 ARM926EJ-S
4.5 ARM10E Architecture Enhancements
4.5.1 High Performance Features
4.5.2 ARM1020E and ARM1022E
4.6 Vector Floating Point (VFP10)
4.7 Family Summary

5. Some words about the ARM's AMBA architecture - An open bus standard

6. Keywords

7. Resources

1. Some words about ARM:

• ARM designs microprocessor technology that lies at the heart of advanced digital products, from
mobile phones and digital cameras to games consoles and automotive systems, and is leading
intellectual property (IP) provider of high-performance, low-cost, power-efficient RISC
processors, peripherals, and system-on-chip (SoC) designs through involvement with organizations
such as the Virtual Socket Interface Alliance (VSIA) and Virtual Component Exchange (VCX).
ARM also offers design and software consulting services.

ARM's architecture is compatible with all four major platform operating systems: Symbian OS,
Palm OS, Windows CE, and Linux. As for software, ARM also works closely with with its
partners to provide optimized solutions for existing market segments.
These benefits are making the ARM company a complete solution provider.

 Figure 01: Some products that currently use ARM technology.

• With over forty partners licensed to use its architecture, ARM enables original equipment
manufacturers (OEM) to realize an accelerated time-to-market through complete product offerings,
such as PrimeCell Peripherals, embedded software IP, development tools, training, and support.

 Figure 02: ARM's Partnership Companies

• The company offers a complete solution that is essential to the manufacturing process. Although
ARM does not manufacture processors itself, ARM licenses its cores to semi-conductor
manufacturers to be integrated into ASIC standards and then the company in using test chips
manufactured by its partners to measure and validate the functionality of the core.
ARM is able to accelerate OEM time-to-market by capitalizing on its architecture. By providing
the IP and supporting services, customers can gain a jump on their design cycle and obtain a
competitive edge in their targeted market segment. At that point, the architecture is portable to
further product generations or applications as all code creation is directly compatible with any
future architecture produced by ARM.

• ARM's Global Technology Partner Network is the largest in the industry, spanning from
semiconductor manufacturers to distributors. ARM has worked diligently to ensure that the
partnerships provide proven solutions in real-time operating systems (RTOS), EDA tools,
development systems, applications software, and design consulting, all built around the ARM
architecture.

 Figure 03: ARM Worldwide Network

• The ARM company is working to establish standards, not just within the company, but across the
industry by taking advantage of leadership opportunities in the creation of standards.

 Figure 04: ARM's Worldwide Standarts

• This block diagram describes the ARM solution. The company recognizes that it cannot just
present hardened macros and synthesizable CPUs to the industry, but it must also provide the
ASIC infrastructure in the form of AMBA, the PrimeCell Peripherals, and models and modeling
tools for the cores. There is also the need for ARM to pursue ports for RTOSs, develop debug
hardware and software development tools, and, of course, embedded software for "off-the-shelf"
integration. ARM combines all these futures together with support and training, to accelerate the
design cycle and favour a successful product.

 Figure 05: ARM's solution

• Sumury :

ARM is the industry standard embedded microprocessor architecture, and is a leader in low-power
high performance cores. ARM also has a large partner network supporting the entire design and
development cycle. ARM is a full-solutions provider, supporting a broad range of applications.

2. Introduction of the ARM's Core Families and their benefits

2.1 Overview of ARM's current families of main cores:

The ARM7 and ARM9 families have contributed to ARM's success. Each core family has several
"children" that incorporate many different value-added features and combinations. Essentially, there
are four main families available now for license: ARM7, ARM9, ARM9E-S, and ARM10.
The ARM7 family features hardened and synthesizable macrocells with variants that incorporate
cache with either a memory protection unit (MPU) or memory management unit (MMU). Other
features include real-time debug (RTD) and real-time trace (RTT) technology.
The ARM9 family consists of hardened macrocells with variants also including cache with an MPU
or MMU, as well as the RTD and the RTT. Although the ARM9E-S family was released under a
different architecture version, ARMv5TE, the fundamental design of the core is based on the
ARM9TDMI family. The "E" identifies that the family is a DSP-enhanced architecture and the "S"
identifies that the family is synthesizable.
The ARM10 family is the highest performance family to date and will also embody the "E"
extensions that were developed for the ARM9E-S family.
Finally, the StrongARM and XScale families are ARM compliant architectures available from Intel.

2.2 The Evolution of the ARM architecture:

 Figure 06: Evolution of the ARM Architecture

Architecture V1 was implemented only in the ARM1 CPU and was not utilized in a commercial
product. Architecture V2 was the basis for the first shipped processors. These two architectures were
developed by Acorn Computers before ARM became a company in 1990.
After that introduced ARM the Architecture V3, which included many changes over its predecessors.
These changes resulted in an extremely small and power-efficient processor suitable for embedded
systems.
Architecture V4, co-developed by ARM and Digital Electronics Corporation, resulted in the Strong
ARM series of processors. These processors are very performance-centric and do not include the on-
chip debug extensions. This architecture was further developed to include the Thumb 16-bit
instruction set architecture enabling a 32-bit processor to utilize a 16-bit system. Today, ARM only
licenses cores based on Architecture V4T or above.
The latest architectures, version 5TE and 5TEJ, embody added instructions for DSP applications and
the Jazelle-Java extensions, respectively. Currently, the ARM9E and 10E family of processors are the
only implementations of these architectures. Details on these architectures and cores will be provided
later in the course.

