
Seite 1

Components for Scientific
Work Flows

Th Letschert

 Th Letschert

πάντα εῥ ῖ
Heraklit

Seite 2

Background

Background :
The Parsuite Project http://www.parasuite.com

A data flow based system for analyzing engineering data

especially for – masses of – product life cycle data

Aim: Reduction of maintenance costs of industrial equipment

2007 – 2009 Research Project in Cooperation with Univ. of Marburg,
and CogniData

Now a product of CogniData

This Talk

Some Ideas for a follower project based on the experience with the
Parasuite project.

 Th Letschert

Seite 3

Background

Background – the Parsuite Project

Architecture
– Frontend
– Data importer
– Data base
– Analyzing modules

Implementation
– Java
– JBoss
– MySQL
– Eclipse RCP

Applications
– Data-flow / work-flow

programs analyzing the data

 Th Letschert

Seite 4

Background

Background – the Parsuite Project
Experience:

 Writing Data Flow Programs is unexpectedly hard
Concurrency and algorithmic issues are entangled
Multi-threading means of the implementation platform are easily
under- or overused (too much / not enough threads)

 Th Letschert

Parasuite applications are not
intended to be written by end users,
but even for IT professionals it is not
as easy to write applications as
expected.

Seite 5

Flow Based Programs

The Flow Based Programming (FBP) Paradigm

Applications are seen as networks of asynchronous processes
communicating by means of streams of data chunks that flow through
channels of finite capacity.

Features
– popular in the area of data analysis, data mining
– Based of generic components used as black-boxes
– Well suited for “graphical programming” (by non-IT-lers)
– Typical components: read, count, merge, sort, transform, …

 Th Letschert

→ wikipedia

Seite 6

Flow Based Programs

The Flow Based Programming (FBP) Paradigm

 Data flow systems are well suited for analyzing scientific data

because they support several goals:

Visualization
 Algorithms are presented as systems of computing

nodes connected by channels

Parallelism
 Nodes work concurrently / in parallel

Modularity
 Nodes may be reused

 Th Letschert

However . . .

Seite 7

Flow Based Programs: Problems

The FBP Paradigm : Modularity and Parallelism

Diverging aims
 User friendlessness (Visualization, Modularity):

Nodes represent reusable algorithms

 Implementation (Parallelism):
Nodes represent units of parallel / concurrent work

Problem
Algorithms as units of work and
algorithms as units of concurrent / parallel evaluation
are not the same and thus should not be identified:

 Nodes as units of work should be much more coarse-grained
than units of parallelism

 Parallelism should in general not be introduced by the user
 Nodes as units of concurrent work should be fine grained and

the granularity should be adopted automatically to the platform

 Th Letschert

Seite 8

Flow Based Programs: Problems

FBP Paradigm: Data

Data flow: Flow of unstructured atomic data

However: Scientific data often have a rich structure

 Th Letschert

Seite 9

Flow Based Programs: Problems

Problem

Entangled mix of connections and nodes that were introduced for
different purposes:

 Nets structure is used as a remedy for missing data structures

 Net structure is a consequence of parallelism that was introduced
“by hand”

 Th Letschert

Seite 10

Flow Based Programs: Problems

FBP-Problem: Example Map/Reduce

 Th Letschert

Implementation

as net structure

Concept: Map-Reduce-
Algorithm

map-reduce split map

reduce

Automatic transformation is possible

The algorithm
should appear in
this form within
the net

Implementation of the node should
employ concurrency / parallelism features

depending on the actual means and
resources of the executing platform

Implementation of the node should
employ concurrency / parallelism features

depending on the actual means and
resources of the executing platform

Seite 11

Flow Based Programs

Change of view:

Restrict the FBP paradigm to modularization and visualization.
Treat implementation as a different issue: The user sees a net of

concurrently working nodes, the reality of the implementation however
may be different.

Decouple low level aspects of parallelism and concurrency and
algorithmic abstraction

 Nodes

are used as coarse-grained units of algorithmic abstraction
 Parallelism and concurrency

are dealt with primarily at the node level
 Based on the node's task
 Automatically and transparently
 Adapted to the actual platform
 Responsibility of the implementation

Use structured data
Use normalized high level control structures

 Th Letschert

Seite 12

Concept of Nodes and Node Types

Nodes

Primarily a means of modularization
Algorithmic abstraction
Embedded in a data flow

 Th Letschert

Id

State

Local
Algorithm

Input
Channels

Output
Channels

Parameters Queries

A Node

··· ···

 Id: The id of the node (instance of the type)
 State : current state of the node
 Ports: attach points for channels
 Local Algorithm executed on input channels
 Parameters: Initialization/Instantiation
 parameters
 Queries: supply information about the
 instance

Seite 13

Nodes and Node Types

Nodes and Node Types

Nodes
 are created as instantiation of node types
 have an actual state

Node types
 have a name
 define ports,

 parameters, queries,
 the algorithm, the variables that make up the state

 Th Letschert

Local
Algorithm

Type

Id
State

Local
Algorithm

Instance (node)

