
Masterarbeit

Development of a Location-Based
Information and Navigation System for

Indoor and Outdoor Areas

zur Erlangung des akademischen Grades
Master of Science

vorgelegt dem
Fachbereich Mathematik, Naturwissenschaften und Informatik

der Technischen Hochschule Mittelhessen

Nils Becker
im März 2014

Referent: Prof. Dr. Michael Jäger

Korreferent: Sebastian Süß

Eidesstattliche Erklärung

Hiermit versichere ich, die vorliegende Arbeit selbstständig und unter aus-
schließlicher Verwendung der angegebenen Literatur und Hilfsmittel erstellt
zu haben.

Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prü-
fungsbehörde vorgelegt und auch nicht veröffentlicht.

Gießen, den 12. März 2014
Nils Becker

Abstract

Modern smart phones offer the computing power, connectivity and sensors
needed to assist their users in daily life. Therefore, the development of the
mobile campus information system (MoCaInfo) has been initiated in 2011, to
provide a digital helping hand to students and university staff at a continu-
ously growing and changing campus. Besides location-based information, the
system offers point-to-point navigation in buildings and at the campus area.
In contrast to other location-based information systems, MoCaInfo focuses on
assisting visually impaired people, as well as sighted people.

In this thesis, the requirements for a location-based information and navigation
system are analyzed, also considering the special requirements which arise due
to the assistants of visually impaired users. This includes a low-vision user
interface for the mobile application and particular navigation instructions.

Furthermore, a library for mobile indoor and outdoor navigation has been de-
veloped, since existing solutions barely support indoor navigation. For this, as
much existing approaches as possible have been used and integrated into the
system, to build upon established components. To these components belong
Google Maps and OpenStreetMap with its toolchain. In order to assist visu-
ally impaired users as well, additional navigation information, e.g. about the
condition of the floor, is offered.

With the purpose of providing a point-to-point navigation system, a position-
ing system is essential, too. It uses Wi-Fi signals for absolute positioning in
buildings, in combination with relative positioning information gathered by
analyzing data of the smart phone’s accelerometer, magnetometer and gyro-
scope. Due to the conjunction of this positioning information, an average error
of 1.67 meters has been achieved.

i

Contents

Contents

I Project Overview 1

1 Introduction 2
1.1 Aim of the Thesis . 3
1.2 Structure of the Thesis . 3

2 Requirements 6
2.1 Stakeholders . 6
2.2 Functional Requirements . 7
2.3 Non-Functional Requirements 9

3 Architecture 11
3.1 Component Overview . 11
3.2 Logical Architecture . 13
3.3 Data Model . 17

4 Content Model and Managment 19
4.1 Content Parts . 19
4.2 Content Management System 21

II Mobile Application 25

5 Introduction to the Mobile Application 26

6 Incremental Data Synchronization 28
6.1 Database Dump . 28
6.2 Incremental Synchronization . 30

7 User Interface 33
7.1 User Interfaces for Visually Impaired People 33
7.2 Graphical User Interface . 38
7.3 User Interface Structure . 43
7.4 Textual User Interface . 44
7.5 Interim Conclusion . 47

ii

Contents

III Navigation 49

8 Introduction to the Navigation System 50

9 Existing Mobile Navigation Systems 51
9.1 Google Maps . 51
9.2 OpenStreetMap . 51

10 OpenStreetMap meets Google Maps 59
10.1 Map File . 59
10.2 Reading Data: SpatiaLite . 60
10.3 Pathfinding: SpatiaLite . 61
10.4 Data Mapping: MoCaInfo and SpatiaLite 61

11 Navigation Instructions 63
11.1 Additional Instructions for Visually Impaired Users 63

12 Navigation System’s User Interface 65

13 Navigation System’s Software Architecture 67

IV Indoor and Outdoor Positioning 69

14 Introduction to Indoor and Outdoor Positioning 70

15 Absolute Positioning 71
15.1 Global Positioning System . 71
15.2 GSM . 72
15.3 Wi-Fi . 75
15.4 Optical . 78
15.5 Near Field Communication . 80
15.6 Roundup . 82

16 Relative Positioning 83
16.1 Robot’s Positioning . 83
16.2 Pedestrian Positioning . 84

17 Absolute Positioning in MoCaInfo 85

iii

17.1 GSM . 85
17.2 Optical . 86
17.3 Global Positioning System . 86
17.4 Near Field Communication . 86
17.5 Wi-Fi . 88

18 Relative Positioning in MoCaInfo 101
18.1 Step Detection . 101
18.2 Compass . 109

19 Dead Reckoning 122
19.1 Weighting of Location Sources 122
19.2 Adaptive Weighting . 124
19.3 Multiple Absolute Location Sources 126

V Conclusions and Future Work 129

20 Conclusions 130
20.1 Mobile Application . 130
20.2 Navigation . 131
20.3 Indoor and Outdoor Positioning 131

21 Future Work 135
21.1 Mobile Application . 135
21.2 Navigation . 136
21.3 Indoor and Outdoor Positioning 137

22 Final Words 143

A Bibliography i

B Glossary ix

iv

List of Figures

List of Figures

3.1 Logical Component Overview 12
3.2 Layers Architecture . 14
3.3 Architectural Pattern: Layers 16
3.4 Entity-Relationship Diagram of MoCaInfo’s Data Model . . . 17

4.1 Sketch of a Content Part, Using the Big Picture Template . . . 20
4.2 Example Content Composed of Two Content Parts 20
4.3 Screenshot of the Content Management System 21
4.4 Asynchronous Client Server Communication with GWT 23

6.1 Performance Overview, Inserting 1500 and 50000 Rows Into
SQLite Database . 30

6.2 Data Synchronization Between Client and Server 31
6.3 Data Synchronization using GSON 32

7.1 Screenshots of Android’s Accessibility Features 38
7.2 Examples of the Dashboard UI Design Pattern 40
7.3 Examples of the Action Bar UI Design Pattern 41
7.4 Examples of the Quick Actions UI Design Pattern 42
7.5 Examples of the Navigation Drawer UI Design Pattern 43
7.6 Wireframe of Graphical User Interface 44
7.7 Navigation with Volume Control Buttons 46