2.3 Development Value:

From a development standpoint, ARM cores offer the advantage of a fully 32-bit processor designed
specifically for embedded applications. An important feature is the embedded core debug facilities,
which reduce the debugging stage of development. In some cases, this can be two-thirds of the overall
development cycle.
Architecture compatibility allows code re-use and results in reduced design time. This in turn leads to
reduced system cost, by eliminating investment in a second set of development tools to write code for
a new processor architecture. The modular approach of the advanced micro-controller bus
architecture, (AMBA), enables design reuse. This lowers the complexity of system on-chip (SoC)
designs and reduces future design costs.
ARM and third parties offer the developer proven compiler technology and debug solutions. Multiple
RTOSs and silicon sources mean that the developer will not need to change the preferred vendor in
order to migrate to this architecture.

2.4 Redusing System Costs:

 Figure 07: Example of Redusing Sytems Costs

Figur's 07 diagram shows the advantages of combining the functions performed by separate CPUs
into a single, high-performance System-on-Chip based on an ARM processor. In the integrated
solution, there is no duplication of memory, memory controllers, buses, and pins. Savings can be very
high if off-chip memory subsystems can be replaced by a single memory system using commodity
DRAM or SDRAM.

 2.5 The ARM product roadmap:

 Figure 08: ARM's Product Roadmap

Since the introduction of the ARM7 architecture, there has been huge leaps in core processing
performance. As shown here, ARM families provide a wide range of performance, from 100 MIPS to
1000 MIPS.
This increase in performance can be attributed to two main driving factors. The most obvious factor is
the advances that have been made in new process technologies. The other is the engineering changes
implemented in each subsequent generation of ARM processors and architectures. Specific examples
include a new pipeline in the ARM9 family, and the implementation of a Harvard bus architecture in
the ARM 9 over the Von Neumann architecture in the ARM7. The result is that the ARM9 family
doubles the performance of the ARM7 family.
Recent developments include DSP and Jazelle-Java extensions to some of the new architectures.
These products enable feature rich applications to benefit from the high-performance and low power
consumption intrinsic to ARM processor cores.
Because of the fact that true embedded control applications typically require a processor with cache
and memory protection to utilize real-time operating systems, ARM has developed a vertical
expansion of CPUs to match these requirements. Each processor provides a unique, and in some cases
configurable, amount of cache.
For example, the ARM9E-S family offers the ability to configure the size of instruction and data
cache, as well as the ability to configure tightly coupled SRAM blocks. These features enable you to
custom fit the CPU to specific application requirements.
Many other features can be added via the co-processor interface, such as the Vector Floating Point
unit for the ARM10 and ARM9E families.
In other words, ARM has produced architectural families that are compatible, flexible, and encompass
the full range of embedded requirements. Each product is designed to allow multi-sourcing at every
level of development.

ARM is now the de-facto standard in embedded IP.

3. Explanation of the ARM architecture

3.1 Architecture basics

ARM cores use a 32-bit, Load-Store RISC architecture. That meanins that the core cannot directly
manipulate the memory. All data manipulation must be done by loading registers with information
located in memory, performing the data operation and then storing the value back to memory. There
are 37 total registers in the processor. However, that number is split among seven different processor
modes.
The seven processor modes are used to run user tasks, an operating system, and to efficiently handle
exceptions such as interrupts. Some of the registers with in each mode are reserved for specific use by
the core, while most are available for general use. The reserved registers that are used by the core for
specific functions are r13 is commonly used as the stack pointer (SP), r14 as a link register (LR), r15
as a program counter (PC), the Current Program Status Register (CPSR), and the Saved Program
Status Register (SPSR).
The SPSR and the CPSR contain the status and control bits specific to the properties the processor
core is operating under. These properties define the operating mode, ALU status flags, interrupt
disable/enable flags and whether the core is operating in 32-bit ARM or 16-bit Thumb state.

 Figure 09: The ARM's Register Organization

There are 37 total registers divided among seven different processor modes. Fifgure 09 shows the
bank of registers visible in each mode.
User mode, the only non-privileged mode, has the least number of total registers visible. It has no
SPSR and limited access to the CPSR. FIQ and IRQ are the two interrupt modes of the CPU.
Supervisor mode is the default mode of the processor on start up or reset. Undefined mode traps
unknown or illegal instructions when they are passed though the pipeline. Abort mode traps illegal
memory accesses as a result of fetching instructions or accessing data.
Finally, system mode, which uses the user mode bank of registers, was introduced to provide an
additional privileged mode when dealing with nested interrupts.
Each additional mode offers unique registers that are available for use by exception handling routines.
These additional registers are the minimum number of registers required to preserve the state of the
processor, save the location in code, and switch between modes.
FIQ mode, however, has an additional five banked registers to provide more flexibility and higher
performance when handling critical interrupts.
When the ARM core is in Thumb state, the registers banks are split into low and high register
domains. The majority of instructions in Thumb state have a 3-bit register specifier. As a result, these
instructions can only access the low registers in Thumb, R0 through R7. The high registers, R8
through R15, have more restricted use. Only a few instructions have access to these registers.