Seite 14

Nodes and Node Types

Example: Node Type and Node

 Th Letschert

class Adder implements Runnable {
 def v1 = 0
 def v2 = 0

 @INPORT(type="Integer")
 InPort inP1

 @OUTPORT(type="Integer")
 InPort inP2

 @OUTPORT(type="Integer")
 OutPort outP

 @QUERY(type="Integer")
 def queryA() {
 return v1 + v2
 }

 void run() {
 while (true)
 if (inP1.isClosed()) break
 if (inP2.isClosed()) break
 v1 = inP1.receive();
 v2 = inP1.receive();
 outP.send(v1+v2);
 }
 inP1.close()
 inP2.close()
 outP.close()
 }
}

The node type Adder
 - (here) written in Groovy
 - Ports and queries are marked by annotations
 - Algorithm is defined as implementation of the
 interface Runnable

<tns:node id="adder" type="Adder" />

<tns:connection>
 <tns:from node="producer1" port="outP"/>
 <tns:to node="adder" port="inP1"/>
</tns:connection>

<tns:connection>
 <tns:from node="producer2" port="outP"/>
 <tns:to node="adder" port="inP2"/>
</tns:connection>

<tns:connection>
 <tns:from node="adder" port="outP"/>
 <tns:to node="consumer" port="inP"/>
</tns:connection>

The node adder as instance of Adder
 - defined in XML
 - with id and connection of it's ports to channels

Seite 15

Data Concept

Requirements

Simple
 Usable by non computer scientists
 “Natural” data modeling

Adequate
 Data of the application domain may be represented

Static checks
 Ports, parameters etc. should have types
 Connections of nodes via ports should be checked before

run-time

Flexible
 Typing should be flexible to allow for generic node (types)

with a wide application range

 Th Letschert

Seite 16

Data Concept

Requirement : Subtype ordering
Types should have a subtype ordering to allow for a statically
checked generic node types

 Th Letschert

Node typeTI TO
TP

Node
Instance

TI TO
TP

ChannelIn ChannelOut

Parameter

Instance

TCI TCO

TA

Instantiation is possible if type
compatibility holds:
• TA ≤ TP
• TCI ≤ TI
• TO ≤ TCO

Instantiation

Type

Seite 17

Data Concept

Types and type ordering

The type system should not be based on OO principles
 OO-based type systems are to provide flexibility combined with checkablity

 However: OO-based type systems are unnecessarily complex

 A record based type system is sufficient

 Th Letschert

Seite 18

Data Concept

Types and values

Values:

Atomic Values
 Numeric (int, double, ···)
 String
 Date
 ... to be evaluated ...

Structured values
 List (ordered sequence of values)
 Map (Value → Value)
 Record (Selector → Value)

Types:

Representing these values

 Th Letschert

Seite 19

Data Concept

Type Definitions

Atomic Types
 Int, Double, String, Date

Type Constructors
 List: if T is type then so is List(T)

 Record: if T1, ··· Tn are Types and s1, ··· sn are Identifiers

then Record(s1:T1, ··· sn:Tn) is a type

 Map: if T1 and T2 are Types
then Map(T1, T2) is a type

 Type Identifier
Identifiers may be defined to denote types

Recursion
 Recursive type definitions are not allowed

 Th Letschert

Seite 20

Data Concept

Subtype relation

 Usual conversion order on atomic types
 Conversion to String possible for any value
 Covariance on Lists:

T ≤ T' => List(T) ≤ List(T')
 Covariance on Records

T ≤ T' => Record(· · · s:T · · ·) ≤ Record(· · · s:T' · · · ·)
 Covariance on Maps

T ≤ T' => Map(T → T'') ≤ Map(T' → T)
=> Map(T'' → T) ≤ Map(T'' → T')

 Record extension
each extension of a record type is compatible with the not
extended record
Record(· · · s:T · · ·) ≤ Record(· · · · · · ·)

 Th Letschert

Note The type system is structural and not-
nominal. I.e. the subtype relation relies only on
the structure of the types

Seite 21

Data Concept

Type checking of nets

 Th Letschert

Node Type B
TI-A TO-A

TP-A

Node
Instance

Argument

Net Definition
(Node instantiation)

Node
Instance

Node
Instance

Node Type B Node Type B

Argument Argument

… …

Type checking / type inference
 Solving type equations
 Open issue

TI-BTI-A TI-CTO-B TO-C

TP-B TP-C

TO-A TI-B

TO-A ≤ TI-B
 . . .

Seite 22

Concurrency

Two forms of nodes in flow nets

Active nodes (pull / push nodes)
 Perform (blocking) reads on input-ports
 Perform (blocking) write operations on output-ports
 Need a “private” thread for execution
 Suited for data processing tasks (all data are available)

Reactive nodes (passive / push nodes)
 Do not read actively
 React on data available on (sets of) input-ports
 Do not need a “private” thread
 Suited to “real time” computations processing data streams

A net consisting solely of reactive nodes is passive and does nothing:
every node waits for ever

A net consisting solely of active nodes will easily overuse the platform's
multi-threading means

Combining active and passive nodes in one net:
 Realizable and worthwhile ?

 Th Letschert

Seite 23

Concurrency: 2 Types of nodes

Combining active and passive nodes –
is it worthwhile ?