8.1 Overview of a Navigation System’s Components 50

9.1 Screenshot of JOSM . 57

10.1 Background Layer between Google Maps and Building Overlay 60
10.2 Data Mapping Concept . 62

11.1 Navigation Instruction with and without Door and Corridor
Information . 64

12.1 Screenshot of MoCaInfo’s Navigation Component 66

13.1 Navigation Component’s Architecture 67

v

List of Figures

15.1 Principle of Satellite Positioning. Illustrated in [27]. 72
15.2 Illustration of a AoA Triangulation. α and β are Known Be-

cause of the Antenna Arrays 74
15.3 Illustration of Time of Arrival (TOA) 77
15.4 Model of a Room in CityGML[43] 79
15.5 Projected Markers used by CLIPS[45] 80

17.1 Device Scanning a Passive NFC Tag 87
17.2 Flow from Wi-Fi Measurement to Location Determination . . 89
17.3 Compass Filter’s Functional Principle 90
17.4 Distribution of P (C) with a Fingerprint Distance of Two Meters 94
17.5 Wi-Fi Positioning Test Area with Fingerprints 95
17.6 Comparison of Various Distance Methods as a Box Plot 96
17.7 Impact of a Last Location Depended P (C) on the Accuracy

as a Box Plot . 97
17.8 Impact of the Number of Neighbors in Weighted Nearest Neigh-

bor Algorithm on Accuracy . 98
17.9 Estimated Positions with Naïve Bayes Classifier and Canberra

Distance . 99
17.10 Map Showing Two Tracks, Estimated with Canberra Distance

Approach and Naïve Bayes classifier. 100

18.1 Steps of Signal Preparation . 102
18.2 Acceleration Measurements after Various Enhancement Steps . 104
18.3 Step Detection Example. Red Squares in Figure (b) Represent

Detected Steps . 105
18.4 Procedure of Peak Detection 106
18.5 Bar Chart Comparing the Step Detection Accuracy 107
18.6 Comparison of Prepared and Low-Pass Filtered Signal 108
18.7 Normalized Vectors, used for Azimuth Calculation. Example

Vectors result in an Azimuth of approximately 90◦ 110
18.8 Low-Pass Filter Applied to Z-Axis of an Acceleration Vector

over Time . 112
18.9 Decreasing Weights of an EMA with α = 0.125 113
18.10 EMA Filter Applied to Z-Axis of an Acceleration Vector over

Time . 114

vi

List of Figures

18.11 Structure of a Sensor Fusion Model, Using Accelerometer, Mag-
netometer and Gyroscope for Orientation Estimation 115

18.12 Azimuth Computed by Fusing Data from Gyroscope, Accelerom-
eter and Magnetometer . 117

18.13 Comparison of Compass Filters and Approaches. Determina-
tion with a Magnetic Disturbance 118

18.14 Comparison of Compass Filters and Approaches. Magnetic
Disturbance Between Second 20 and 24 119

18.15 Comparison of Compass Filters and Approaches. Walking Down
a Floor and Rotate Approx. 80◦ After 23 Seconds 120

19.1 Concept of Dead Reckoning 122
19.2 Comparison of Different Weightings Between Location Sources 124
19.3 Dead Reckoning with an Adaptive α Between 0.5 and 0.95 . . 125
19.4 Comparison of Wi-Fi-only Positioning and Dead Reckoning . . 125
19.5 Concept of Dead Reckoning with Multiple Absolute Location

Sources . 126

20.1 Position Estimation with Dead Reckoning (Red) and Wi-Fi-
Only (Blue). Green Line Shows the Actual Walked Track . . . 133

21.1 Clock Model for Orientation 137
21.2 Gimbal Proximity Beacon Series 10 (left) and Series 20 by

Qualcomm[76] . 139
21.3 Magnetic Field with Artificial Magnetic Interference 141
21.4 Magnetic Field During a Walk in a Building 142

vii

Part I.

Project Overview

1

1. Introduction

1. Introduction

The following work describes the development of the mobile campus informa-
tion system (“MoCaInfo”) which has been developed at Technische Hochschule
Mittelhessen - University of Applied Sciences. MoCaInfo’s major goal is pro-
viding location-based information to students, lecturers and university staff.
That information might be a floor plan, opening hours of the faculty office or
the cafeteria menu.

In addition, MoCaInfo includes a point-to-point navigation system, especially
to enable new and abroad students as well as visually impaired people to find
their way at a continuously growing and changing campus.

MoCaInfo consists of a bunch of different software components which are di-
vided into end-user front-ends, administrative front-ends and back-ends. At
the current state of development, the end-user part has been realized as a
mobile Android application and an HTML5 web application. The administra-
tive tasks can either be fulfilled with the help of a web application or desktop
application.

The software itself has been elaborated by students in different classes starting
with “Project Mobile Campus Information System” in 2011, followed by two
“Location-based Services” classes.

The following chapters will gain an insight into the different approaches which
have been developed for the several problems. At this, the focus is on mobile
user interfaces for visually impaired people, indoor and outdoor positioning
and point-to-point navigation.

The generic masculine is used in the thesis, due to a better readability.

2

1.1 Aim of the Thesis

1.1. Aim of the Thesis

Todays smart phones offer decent CPU and memory resources as well as vari-
ous sensors, enabling developers to implement location-based information sys-
tems. However, today’s information systems have deficits when it comes to
point-to-point navigation. Main reason for this is the lack of standard indoor
positioning techniques. Furthermore, the needs of visually impaired people are
barely considered in existing location-based information systems.

Therefore, the aim of this thesis is to provide possible solutions for the men-
tioned problems and share the experiences made during the development of
a university location-based information system. One distinguishing feature of
the proposed system is an indoor and outdoor point-to-point navigation sys-
tem. The system has to be usable at current Android smart phones. In order to
achieve such a navigation system, one of the problems to be solved is indoor po-
sitioning. At this, it is important to use sensors and connectivity technologies,
which are available in today’s smart phones.

Furthermore, a system for outdoor and indoor map creation, rendering and
pathfinding is needed. Particular requirements for these components arise be-
cause visually impaired people shall be guided by the navigation system as
well. This user group is often ignored by existing systems, even though they
benefit even more from a navigation system than sighted users as they are
not able to orientate with the help of usual signposts. For this reason, much
additional information has to be gathered and considered by the components
involved in navigation.

This thesis builds upon the previous insights of many students and co-workers
who worked at the MoCaInfo project in the past years. Those insights are
combined with own thoughts and other current research findings.