3.2 TDMI

T-D-M-I stands for:
• Thumb, which is a 16-bit instruction set extension to the 32-bit ARM architecture, referred

as states of the processor.
• "D" and "I" together comprise the on-chip debug facilities offered on all ARM cores.

These stand for the Debug signals and EmbeddedICE logic, respectively.
• The M signifies the support for 64-bit results and an enhanced multiplier, resulting in

higher performance. This multiplier is now standard on all ARMv4 architectures and
above.

3.2.1 Thumb 16-bit Instructions

With growing code and data size, memory contributes to the system cost. The need to reduce memory
cost leads to smaller code size and the use of narrower memory. Therefore ARM developed a
modified instruction set to give market-leading code density for compiled standard C language.
There is also the problem of performance loss due to using a narrow memory path, such as a 16-bit
memory path with a 32-bit processor.
The processor must take two memory access cycles to fetch an instruction or read and write data. To
address this issue, ARM introduced another set of reduced 16-bit instructions labeled Thumb, based
on the standard ARM 32-bit instruction set. For Thumb to be used, the processor must go through a
change of state from ARM to Thumb in order to begin executing 16-bit code. This is because the
default state of the core is ARM. Therefore, every application must have code at boot up that is
written in ARM. If the application code is to be compiled entirely for Thumb, then the segment of
ARM boot code must change the state of the processor. Once this is done, 16-bit instructions are
fetched seamlessly into the pipeline without any result.
It is important to note that the architecture remains the same. The instruction set is actually a reduced
set of the ARM instruction set and only the instructions are 16-bit; everything else in the core still
operates as 32-bit.
An application code compiled in Thumb is 30% smaller on average than the same code compiled in
ARM and normally 30% faster when using narrow 16-bit memory systems.

An example: ARM7TDMI Block Diagram

Figure 10 shows the register bank in the center of the
diagram, plus the required address bus and data bus.
The multiplier, in-line barrel shifter, and ALU are also
shown.

In addition, the diagram illustrates the in-line
decompression process of Thumb instructions while in the
decode stage of the pipeline. This process creates a 32-bit
ARM equivalent instruction from the 16-bit Thumb
instruction, decodes the instruction, and passes it on to the
execute stage.

 Figure 10: ARM7TDMI Block Diagram

3.2.2 Debug Extensions

The Debug extensions to the core add scan chains to monitor what is occurring on the data path of the
CPU. Signals were also added to the core so that processor control can be handed to the debugger
when a breakpoint or watchpoint has been reached. This stops the processor enabling the user to view
such characteristics as register contents, memory regions, and processor status.

3.2.3 EmbeddedICE Logic

In order to provide a powerful debugging environment for ARM-based applications the
EmbeddedICE logic was developed and integrated into the ARM core architecture. It is a set of
registers providing the ability to set hardware breakpoints or watchpoints on code or data. The
EmbeddedICE logic monitors the ARM core signals every cycle to check if a breakpoint or
watchpoint has been hit. Lastly, an additional scan chain is used to establish contact between the user
and the EmbeddedICE logic.
Communication with the EmbeddedICE logic from the external world is provided via the test access
port, or TAP, controller and a standard IEEE 1149.1 JTAG connection.

The advantage of on-chip debug solutions is the ability to rapidly debug software, especially when
the software resides in ROM. This is critical in shortening the development cycle. The use of Multi-
ICE and EmbeddedICE provides full debug capabilities for a processor integrated deep inside an
ASIC, even in a production version of a consumer product.

4. Archtecture details, features & comparison of the ARM7, ARM9, and ARM10 core families

4.1 ARM7TDMI Processor Core

• Architecture version 4T:
 -- 3-stage pipeline
 -- Unified bus architecture
 -- 32-bit ARM ISA plus 16-bit Thumb extension
• Forward compatible code
• EmbeddedICE on-chip debug
• Hard Macrocell IP
 -- Smallest Die Size: 0.53 mm2 on 0.18 μm process
• Up to 110 MHz* on TSMC standard 0.18 μm
• Industry leading 0.25 mW/MHz

Figure 11: ARM7TDMI Core

The ARM7TDMI has a core based on the fourth version of the ARM architecture. This
implementation uses a three stage pipeline - a standard fetch-decode-execute organization.
It features a unified cache, as well as the Thumb extension permitting 32-bit and 16-bit operation. It is
completely forward compatible, meaning that any code written for this core will be compatible with
any new core releases, such as ARM9 or ARM10. This core also includes the on-chip debug
extension discussed in the previous training module.
The core is successful mainly because of the extremely small but high performance processor -
slightly more than 70,000 transistors in all an with extremely low power consumption.