No: There are two distinct forms of nets that should
not be mixed or confused:

Pulling Nets (task parallel nets): a net processes
available data
data reading nodes have to adapt to the speed of the
processing nodes

Streaming Nets (data parallel nets): a net that
processes data as they come in real time.
The processing nodes have to process input by any
means as it comes in

Yes: Active nodes only is too expensive
Active nodes need a dedicated thread
Threads are a limited resource
Net structure and threading should be decoupled as
much as possible
Even in “Pulling Nets” there are a lot of task that do not
net a dedicated thread because they are stateless and
purely reactive

 Th Letschert

Reading nodes,
pushing data into the
net, have to and can
synchronize on
processing speed

“External world”, will
not synchronize on
processing speed

active

Seite 24

Concurrency: 2 Types of nodes

Combining active and passive nodes – Realization options

Method 1: Transparent reactive nodes
Reactive nodes are introduced automatically
Their existence is not visible to the user

Method 2: Non-Transparent reactive nodes
Reactive nodes are introduced by the user

 Th Letschert

Seite 25

Concurrency: 2 Types of nodes

Combining active and passive nodes – Realization options

Actual Investigation:

Is it worthwhile to provide transparent and non-transparent
reactive nodes?
I.e. is it easy and beneficial to use them, and
may their combination be implemented with moderate effort ?

 Th Letschert

Implementation

“Heavy” algorithmic
nodes are
transparently
implemented using
sets of reactive
nodes.

Non-transparent
reactive nodes are
introduced by the
user

Transpartent
reactive node

Non-transpartent
reactive node

Seite 26

Concurrency: 2 Types of nodes

Combining active and passive nodes – Implementation
Observation:

 Channels (synchronized buffers) are passive nodes
 A channel represents the identical function
 They may be extended to compute functions
 They may be extended to compute functions on several input values
 The notion “channel” is not appropriate: we have stream-transformers

 Th Letschert

x → x
put take

x → f(x)
put take

x → f(x,y)

put x
take

put y

A channel = identical stream transformer

A channel with a function: a stream
transforming function

A function that transforms two streams

Seite 27

Concurrency: 2 Types of nodes

Combining active and passive nodes – Implementation
 Transformers with one input just act like synchronized buffers

that modify their values
 Transformers with more than one input have to synchronize on all inputs

e.g. by an internal buffer on each input

 Th Letschert

x → f(x)
put take

Buffering is optional

x → f(x,y)

put x

take
put y

A buffer capacity of at least
one on the input side is
mandatory

Seite 28

Concurrency: 2 Types of nodes

Chaining of transformers

Does chaining of transformers make sense ?

 Th Letschert

x → f(x)
put take

x → g(x)
put

x → g(f(x))
put take

~

Obviously both versions are computational
equivalent, but the first version suggests that f and g
may be computed concurrently.

Seite 29

Concurrency: 2 Types of nodes

Chaining of transformers

Is chaining possible ?

 Th Letschert

x → f(x)
put take

x → g(x)
take

Chaining of transformers is possible, but it's implementation is not
obvious. Transformers may not just be concatenated.

put?

x → f(x)
put

x → g(x)
take

Chaining of transformers suggests a separation of buffering.

?

Seite 30

Concurrency: 2 Types of nodes

Chain-able transformers

Define transformers without “right side”

 Th Letschert

x → f(x)
put put

X,y → f(x,y)

put
put

put

take

Define “transformer ends”

x → f(x)
put take

remove “right side” of channels
to make them chainable.

Seite 31

Concurrency: 2 Types of nodes

Chain-able transformers : Example

Define transformer chains enduing in transformer ends may be
defined

 Th Letschert

end

producer
1

consumer

producer
2

 x,y → f(x,y) negator

Consumer consumes stream (-1) * f(x
i
,y

i
)

Seite 32

Concurrency: 2 Types of nodes

Combining active and passive nodes

Is it possible ?
Yes !

Does it make sense ?
Arguable !

 Brings increased expressiveness to the user
 Introduces additional complexity
 Is an issue of concurrency: should be as transparent as possible

Actual point of view
 Reactive nodes should not be chain-able

 Clear structure of a net with:
 Active Nodes
 Connected by channels that

 may synchronize on several inputs
 may compute functions

 Th Letschert

Seite 33

The System

The (Data Analysis) System: conceptual view

The system consists
 of repositories containing

 node definitions / types
 net definitions / types
 utility libraries
 data

 a container (execution platform like a servlet container)

The system may
 accept or delete elements in each repository
 start or stop the execution of nets within the container
 import or export data sets

 Th Letschert

Seite 34

The System

Data Analysis System

 Th Letschert

node repository
node repository

net repository
net repository

lib. repositorylib. repository

data repository data repository

add / delete
start net

monitor / stop

net parameter

Maintenance console

runtime / container

Backend
(to be implemented using OSGi)

read/write

Frontend
define nodes

and nets
(Eclipse RCP)

Seite 35

The System

Open Issues

More applications
Type checking of nets
Mapping of components and nets to an appropriate component
technology (OSGi ?!)

 Th Letschert

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35