1.2. Structure of the Thesis

The document is divided into five major parts, which are briefly introduced in
the following enumeration.

3

1. Introduction

I. Project Overview gives a brief introduction into the MoCaInfo project, ex-
plaining the stakeholders and resulting requirements for the information
and navigation system. Section 3 describes the components and data
model, needed to realize the previously defined requirements. The part
ends with an explanation of MoCaInfo’s content model.

II. Mobile Application addresses the actual end user interface of MoCaInfo,
the mobile Android application. The part begins with a brief introduc-
tion. Followed by an explanation of the mobile application’s data syn-
chronization feature, which enables users to use most features without
a network connection. After that, the pros and cons of a user interface
which follows the universal design approach and a dedicated low-vision
user interface are discussed.

III. Navigation deals with the problem of indoor and outdoor navigation. At
first existing map and navigation solutions are evaluated, in order to find
out if and how they can be used in the given scenario. Section 10 explains
the approach used for implementing an indoor and outdoor navigation
system, using as many established technics and libraries as possible. The
following sections outline additional information which have to be con-
sidered in order to provide a good navigation experience for visually
impaired people. The navigation part ends with a description of the nav-
igation component’s user interface and its software architecture.

IV. Indoor and Outdoor Positioning gives an overview about existing posi-
tioning technologies and approaches. At this, it is distinguished between
absolute positioning approaches, which are able to determine the ab-
solute position on earth and relative positioning approaches, which are
only able to detect changes in position. After this general explanation,
the actual positioning system which has been developed for MoCaInfo
is introduced. To these belongs a Wi-Fi fingerprinting approach, which
is explained in section 17.5. Those Wi-Fi positions are reckoned with a
relative positioning component, which is made of a step detection algo-
rithm and a compass. Additionally, NFC and GPS information are used
for position determination when available. The different algorithms and
approaches are explained in section 18.

4

1.2 Structure of the Thesis

V. Conclusions and Future Work summarizes the insights about mobile user
interfaces for visually impaired people as well as indoor and outdoor
navigation and positioning. The thesis ends with thoughts about future
work for further improvements, followed by some final words how indoor
positioning and navigation may change within the next couple of years.

5

2. Requirements

2. Requirements

The following section describes the stakeholders involved in MoCaInfo. Based
on those stakeholder descriptions, functional and non-functional requirements
for the system are defined.

The general purpose of MoCaInfo is to provide students, staff and guests of
Technische Hochschule Mittelhessen with valuable, often location-based, in-
formation. To achieve this basic goal, client applications for end users as well
as administrative applications for data acquisition need to be designed and
implemented.

As the overall development of MoCaInfo uses an agile approach, there is no
contract style list of requirements or anything similar. Instead user stories
have been described verbally, using the classical approach: “As a <role> I
want to <feature/ability of the system> so that <value the role receives from
the feature>” [1, p. 102ff].

Before user stories and requirements can be defined, it is common practice to
analyze the stakeholders who are involved in the software system[1, p. 119ff].

2.1. Stakeholders

At first glance there are two stakeholders, end users who use the system and
administrators who maintain the information system and its data. Looking
more deeply into these stakeholders one notices that a more detailed separation
is necessary. End users can be seen as a group which contains more precisely
defined stakeholders.

6

2.2 Functional Requirements

2.1.1. End users

students are the biggest end user group for a mobile campus information sys-
tem. Because of their age, they can be seen as belonging to the so-called
group of digital natives. Today’s students are used to handle interactive
web and smart phone applications to look up information or commu-
nicate with each other. Because of the daily usage of the internet and
smart phone applications, students expect an interactive and responsive
user interface, which presents the information in an appealing way.

visually impaired or even blind students and staff members are the second
large user group, which is often disadvantaged by common information
systems. Instead of seeing information, visually impaired users have to
be able to request and understand information by using their remaining
senses. Therefore, the focus of an application has to be on audible and
tactile feedback.

university staff may also benefit from a centralized information system. In
opposite to the students, it has to be assumed that many staff members
are not pretty familiar with using mobile applications.

2.1.2. Administrators

An information system is only as good as its information. This information has
to be created and maintained. Administrators are a privileged group of people
which is allowed to edit or create new information. They do not necessarily
have a technical background. Therefore, applications have to be as simple as
possible and well documented.

2.2. Functional Requirements

Functional requirements define functions of the system or a system’s compo-
nent. The following functional requirements have been extracted from user
stories which are not described in this thesis.

7

2. Requirements

2.2.1. Information System

room information - the system has to provide information about rooms, whereas
the kind of information depends on the room type. For example, a lecture
schedule should be shown for lecture halls. Information about an office
might list the staff members who usually work in the office and their
contact information. Additionally, opening hours for the deanery and
the cafeteria’s menu are potentially useful room-depended information.

Since information is the data which is shown to the end-user, in this
thesis the term is often used equivalent to the term content.

points of interest (POI) - beside rooms, there are other points of interest.
Such POIs are, for example, copying machines, beverage dispensers or
seating accommodations. A list of nearby POIs has to be available, based
on the user’s current position.

contact person - a pretty common situation for students but for university
staff as well is to find the correct contact person for a particular problem.
Students may need a formula for their health insurance or a staff mem-
ber needs opening permissions for a certain room. Based on the given
keyword, e.g. “opening permissions”, the information system shall find
the appropriate contact persons. The search result shows the according
contact and office information of the found staff member.

non location-based content - most content in the system is location-based,
whereas there is location-independent content, as well. Examples for
location-independent contents are newsfeeds and general information
about the university, study paths or semester breaks.

bookmark - the user has to be able to bookmark POIs and content for a fast
future access.

user feedback - the user has to be able to enter comments or ratings for
certain content or POI elements.

data import - the most important part of an information system is informa-
tion. Therefore, the system needs to be able to import or directly access
existing data such as lecture schedules and contact lists.

8

2.3 Non-Functional Requirements

user interface for visually impaired users - the mobile application has to be
usable by visually impaired or blind users. Often they use tools like
software magnifiers to enlarge existing screen elements. Such tools are
barely usable at Android devices. For this reason, it might make sense to
implement a user interface which is customizable and scalable. Therefore
it is necessary that the user is able to change font styles, size and colors
to make the app fits to his individual limitations.