4.1.1 ARM7TDMI-S

• Synthesizable RTL compliant with the ARM7TDMI
Custom Macrocell:

 -- Fully compatible with the ARMv4T architecture.
 -- Right denied to modify ARM7TDMI instruction set.
 -- Coprocessor interface allows custom functions to
 be added outside core.
 -- EmbeddedICE support with "Multi-ICE" protocol
 converter or third party device.
• Supports AMBA interface:
 -- Standard interface, ideal for integration
 of the core into an ASIC design.
• Supports full-scan and automatic test pattern generator.

Figure 12: ARM7TDMI-S Core

Figure 12 presents a model of the ARM7 processor that is a synthesizable version of the
ARM7TDMI.
This version is fully compatible with the ARMv4T architecture and is functionally identical to the
hardened ARM7TDMI macrocell. Although it is a synthesizable solution, the licensee does not have
the right to change any feature of this core.

4.1.2 ARM720T

• Cached Macrocell for Platform OS Applications
• ARM7TDMI core:
 -- ARM v4T ISA
 -- THUMB 16-bit instruction set
 -- Rev 3 onwards supports ETM7 for non-stop debug
• 8 KB cache:
 -- High processor performance with low-speed
 memory interface
• Memory Management Unit:
 -- Full support for WindowsCE and Symbian OS
• ASB bus interface

 Figure 13: ARM720T Core

ARM720Tcore offers 8 KB of unified instruction and data cache. Also included is a memory
management unit (MMU) that offers virtual-to-physical address translation, 64-entry translation look-
aside buffer (TLB), two-level page tables stored in memory, and hardware page-table walking. There
is also a highly flexible mapping scheme that supports 1 MB sections with permissions, 64 KB large
pages with four sets of permissions, and 4 KB small pages with four sets of permissions.
This processor enables up to 16 domains, each with individual access rights. It also features cyclic
replacement and lockdown features to lock instructions or data into cache for critical real-time code.
The ARM720T was designed to be flexible and application-specific, especially for devices running
complex operating systems such as Linux, Windows CE, Symbian OS, or PalmOS. It includes a
system control coprocessor for cache and system initialization and the AMBA Advanced System Bus,
or ASB, interface.

4.1.3 ARM7EJ

• New Jazelle-enhanced 32-bit processor core
• Thumb, Jazelle and DSP extensions
• Five stage pipeline and high performance multiplier
• Unified instruction and data bus
• v5TEJ architecture
• Real-time trace with the ETM9 macrocell
• Contact ARM for availability and characteristics data

Figure 14: ARM7EJ Core

The ARM7EJ solution is a compact CPU specifically designed for applications demanding low power
consumption. It has a memory interface identical to that of the ARM7TDMI-S? core. It features the
V5TEJ architecture instructions, including DSP extensions. This core implementation also features a
five-stage pipeline similar to that of an ARM9 class processor, and supports easy integration of the
Embedded Trace Macrocell-9 for real-time-trace capability.

4.2 ARM SC100 Secure Code

• Optimized processor family for smart card solutions
• Security enhanced ARM7TDMI design

 -- ARMv4T compliant
 -- Low power, high performance and
 small die size
 -- Memory Protection Unit (MPU)
 -- Anti-tampering/counterfeiting measures
 -- JavaCard support
 -- Standard coprocessor interface for
 incorporation of cryptographic solutions.
• SC100 - Small synthesizable IP:
 -- 35K gates - 1 mm2 area
 -- 66 MHz* on 0.25 mm @2.5 V
 -- Power: 0.7 mW/MHz Figure 15: ARM's SC100 Core

The ARM SecurCore family provides unique 32-bit RISC-based solutions for smart card
development needs, offering system designers privileged access to ARM processor cores to create fast
and secure e-commerce solutions.
The flexible Memory Protection Unit was specifically designed to ensure security of operating system
and application data. This enables future generations of smart card solutions having multiple
applications running on a single card. Special features in the core have been designed to help obscure
processor activity and hide application program signatures, making SecurCore activity difficult to
detect and observe.
The SC100 runs all existing ARM JavaCard software implementations. Future SecurCore processors
will include ARM's Jazelle technology for direct execution of Java byte codes to enable high-
performance low-power JavaCard applications. The advantages over a purely software-emulated
JavaCard virtual machine are clear: significant reduction in execution time, improved responsiveness,
and significantly lower power consumption.
The SecurCore family of processors also includes a standard coprocessor interface for simple
incorporation of cryptographic coprocessors. A coprocessor can be designed for a very specific
purpose and can contain as many registers and data paths as needed to implement the specific
functions.
To provide one solution, ARM has integrated into the SC100 core a cryptographic accelerator, the
Montgomery Multiplier Engine (MME). This engine is optimized for RSA calculations, providing
five times the performance of software solutions without any restrictions on key length.
The SecurCore family offers all the benefits of ARM's industry leading high-performance, low-power
architecture, with significant design differences that make the ARM approach ideal for secure
applications.