2.2.2. Navigation System

point-to-point navigation - the system has to provide the possibility to nav-
igate from one point on the campus to another. The navigation targets
are points of interest.

shortest path - the computed route has to be short and reasonable. This
includes the usage of side entrances and other shortcuts.

audio-visual navigation instructions - navigation instructions, as known from
car navigation systems, have to be determined and presented to the user
in an audio-visual manner.

navigation instructions for visually impaired people - visually impaired and
blind people need additional information about a walking route which
have to be provided by the system. Such information are obstacles like a
fire door that crosses the way, the floor’s condition and others.

position determination - the user’s position has to be estimated by the sys-
tem, no matter if the user is outdoor or indoor. The accuracy has to be
reasonable, in order to be able to provide point-to-point navigation.

2.3. Non-Functional Requirements

offline availability - as many data as possible should be offline available be-
cause there are some parts on the campus where neither a reliable Wi-Fi
nor a mobile connection can be established. Regarding that lots of data

9

2. Requirements

like room information and contact persons are valid for certain months
or even years, further approves the reasonableness.

low resource consumption - the mobile application has to be able to run
on lower midrange devices without limitations. Therefore, using efficient
algorithms and technologies to achieve the intended features is necessary.
Furthermore, old Android versions, which are still wide-spread, have to
be supported.

maintainability - is important for any software project, but in this case it is
particularly important because many students only work at the project
for several months. Therefore, it should be easy for students to make
themselves familiar with the project and its source code. To achieve this,
any source code has to be written in Java because it is the first learned
programming language at Technische Hochschule Mittelhessen.

intuitive user interface - the user interface has to follow well-known user in-
terface design patterns in order to make the usage as intuitive as possible.

10

3. Architecture

The requirements listed and explained in chapter 2 influence the software ar-
chitecture. Therefore, the first step of creating the architecture is to describe
logical components, needed to fulfill those requirements. Afterwards, the single
components are transferred into a logical architecture. The chapter ends with
an introduction to the system’s data model.

3.1. Component Overview

The term component does not define how it is actually implemented. In case
of MoCaInfo, some components are realized as standalone applications others
have a programming library behavior.

Content Management System enables privileged users to create, edit or dis-
miss content which is available within the client applications.

Database stores data which is needed for the information system and compo-
nents like positioning and navigation. The data itself is inserted by the
content management system and the data import component.

Data Import uses existing data sources and stores them into the database. To
achieve this, the existing data has to be transformed into a specific data
structure.

Data Synchronization synchronizes data from the global database to a locally
available database. This is needed because the smart phone application
has to be as network independent as possible.

Map Editor enables privileged users to create indoor maps of buildings. Those
maps include meta-information about buildings and its levels as well as

11

3. Architecture

information needed for indoor navigation. Furthermore, the map editor
supports gathering of outdoor areas.

Positioning is needed to determine the user’s position, no matter whether the
user is inside or outside a building. This component is used by the smart
phone application and the navigation component.

Navigation inside buildings and on outdoor facilities is provided by this com-
ponent. It consists of methods for calculating routes, navigation instruc-
tions and possibilities to visualize navigation-dependent data like maps.

Smart Phone Application shows information stored in the database and en-
ables users to navigate to points of interest.

Web Application shows information stored in the database and enables users
to show a route to points of interest.

Client Application
Data Creation

Database

Data Import

CMS

Map Editor

Data Sync.

Navigation

Positioning

Website

Smart-
Phone
App

Figure 3.1.: Logical Component Overview

Figure 3.1 shows the connections between the different components described
above. Each arrow illustrates a communication between the connected com-
ponents, whereas the arrowhead points out the communication direction. The
database acts as an intermediator between the components. The only compo-
nent which does not directly access the database is the smart phone application.
It accesses all necessary data via the data synchronization component. Due to

12

3.2 Logical Architecture

that approach, the smart phone application does not depend on an ongoing
connection to the database.

A more detailed description of the single components can be found in the
following chapters.

3.2. Logical Architecture

A common approach for structuring an information system’s architecture is
the usage of a multilayered logical architecture. It is a pretty straight forward
way, to make sure that business logic and user interfaces are separated. This is
important in order to keep a growing system understandable and maintainable.
The layers used for MoCaInfo are based on a best practice for domain-driven
design, which is described among others by Eric Evans[2, p. 68ff].

Evans recommends the following four layers:

Presentation Layer is responsible for presenting information to external ac-
tors and interpreting the actor’s commands. External actors are usually
human end users, but in some cases, the external actor is another com-
puter system.

Application Layer (Service Layer)1 provides services which establish a set of
operations and coordinates the application’s response in each operation.
The layer itself is kept thin. The actual business logic is implemented
in lower layers. Therefore, the application layer only defines an applica-
tion’s boundary and its set of available operations from the perspective
of interfacing client layers.

Business Layer (Domain Layer or Model Layer) is the heart of any software
because it contains the business logic. However, technical details, like
storing data are delegated to the lower infrastructure layer.

Infrastructure Layer provides general capabilities to enable the higher layers
fulfilling their tasks. A common feature provided by the infrastructure
layer is the storage of data.

13

3. Architecture

Infrastructure Layer

Business Layer

Application Layer

Presentation Layer

...
Node

CMSMap Editor

Navigation Service Positioning Service

Website

Smart
Phone
App.

DatabasePath Finding Data Abstraction

Data Sync.

Sync. Web Service

Geo. Lib.

Data Abstraction
Utility

Data Service

POI

Models

Navigation
Utility

Figure 3.2.: Layers Architecture

To achieve a layered software architecture, the components introduced in sec-
tion 3.1 have to be assigned to one of these layers. Figure 3.2 shows the com-
ponents already explained components, in addition to some new ones. The
lines between components illustrate a usage relationship, e.g. the smart phone
application uses the navigation service.

1see [3, p. 138]

14

3.2 Logical Architecture

The presentation layer holds all applications which are visible to end users:
the website, the smart phone application, the map editor and the content man-
agement system.

The application layer’s components act as interfaces between the actual busi-
ness logic provided by components in the business layer and components from
the presentation layer. The technical realization of these interfaces slightly dif-
fer from component to component. In case of the synchronization web service
which is the interface for the incremental data synchronization, operations are
provided via a RESTful web API. Other components like data service just
abstract direct access to other components from a developer’s point of view.
Navigation service is used by the smart phone application and the website to
compute and visualize routes and other navigation-related information. Posi-
tioning service is used by the smart phone application to determine the user’s
current position.