4.3 Comparison of the ARM7TDMI with the ARM9TDMI families

 Figure 16: Pipeline Comparison

To increase performance, the pipeline of the ARM9TDMI core was re-engineered from the three-
stage system used by the ARM7TDMI family to five stages.
Operations previously performed in the execute stage of ARM7 are spread across four stages in the
ARM9 pipeline: decode, execute, memory, and write. The reorganization and removal of these
critical paths resulted in a much higher clock frequency.
Another performance improvement is the reduced cycles per instruction rating of the processor. This
is due to improved load and store instruction cycle counts. Single load and store instructions are now
single-cycle operations. This is an enhancement over the ARM7 operation, which used the execute
stage three times: first, to calculate the address; second, to access the memory and cache; and third, to
write the data to the register bank. On ARM9, each step has a separate pipeline stage requiring only
one cycle, avoiding pipeline stalls.

 Figure 17: Applications using the ARM Family Cores

The ARM7TDMI family is popular with applications where small die size, high performance, and
low power consumption help reduce system costs, especially when the system does not require cache.
Applications include cellular phones, MP3 players, and mass storage.
The ARM9TDMI family are used for high performance applications that previously could not be
implemented at the same cost. This family of cores was developed with twice the performance of the
ARM7TDMI and without changes to the architecture. It is ideally suited for the next generation of
cell phones, personal digital assistants, multi-function peripherals and fast printers, and set-top box
applications.

4.4 ARM9TDMI Processor Core

• ARM 32-bit and Thumb 16-bit instructions (v4T ISA).
• Very high code compatibility with ARM7TDMI:
 -- Only change is simplified data-abort handler
• Portable to 0.25, 0.18 μm CMOS and below.
• Harvard 5-stage pipeline implementation:
 -- Higher performance from reduced cycle per
 instruction (1.5)
• Coprocessor interface for on-chip coprocessors:
 -- Allows floating point, DSP, graphics accelerators.
• EmbeddedICE debug capability with extensions:
 -- Hardware single step
 -- Breakpoint on exception.

Figure 18: ARM9TDMI Core

The Harvard bus architecture creates separate instruction and data memory interfaces, enabling
simultaneous access to instructions and data.
The ARM9TDMI represents a new family of CPU technology. The enhancements made to this core
family doubles the performance of the ARM7TDMI family.

4.4.1 ARM940T Macrocell

• Processor for real-time embedded applications:
 -- ARM9TDMI Core (v4T ISA)
 -- 4 KB instruction and data cache with lock-down
 -- Protection unit for RTOS
 -- Code compatible from ARM7 Thumb CPUs
 -- Hard Macro IP:
 -- 4.2 mm2 on 0.18 μm
 -- Up to 200 MHz (worst case) on TSMC standard
0.18 μm
 -- Power: 0.75 mW/MHz

 Figure 19: ARM940T Macrocell Core

The ARM940T represents the first sample of a cache-enabled ARM9TDMI core.
This core contains 4 KB each of instruction and data cache, with an MPU for use by real-time
operating systems. This system makes the 940T an ideal CPU for embedded control applications,
such as wireless networking devices, printers, or automotive control devices.
The protection units allow definition of eight regions of memory, each with independent cache, write
buffer enable, and access permissions. The protection unit is configured using on-chip registers,
which provides a simple programmer's model. This eliminates the need for page-mapping tables
stored in memory.

4.4.2 ARM's 940T Core Structure

The core processor is about one-third of the
die size. When other components are
incorporated - the system control coprocessor,
bus control, memory protection unit, and the
cache itself - the integer unit becomes
insignificant in total die area. This core has 4
KB caches, the smallest amount of cache used
in the entire product family. One can visualize
how small this integer unit and cache logic
becomes when integrated with synthesized
peripherals and the other features that
complete the system-on-chip (SoC) design.

 Figure 20: ARM's 940T core structure

4.4.3 ARM920T Macrocell

• Cached processor for platform OS applications:
 -- 16 KB instruction and data cache
 -- ARMv4 MMU for Palm OS, Symbian OS,
 Linux, and Windows CE
 -- Code compatible from ARM7 Thumb CPUs
 -- Hard Macro IP:
 -- 11.8 mm2 on 0.18 μm
 -- Up to 200 MHz (worst case) on TSMC
 standard 0.18 μm
 -- Power: 0.8 mW/MHz

 Figure 21: ARM920T Macrocell Core

The ARM920T was created to address the needs of more complex systems using a platform operating
system, such as Windows CE or Symbian OS. This core replaces the MPU of the 940T with a full
memory management unit, and increases the instruction and data cache sizes to 16 KB for each. The
performance, MMU, and cache of this core make it ideal for Personal Digital Assistants, smartphones,
and set-top box applications.

4.4.4 ARM922T

Cached processor for Platform OS applications:

• 8 KB instruction and data cache
• ARMv4 MMU for: Palm OS, Symbian OS, Linux, and

Windows CE
• Code compatible from ARM7 Thumb CPUs
• Hard Macro IP:
 -- 8.1 mm2 on 0.18 μm
• Up to 200 MHz (worst case) on TSMC standard 0.18 μm
• Power: 0.8 mW/MHz

 Figure 22: ARM922T Core

The ARM922T core was created with half the amount of instruction and data caches of the 920T,
resulting in smaller silicon overhead. Other than this simple difference, the two cores are
fundamentally identical.

4.4.5 ARM920T and ARM922T MMU

• Two TLBs:
-- 64-entry instruction TLB
-- 64-entry data TLB

• Two-level page tables (stored in memory)
• Hardware page-table walking
• Cyclic replacement
• Lockdown features:

-- Lock instructions or data into cache for critical real-time code

Both the 920T and 922T core utilize an MMU with the same features. There are two, 64-entry
translation look-aside buffers for instruction and data, two-level page tables, hardware page-table
walking, and support for random or round robin replacement. Lockdown features are also included to
secure critical real-time code. This cache architecture results in two solutions that are simpler to
program and minimize power, area, and required memory.

4.4.6 ARM9E Family

Figure 23: ARM's 9E Core Family

The ARM9E family is currently comprised of four different units. The base ARM9E integer
processor offers a high performance and low gate count synthesized solution in its most basic form.
The other units offer the true capabilities of the core when coupled with SRAM, cache, vector
floating point acceleration, and the Jazelle Java extensions.
As a suite of synthesizable solutions, the final gate count and power consumption statistics of these
cores depends on the implementation and the process technology used.

4.4.6.1 ARM9E Core Architecture

• 32-bit load/store RISC architecture
• Efficient 5-stage pipeline
• ARM andThumb instruction sets
• 37 x 32-bit registers
• 32-bit ALU and barrel shifter
• Enhanced 32-bit MAC block
• ETM9 interface
• AMBA AHB interface
• Coprocessor interface
• Synthesizable or soft IP

 Figure 24: ARM9E Architecture

As mentioned hard macrocells always have been the ultimate answer for optimized performance and
die size in any given processor design. But newer synthesized design flows are pushing the envelope
for SoC applications.
The ARM9E family was built upon the standard set by the ARM9TDMI family, but it also provides
freedom for defining the cache and tightly coupled SRAM configurations used by the core.
It was also the first family of CPUs designed to the AHB bus of the AMBA 2.0 specification.
Another key technological enhancement to this family of CPUs includes DSP extensions for true real-
time systems. This improvement to the architecture introduces additional multiply and saturated math
instructions for use by complex DSP algorithms. This family is also fully code compatible with
ARMv4T architecture cores.
Lastly, to enhance the debug capabilities already common in ARM CPUs, the Embedded Trace
Macrocell interface was added. This interface enables real-time debugging of complex real-time
systems.

4.4.6.2 ARM966E-S

• Solution for hard real-time applications:
• ARM9E core (v5TE ISA).
• I and D TCM memory interfaces with

 'wait' signal
• Selectable size Instruction and Data TCM

(0 KB - 64 MB)
• AMBA AHB bus interface
• Provides an "off-the-shelf" standard ARM9E

solution
• ETM9 interface for real-time trace

with ETM9
• 150 MHz* on TSMC 0.18 μm

 Figure 25: ARM966E-S Core

The ARM966E-S core was designed with hard real-time applications as the primary objective. An
example is servo-motor control in hard disk drives. The key feature of this CPU over the base
ARM9E-S is the tightly coupled memory interface that allows selectable SRAM sizes of up to 64
MB.

4.4.6.3 ARM946E-S

• Cached processor for embedded real-time applications:
• MPU to support RTOS: like μITRON and

VxWorks
• Selectable size instruction and data caches and

TCMs:(0 KB, 4 KB, 8 KB ... 1 MB)
• Instruction and data TCM interfaces.
• 150 MHz* on TSMC 0.18 μm

Figure 26: ARM946E-S Core

The ARM946E-S core takes the developments made by the 966E-S and adds selectable instruction
and data caches. Since the memory protection unit is integrated with cache, this processor is an
excellent high performance solution for embedded real-time applications, such as engine management
systems in automobiles and network appliances.

4.4.6.4 ARM946E-S Caches

• Cache is 4-way set associative:
• Can be built with compiled ASIC RAM.

• Sizes of 0 KB, 4 KB, 8 KB ? 1 MB supported:
• I and D cache sizes are independently selectable.

• Cache lock-down on per-set basis:
• Granularity is a quarter of the cache size.

• Software selectable replacement algorithm:
• Supports pseudo-random and round-robin

• Write through and write back s/w selectable
• Line length fixed at 8 words

The cache memory blocks of this core are selectable up to 1 MB. The cache is 4-way set associative
and selectable up to 1 MB. It also features lock-down support on a per-set basis, random and round
robin replacement support, software selectable options for write through and write back, and eight-
word cache lines.