The business layer’s components implement the business logic. Together with
other components from the infrastructure layer, the navigation utility finds
the shortest path between two POIs and offers other navigation related op-
erations to the upper layer. Another important part of the business layer is
the data model, which is represented by a couple of components on the right
side of the figure. It should be noted that figure 3.2 only shows the model
components POI and node, but the complete architecture contains a lot of ad-
ditional models, e.g. to represent content, Wi-Fi fingerprints and many more.
The data synchronization component implements methods which are needed
for an incremental data synchronization. The data abstraction utility provides
functions to load and modify model components.

The lowest layer offers pretty general, low level operations, like a pathfinding
algorithm or tools to convert between different geographical location formats.
The data abstraction component implements the actual database access.

15

3. Architecture

3.2.1. Architectural Pattern: Layers

For a better understanding of the architecture described above, this section
summarizes and explains the general properties of the layers pattern. The
description is based on Buschmann et al.[4, p. 31ff].

The probably best-known example of a layered architecture is the ISO/OSI
7-Layer model. The layered approach is considered to be better practice than
implementing a protocol as a monolithic block because of several benefits. First
of all, development tasks in a layered architecture can be distributed to dif-
ferent developers or teams more easily because the different parts of different
layers are more or less independent, if the pattern is used pervasive. Having
semi-independent parts, also enables an easier exchange of individual compo-
nents at a later date because the section of code, which has to be replaced, is
clearly delimited.

Layer N-1

Layer NUser uses

Layer 1

highest level of abstraction

lowest level of abstraction

Figure 3.3.: Architectural Pattern: Layers

A typical system, which is predestined for a layers architecture, has different
levels of abstraction. The uppermost layer starts with a pretty high-level of ab-
straction, which usually acts as an interface to the user. The level of abstraction
decreases at lower layers. The higher levels rely on operations, provided by the
lower level. As shown in figure 3.3 it is an essential principle of the pattern
that any element of a layer depends only on elements in the same layer or on
elements of the layer below.

16

3.3 Data Model

A single layer does not necessarily have to be composed of one single com-
ponent. Often a layer is a complex entity, consisting of different components
which may even communicate with each other. To keep the advantage of a loose
coupling, it is important to abstract the communication between components
at different layers by a layer interface.

3.3. Data Model

The following section gives an overview on the system’s data model. As it is
used across all components, it can be seen as the lowest common factor of the
different components.

Category

Content ContentPart

Level NodeBuilding WiFi
Measurement

Comment

Fingerprint

Rating

Channel

Content

Location Positioning

User Feedback

POI

*

*
**

*
1

1

*

*

1

1 * 1 * *1 1 *

Figure 3.4.: Entity-Relationship Diagram of MoCaInfo’s Data Model

Figure 3.4 visualizes the data model’s main parts. For reasons of clarity, the
entity-relationship diagram does not show any attributes or named relation-
ships. The actual implementation of the data model is realized by a MySQL
database on the server side and an SQLite database on the mobile device,
which are kept in sync.

17

3. Architecture

The different tables can be classed into four different logical categories. The
first one is user feedback which holds comments and ratings about content and
POIs.

Another logical category represents content, which also includes an identically
named table. Content may be assigned to so-called channels. Each channel
represents a collection of content about a certain topic or addresses a certain
interest group. For example, there is a channel for all computer science students
which contains recent events about lecture cancellation and guest lectures. The
detailed architecture and meaning of content is explained in chapter 4. A POI
is represented by a describing content and a node which holds the geographic
location. Therefore, the POI can be seen as a connector between the categories
content and location.

The actual location of a node is described by its geographical location and the
building plus level, whereas outdoor nodes are member of a pseudo building.

The positioning system uses a Wi-Fi fingerprint approach, details described in
section 17.5. The according data is stored in the database tables fingerprint
and Wi-Fi measurement.

18

4. Content Model and Managment

One of the most important aspect of an information system is the information
which it provides. In case of MoCaInfo, any information is considered to be
content. This chapter describes the content’s data model, followed by a short
introduction of the content management system.

MoCaInfo’s content model, on the one hand, has to be flexible in order to
describe different kinds of information, but on the other hand it has to prescribe
a structure. This structure is needed, to visualize content in similar ways, no
matter whether it is a room schedule, the cafeteria menu or something else.

Furthermore, content has to be reusable. For example, a professor’s digital
business card has to be shown as part of his office’s room information and in
a list which shows all lecturers of the faculty.

The following section describes the concept of content parts followed by an
introduction to the content management system.

4.1. Content Parts

In order to achieve the goals of flexibility, structure and reusability a data
model has been designed, which defines content as a set of content parts. At
this, content is the object which is assigned to a POI or accessible via in-
formation channels, and content part is the object which holds the actual
information.

A content part consists of a header, an optional rich content and textual con-
tent. The textual content can either be plain text or use HTML markups for
basic formatting. Rich content is defined by an URI and usually refers to an
HTTP resource, e.g. an image or a video. Furthermore, the rich content can

19

4. Content Model and Managment

Lorem ipsum

Lorem ipsum dolor sit amet, consectetur adi-
piscing elit. Aenean tincidunt rhoncus turpis,
fringilla ornare leo feugiat nec.

Header

Rich Content

Textual Content

Figure 4.1.: Sketch of a Content Part, Using the Big Picture Template

point to internal resources, e.g. to show a floor map with the currently selected
POI highlighted.

Office A20.1.09

Tel: +49 1234567
Mail: smith@example.org
Office Hours: Mo. 13:00 – 14:00

Content Header

Big Picture Content
Part without Textual
Content

Mr. Smith

Floor Plan

Left Picture Content
Part with HTML
Formatted Textual
Content

Figure 4.2.: Example Content Composed of Two Content Parts

The arrangement of the rich content element and its size is defined by a tem-
plate. Currently there are three templates. One template showing a screen
width filling rich content. It is called the big picture template. Two other tem-
plates only have a small square for rich content, either left or right beside the
textual content.

20

4.2 Content Management System

Besides flexibility and structuring, content parts contribute to offline availabil-
ity. As headers and textual content are stored in the database, it is offline
available on the mobile device because of the data synchronization mechanism
described in section 6. Only external rich content elements, such as images, are
loaded on demand and may require a network connection. But even those rich
content elements are cached, which makes them offline available when they
have been loaded once before.

An example of a content object consisting of two different content parts is
illustrated by figure 4.2.