4.4.7 ARM9EJ-S Core Architecture

• 32-bit load/store RISC architecture
• Efficient 5-stage pipeline:

• Fetch
• Decode
• Execute
• Memory
• Writeback

• ARM, Thumb and Java instruction sets
• 31 x 32-bit registers
• 32-bit ALU and barrel shifter
• Enhanced 32-bit MAC block
• ETM9 interface
• Coprocessor interface

Figure 27: ARM9EJ-S Core Architecture

This family of synthesizable CPUs soon will include an additional enhancement to the architecture:
Jazelle Java extensions. The Jazelle technology developed for this new range of cores will in many
ways act like the Thumb 16-bit extension. An additional state of the processor is added to support the
execution of Java instructions, providing a tremendous performance improvement over current
solutions.
This range of cores will have all the characteristics of the other ARM9E cores and will be code-
compatible with ARMv4T architecture implementations. It incorporates a separate instruction and
data AMBA AHB bus interface, as well an Embedded Trace Macrocell-9 interface.

4.4.7.1 ARM926EJ-S

• Jazelle enhanced cached processor for OS-based
platform applications:

• MMU to support: Symbian OS, Linux,
 Palm OS, and Windows CE

• Selectable size instruction and
data caches - 4 K, 8 K, 16 K…128 K

• Tightly coupled memories supported
 0 K, 4 K, 8 K…1MB

• Instruction and data TCM interfaces with
 wait state support

• Separate instruction and data AHB buses
• ETM9 interface for real-time trace with

 the ETM9 macrocell
• 180 MHz* on TSMC 0.18 μm Figure 28: ARM926EJ-S

The ARM926EJ-S core, with full MMU support and selectable tightly coupled memory and cache
sizes, introduces a new generation of Internet-enabled devices. For example, set-top-boxes and
wireless communications products benefit from this single processor solution. This processor can be
compared to the ARM920T or 922T cores in its base functionality and performance.
Now, with the added Jazelle enhancements, Java functions can be performed without the need for
complicated coprocessors or slow software implementations.

4.5 ARM10E Architecture Enhancements

ARM10E implements:
• Harvard 6-stage pipeline
• Supports v5TE instruction set
• EmbeddedICE RTII debug logic
• Fully compatible with v4T architecture

• 390-700 MIPS integer performance based on Dhrystone 2.1
• Branch prediction:

• Eliminates 70% of branches on typical code sequences
• Separate load/store unit:

• 64-bit path to register bank - load two registers simultaneously
• Hit-under-miss caches:

• Significantly reduces pipe-line stalls
• Write buffer:

• Holds up to 8 double-words (16 register values)
• New energy saving power down modes

Anticipating the market's needs for multimedia digital consumer devices, ARM developed the
ARM10 family of advanced microprocessor cores with 390-700 MIPS integer performance. To
achieve this performance, additional features were added. The pipeline was widened to add an
additional stage, and improvements were made to the EmbeddedICE logic to provide support for real-
time debug. All the while, compatibility was maintained with ARMv5TE and v4T for ease of code
migration.
Performance enhancements include the introduction of branch prediction, hit-under-miss support in
the MMU and cache architecture, an improved write buffer that holds up to eight double-words, and a
separate load and store unit. These features improve code performance by lowering the average
number of cycles per instruction of the processor, and also help when code is heavily dependent on
cache operations.
As an added enhancement, the architecture, circuits, layout, and software controlled power-down
modes have been developed specifically to achieve low-power operation on high-performance
processes. These enhanced features have been optimized to take advantage of clock gating and
dynamic power reduction.

 4.5.1 High Performance Features

• 64-bit accesses to on-chip I and D caches:
• Fetch two instructions/cycle
• Load/store two registers/cycle (LDM/STM)

• Dual 64-bit fast AHB bus:
• Separate buses for instruction and data
• >1 Gbyte/sec bandwidth @ 200 MHz (each)
• Split transaction extensions

• 64-bit coprocessor interface:
• Load/store double-precision operands in one cycle

• 32-bit integer data path saves area and power

The ARM10E is also the first family of processors designed with a 64-bit data bus. This feature
combines the frugal power and die size characteristics of a 32-bit CPU with the bandwidth
requirements of high performance systems. The 64-bit coprocessor interface also allows for increased
performance of floating point operations when combined with the Vector Floating Point-10
coprocessor.

 4.5.2 ARM1020E and ARM1022E

• Highest performance ARM processor cores:
• 1.3 MIPS/MHz
• 1.5x ARM9 performance

• Support for High Performance IEEE 754 Floating Point:
• 600-1200 MFLOPS

• 300MHz (worst case) on TSMC 0.15 μm
• Low Power: 0.7 mW/mips (0.15 μm)
• ARM1020E: 32K I and D cache

• 17.5 mm2
• ARM1022E: 16K I and D cache

• 12 mm2

• Roadmap to Jazelle enhanced cores

 Figure 29: ARM1020E Core

The ARM1020E and ARM1022E processor cores offer the highest performance per unit of power of
any 32-bit processor running above 200 MHz. With an unprecedented 0.7 mW/MIPS power
consumption ratio, worst case on 0.15 μm process technology, these processors offers ideal solutions
for high end platform applications. Examples include MPEG4 videophones, smartphones, and Web
pads.
Memory Management and caches are comparable to the ARM920T, ARM922T and ARM720T
products - ensuring code portability and protection for existing software investments. Future
implementation in this family will also integrate the Jazelle Java enhancements established by the
ARM9EJ-S family.

4.6 Vector Floating Point (VFP10)

• High-performance IEEE 754 floating point:
• Single and double precision
• Vector operations (up to 8 values per vector)
• Thirty-two 32-bit (SP) registers (usable as

sixteen DP registers)
• Single cycle FMAC throughput (single precision

- double precision FMAC in 2 cycles)
• 10-100x performance increase over software

emulation
• Optional coprocessor:

• 1.6 mm2 in 0.15 ?m
• Target:

• Printers, imaging, graphics, embedded control

Figure 30: ARM's Vector Floating Point

Many real-time control applications in the industrial and automotive fields benefit from the dynamic
range and precision of floating-point offered by the ARM VFP10. Automotive power train, anti-lock
braking, traction control, and active suspension systems are examples of mission-critical applications
where precision and predictability are essential requirements. Incorporating the ARM VFP10 into a
SoC design can reduce development time and provide reliable performance. The vector processing
capability of the ARM VFP10 also offers increased performance for imaging applications, such as
scaling, transforms, and font generation used in printing, 3D transforms, FFT, and graphic filtering.

4.7 Family Summary

Figure 30: Family Summary

This table compares various characteristics of the ARM7TDMI, the ARM9TDMI, the ARM9E-S, and
the ARM10E integer units. Although these cores will not be necessarily implemented as integer units,
especially in the case of the ARM10E, it is useful to illustrate the features that make up each product
family. As stated earlier, the goal of developing the ARM9 was to double the performance of the
ARM7 while maintaining architectural compatibility. This was achieved by reorganizing and
widening the pipeline and migrating to a Harvard bus architecture. Although these changes did result
in an increase in die area, the ARM9TDMI is an extremely small core with roughly 120,000
transistors in all.
This philosophy continued with the development of the ARM10E family. The performance level of
this family requires the use of caches to meet the needs of merging applications. Paired with the
vector floating point coprocessor, the result is a comprehensive solution for high-end SoC
implementations never before possible at this mW/MIPS ratio or silicon overhead.

5. Some words about the ARM's AMBA architecture - An open bus standard

The “Advanced Micro-controller Bus Architecture” on-chip bus is freely available from ARM and
offers an established, open specification that serves as a framework for SoC designs.

• Benefits of a System-on-Chip (SoC) solution
• Low power consumption
• Small silicon area
• Low production cost for large quantities

• Examples include AMBA:
• EPXA10 (Configurable SoC)
• EP7209 (MP3)
• ARM7100 (PDA)

 Figure 30: 802.11 Wireless LAN

The purpose of AMBA is to offer pre-built, tested, and proven components for designers to leverage
their hard-earned knowledge into future designs. This method enables test methodology to be
reapplied with great confidence.

Since the release of the AMBA specification, ARM has developed a suite of enablers to quickly
orient engineers on the design-in of this standard bus protocol, the AMBA Design Kit.

This design kit is a licensable product that enables SoC designers to become familiar with the AMBA
protocol.

ARM also has developed a suite of system peripheral components called PrimeCells. These are
proven AMBA-compliant modules that can be used "off-the-shelf" for integration in SoC designs.

Figure 31: ARM's AMBA architecture

The design of the AMBA bus specification is focused on low power consumption and high
performance. A typical AMBA-based SoC consists of an advanced high-performance system bus, or
AHB, and an advanced low power peripheral bus, or APB. Figure 31 illustrates a simple
implementation of the AMBA bus scheme in a real-world application.

• On the performance critical side of the bus is the ARM core, Memory Controller, Test Interface
Controller (TIC), and the LCD Controller.

• On the low power side of the bus is the Smart Card interface, audio codec, UART, and
synchronous serial port.

• This is an excellent example of how the AHB and APB buses work in conjunction to provide a
complete system solution.

The AMBA test methodology provides a mechanism to give an external tester access to the on-chip
AMBA bus. This enables the tester to take control of the bus and check each component separately.

6. Keywords:

AHB: Advanced Hich-performance Bus
ARM: Advanced Risk Mashines
APB: Advanced Peripheral Bus
ASIC: Application Specific Integrated Circuits
CPSR: Curent Program Status Register
DSP: Digital Signal Processor
IP: Intellectual Property
LR: Link Register
MMU: Memory Managmant Unit
MPU: Memory Protection Unit
OEM: Original Equipment Manufuctures
PC: Program Counter
RISK: Reduced Instruction Set Computing
RTD: Real Time Debug
RTOS: Real-Time Operating Systems
RTT: Real Time Trace
SoC: System-on-Chip
SP: Stack Point
SPSR: Stack Point States Register
TAP: Test Access Port
VCX: Virtual Component Exchange
VSIA: Virtual Socket Interface Alliance

7. Resources:

http://www.arm.com
http://www.arm.com/documentation
http://www.arm.com/aboutarm/multimedia.html
http://www.arm.com/support/training/type4680.html

http://techonline2.techonline.com/
http://www.techonline.com/community/ed_resource
http://www.techonline.com/community/ed_resource/course#Microprocessors
http://www.techonline.com/community/ed_resource/course/13071