4.2. Content Management System

In order to create, edit and delete content, a content management system
(CMS) has been developed. The CMS is web-based so that content adminis-
trators only need a web browser to access the CMS.

Figure 4.3.: Screenshot of the Content Management System

At the current state of development, the content management system is not
much more than a database editor, which enables privileged users to insert or

21

4. Content Model and Managment

update elements of the content_part and content database tables. In a future
version, the CMS will assist the creation of certain content types, in order to
make sure that similar content is gathered in the same way. Candidates for
unified content types are for example, room information, digital business cards
and general POI information.

4.2.1. Google Web Toolkit

The web-based CMS has to be written in Java, since one of the non-functional
requirements imposes that all MoCaInfo projects have to be implemented with
this programming language. Therefore, the Google Web Toolkit (GWT) has
been used for development. GWT allows web application developers, to write
plain Java sourcecode without taking care of web technologies. The GWT
compiler creates HTML, CSS and JavaScript files for the front-end and JavaEE
servlets for server-sided application parts. Typical candidates for such servlets
are components which interact with server resources, such as the database.

The communication between the client’s webinterface and servlets is asyn-
chronous, using the AJAX technology. At sourcecode level, those asynchronous
method calls are achieved by implementing a RemoteServiceServlet and a
RemoteService. The client code calls an asynchronous interface RemoteService
which in turn delivers data by triggering a callback method. In figure 4.4, this
class is DBServiceAsync. Interesting from a developers point of view is the
fact that the asynchronous interface does not need an implementation at all.
The implementation is done by the GWT framework automatically. Figure 4.4
shows the Java classes involved in client-server communication, in a simplified
UML diagram.

22

4.2 Content Management System

client

server

«interface»
RemoteService

«interface»
DBService

Content: load(int id)
int: save(Content content)

«interface»
DBServiceAsync

load(int id, AsyncCallback<Content> clbk)
save(Content c, AsyncCallback<Integer> clbk)

«interface»
RemoteServiceServlet

DBServiceImpl

Content: load(int id)
int: save(Content content)

Figure 4.4.: Asynchronous Client Server Communication with GWT

23

Part II.

Mobile Application

25

5. Introduction to the Mobile Application

5. Introduction to the Mobile Application

Two applications exist which provide the system’s information to the users - a
website and a mobile application. The website is nice to get a brief overview
about certain information, but the mobile application is able to present the
location-based information where it is needed. Furthermore, some of the pro-
posed features, such as point-to-point navigation, cannot be achieved with a
website.

Android is the targeted platform of the mobile application for various reasons.
First of all, Android is the mobile operating system with the largest market
share[5]. Second of all, Android devices offer all sensors and connectivity tech-
nologies which are needed to fulfill the requirements explained in section 2. In
addition, Android applications are written in Java, and there are lectures at
the university addressing Android development. Thus, there are students with
the precognition needed to develop such an application from scratch.

An alternative, which has been considered, is a hybrid cross-platform approach.
Such cross-platform applications are implemented using HTML5, JavaScript
and CSS. By means of special frameworks, it is even possible to access native
APIs, e.g. to be able to use the device’s NFC reader. But those web-based so-
lutions lack of techniques to support visually impaired end users. Furthermore,
web and hybrid applications offer a worse responsiveness and user experience
compared to native apps[6].

The application’s first prototype has been developed by Artur Klos and Patrick
Winter, former students of Technische Hochschule Mittelhessen, during their
conclusion phase in 2011. Patrick Winter describes the development in de-
tail in his bachelor thesis “Entwicklung eines mobilen Campusinformations-
systems”2[7]. This chapter summarizes his thoughts, in addition to the further

2german for: “development of a mobile campus information system”

26

development since August 2011. The second major part of the mobile appli-
cation, beside the information system is navigation and localization, which is
described in chapter IV starting at page 70.

The following sections use an Android-specific terminology. Those terms are
described in the glossary at the end of this thesisDue to a better flow of read-
ing.

27

6. Incremental Data Synchronization

6. Incremental Data Synchronization

One of the mobile application’s key features is the ability to provide as much
information as possible without having an active network connection. This is
important because Wi-Fi and cellular network connections cannot be assumed
to be available all the time. For this reason, the server’s database has to be
synchronized with the Android client’s database whenever a network connec-
tion is available. This chapter describes the incremental data synchronization,
including some issues which appeared during the development.

The data described in section 3.3 is stored globally in a MySQL database at
a server. In order to be able to use one data abstraction library for server-
sided and client-sided applications, the same database structure is needed on
the server and the Android client. Since Android does not support MySQL
databases, the mobile application uses a SQLite database which is perfectly
supported by the Android framework.

Due to the two different database systems a MySQL database dump has to
be converted into a SQLite database. This database dump has to retain the
database structure as well as the data sets.

6.1. Database Dump

A common approach, described and discussed in many newsgroups is the shell
scriptmysql2sqlite.sh3, created and published by a user called esperlu. The shell
script produces a MySQL database dump and uses a lot of regular expressions
to map the MySQL syntax to an SQLite compatible one. The resulting SQL
statements are used to create the corresponding SQLite database with the help
of SQLite command line utilities.

3https://gist.github.com/esperlu/943776

28

https://gist.github.com/esperlu/943776

6.1 Database Dump

This approach worked well in the MoCaInfo environment at an early state
of development, only having some non-representative sample contents in the
database. With a growing amount of data, errors occurred either when creating
the initial MySQL database dump or when creating the SQLite database from
the modified dump. Reasons for these errors are some special characters and
quotation marks inside the MySQL database’s content tables.

Improving the regular expressions which modify the MySQL dump is one pos-
sibility to fix this issue. But, this approach further increases the complexity of
the already pretty confusing and hardly maintainable regular expressions.

Therefore, an approach has been developed which does not need to change the
datasets with the help of regular expressions. Thus, the database’s data is sepa-
rated from the database’s structure. The structure is created by mysql2sqlite.sh
as described above, but the MySQL dump is used for modification, only in-
cludes the database’s structure without any data. This results in an empty
SQLite database with the same database structure. The data is transferred
by a tiny application which connects to the MySQL database server and the
SQLite database. It selects all data from the MySQL database and inserts it
to the empty SQLite database.

6.1.1. Performance Issues

Selecting the data from MySQL and inserting it row by row results in a critical
performance issue with SQLite. Within a test environment, it took more than
10 minutes to copy 1500 rows from MySQL to SQLite. This issue is caused by
SQLite’s transaction management. SQLite is designed to wrap any SQL insert
into one atomic transaction[8]. As a result, inserting 1500 rows generate 1500
database transactions. By default, a SQLite transaction waits until the data
is safely stored on the hard disk’s surface before it completes.

According to SQLite’s FAQ[8] the maximum number of transactions per second
is about 60, at current 7200 rpm hard drives. In MoCaInfo’s test environment,
the number of transactions per second is even limited to 2.5.

To get rid of this problem, multiple inserts have to be combined into one
transaction. Figure 6.1 shows the tremendous performance improvement. An

29

6. Incremental Data Synchronization

additional test with 50.000 database rows shows that the difference in per-
formance between 5000 and 50000 inserts per transaction is just about 12%.
Therefore, the nightly MoCaInfo database dump is created with 5000 inserts
per transaction in order to keep the memory consumption at a low level com-
bined with a reasonable runtime.

1

10

100

1000

1 5 500 5000

ru
n
ti

m
e

(s
ec

o
n
d
s)

inserts per transaction

1

10

100

1000

50 500 5000 50000

ru
n
ti

m
e

(s
ec

o
n
d
s)

inserts per transaction

copy 1500 rows copy 50000 rows

Figure 6.1.: Performance Overview, Inserting 1500 and 50000 Rows Into
SQLite Database

6.2. Incremental Synchronization

Generating an SQLite database from the server’s MySQL database is only one
part of data synchronization. As mentioned earlier, the data synchronization
has to be incremental. This prevents the mobile application from downloading
a complete database dump of several megabytes just because a few data sets
have been changed or added.

To implement this feature, the database needs to remember whether data has
been added, changed or deleted. Therefore, any database entry has a timestamp
field which stores the creation or modification time. The timestamp is stored
as a UNIX timestamp which represents the time as the number of seconds
elapsed since January 1st, 1970 00:00:00 UTC.

The timestamp field enables the system to figure out whether data is new
or changed, but this cannot be applied to deleted entries. In order to keep
track of deleted database entries there is a dedicated database table called
deleted_entry. Whenever an entry is deleted from any other table, an entry

30

6.2 Incremental Synchronization

including the table’s name and the entry’s id is added to the deleted_entry
table. Like any other table, deleted_entry has a timestamp field, to store the
deletion time.

Client Server

tablename & max. local timestamp

new, changed and deleted entries

insert and update entries

delete entries

store max. timestamp
for table

Figure 6.2.: Data Synchronization Between Client and Server

As shown in figure 6.2 the Android client sends a request to the server, includ-
ing the database table’s name and the maximum timestamp of the table’s local
copy. With this information the server is capable to collect all new, changed
and deleted entries by searching all entries, which are newer than the local
timestamp. The changed and deleted entries are send back to the client. The
received information is used by the client to update the local database. After
that process, the requested database table on client and server are in sync.

6.2.1. GSON

In a former development version of MoCaInfo, XML was used to send the
information about changed entries to the client application. Therefore, the
server loaded the data from the MySQL database and built a well formed
XML document, by concatenating strings. At the client side, a SAX parser
interpreted the XML string and wrote the data to the local SQLite database.

31

6. Incremental Data Synchronization

Both, the Android application and the web service which creates the XML
string, are written in Java.

This XML solution has some problems, especially regarding the maintainabil-
ity. Whenever the server’s XML structure changes, the client’s SAX parser
needs to be adjusted accordingly. The problem is that developers will not get
any compile-time errors even if the SAX Parser and the XML generator are
incompatible. As a result, incompatibilities and resulting errors only appear
at runtime. A general programming paradigm is to catch errors as early as
possible because earlier errors are easier to handle. Therefore, compile-time
errors are preferred to run-time errors[9].

UpdatedEntry

DataUpdate

DeletedEntry

Server
Gson.toJson(...)

Client
Gson.fromJson(...)

*

*

Figure 6.3.: Data Synchronization using GSON

A solution which shows compile-time errors needs to share Java classes instead
of an abstract XML string. For this purpose, Google developed a library called
google-json4, in short GSON. It is an open source project which converts Java
objects to JSON strings and vice-versa. Instead of creating an XML string
manually at the server side and parsing it manually at the client side, a GSON-
based solution uses the same Java classes at client and server. The actual data
transport format is a JSON encoded string. The whole encoding and decoding
is done by GSON, so there is no additional work for the application developer.
Figure 6.3 shows the concept of using the same Java classes at server and client
without the need to develop an encoder or a parser.

4https://code.google.com/p/google-gson/

32

https://code.google.com/p/google-gson/

7. User Interface

This chapter describes the mobile application’s user interface. Two different
approaches for user interfaces for visually impaired people are discussed. Af-
terwards, the graphical user interface is introduced followed by a description
of a textual user interface. The chapter ends with an evaluation of the chosen
user interface approach.

The user interface of an application is the system by which human users inter-
act with the machine. A user interface has to provide the application’s features
in a feasible and appealing way. In case of MoCaInfo’s mobile application, there
are few additional things to consider, regarding the accessibility, which is ig-
nored by most mobile applications.

7.1. User Interfaces for Visually Impaired People

As mentioned in section 2 visually impaired or blind people have totally dif-
ferent requirements for a user interface compared to sighted people. Sighted
users tend to like fancy, colored user interfaces with fluid animations and tran-
sitions. For a better look and feel, buttons are often replaced by nice looking
icons without any textual description. Those kinds of user interfaces, however
are not at all appropriate for visually impaired users.

In fact, there are two different approaches to design user interfaces for visually
impaired. The first possibility is to consider Android’s accessibility features
when designing the graphical user interface for sighted people. Blind people
then should be able to use the usual graphical interface with the help of gestures
and screen readers[10]. This concept is also known as Universal Design[11]. As
a second approach an application can provide two different user interfaces,
whereas one uses so-called low-vision controls instead of graphical ones.

33

7. User Interface

7.1.1. Low-Vision User Interface

According to Sierra and Togores[12] the best way to afford a good user experi-
ence for visually impaired and blind people is to design the app directly for this
user group. They say that the result usually is much better then designing an
application for sighted people and try to make it usable for visually impaired
by using accessibility tools like screen readers afterwards.

A usable accessible design uses low-vision controls. Those controls are designed
to be larger than usual controls for sighted users and tend to use a pretty high
contrast, whereas white on black is the best contrast for most visual impair-
ments. The different controls and lists have to be usable through gestures.
Furthermore, haptic feedback and text-to-speech should be used whenever it
is possible. Besides that, low-vision controls should be customizable in size and
color to fit best to the users’ capabilities and disabilities.

These statements match with those of Niehaus[13], a former student of Tech-
nische Hochschule Mittelhessen, who is visually impaired himself. Beside the
idea of large, high contrast controls, gestures and text-to-speech, he also states
some possible incompatibilities which might occur between the low-vision user
interface and other installed accessibility utilities. A common example he men-
tions is a conflict between a screen reader and an app which does self-voicing.
One the on hand, self-voicing applications assist users by using text-to-speech,
a classical feature of a low-vision user interface. On the other hand, screen
readers try to read out the currently selected UI element. In many cases this
means that a text is read twice, which is a really disturbing user experience.

7.1.2. Universal Design

Universal Design is a term which has been coined by Ronald L. Mace an ar-
chitect and product designer. In one of his last works, he explains his ideas
together with Molly Follette Story and James Mueller[11]. The concept of uni-
versal design describes a design which addresses each human, no matter what
age, size, abilities, talents and preferences he or she has. To make product
designers understand the various human abilities, he grouped them into cog-
nition, vision, hearing and speech, body function, arm function, hand function

34

7.1.2.1 Android Design Patterns: Accessibility

and mobility. By considering the different capabilities and needs, a product
should be easily usable by all potential users, without the need to design a
distinguished product for each user group.

7.1.2.1. Android Design Patterns: Accessibility

The Android design patterns by Google were created in accordance with uni-
versal design principles[10]. Together with the following Android accessibility
features and tools, applications which are appealing for sighted users should
be usable by visually impaired users, too.

TalkBack is a pre-installed screen reader. It uses spoken feedback to describe
the results of actions, such as launching an app or events such as notifi-
cations.

Explore by Touch is a system feature that works together with TalkBack. It
allows users to touch the device’s screen and hear what is under their
finger via spoken feedback.

Accessibility Settings allows modification to display and sound options, such
as increasing text size or changing the speed of text-to-speech output.

In order to work correctly, this requires that application developers and de-
signers follow some principles. The first principle from the user’s perspective
is “I should always know where I am” [10]. To accomplish this principle, the
user needs feedback while navigating through an application in order to be
able to create a mental model of where he or she is. For most users, this can
be achieved by a visual and haptic feedback during the navigation, such as
labels, icons or touch feedback. As described in section 7.1.1 users with low
vision benefit from verbal descriptions and large visuals with high contrast.
Furthermore, the navigation should be intuitive, which can be achieved by
designing well-defined and clear task flows with minimal navigation steps. Es-
pecially major user tasks should be reached within a minimum amount of steps
or commands. In order to be able to control the application via accessibility
gestures, any task needs to be accessible via focusable controls.

35

7. User Interface

In addition, touch targets should have a size of 48 dp at least. This is important
for sighted users to be able to touch the desired button and for visual impaired
users to be able to find it via Explore by Touch.

In order to let TalkBack read out reasonable descriptions for any kind of impor-
tant user interface element, a content description has to be applied. A content
description is particularly needed for touch controls which only use an icon
without any textual description. In this case, the content description is used
for text-to-speech.

To sum things up, an accessible user interface should have an intuitive navi-
gation, touch targets should not be too small and control elements should be
labeled meaningfully.

7.1.2.2. Implementation

One of the key concerns for developers or project managers regarding accessi-
bility is the additional effort necessary to achieve a good result in comparison
to the relatively low amount of benefiting users.

When looking at the recommendations mentioned in the last section, one no-
tices that most advices also improve the user interface for non-visually impaired
users so they should be regarded anyway. Other accessibility needs like labeled
user interface elements and a focusable navigation can be achieved by a few
simple changes[14].

As most user interfaces for Android are defined with XML, it is also possible
to define labels or content descriptions for UI elements. Those will be read out
by TalkBack when the appropriate element is focused.

1 <ImageButton
2 android:id="@+id/add_note_button"
3 android:src="@drawable/add_note"
4 android:contentDescription="@string/add_note"/>

Listing 7.1: Content Description in Layout XML file

For a flexible usage, it is also possible to change an element’s content descrip-
tion at runtime by using the method setContentDescription.

36

7.1.2.3 History of Accessibility in Android

In order to control an application via the directional pad (D-Pad) or gestures,
control elements have to be focusable. This is the default behavior for elements
like Buttons but it is not for UI elements which also can be used for non-
navigable purposes like ImageViews or TextViews. In this case, the focusable
attribute has to be set to true explicitly. Furthermore, the focus order can
be set explicitly by setting which element is below, above, left or right to the
current element. Listing 7.2 shows an example of two focusable views, whereas
one is set focusable explicitly. In addition, the focus order is defined.

1 <LinearLayout android:orientation="horizontal"
2 ... >
3 <EditText android:id="@+id/edit"
4 android:nextFocusDown="@+id/text"
5 ... />
6 <TextView android:id="@+id/text"
7 android:focusable="true"
8 android:text="Hello, I am a focusable TextView"
9 android:nextFocusUp="@id/edit"

10 ... />
11 </LinearLayout>

Listing 7.2: Focusable Elements in XML

7.1.2.3. History of Accessibility in Android

Android is an operating system with lots of improvements over its short life-
time, but the topic accessibility obviously was put in second place for a long
period of time[15]. From Android 1.6, released in 2009, till Android 3 released
in the mid of 2011 there were no major accessibility enhancements. There was
a text-to-speech API and the user was able to switch to a large text mode.

With Android 4.0 released in December 2011, touch exploration has been in-
troduced, important for devices without a D-Pad. With Android 4.1, services
are able to set an activity’s focus which is necessary for the also introduced
gesture navigation. Furthermore, the focused view is indicated by a yellow
rectangle, regardless whether the developer took care of it or not. In addition,
Android 4.1 is the first Android version supporting Braille input and output
devices.

37

7. User Interface

(a) Magnification within Google’s Play
Store

(b) Quick Context Menu for Accessibility
Settings

Figure 7.1.: Screenshots of Android’s Accessibility Features

Android 4.2 added magnification. Users are now able to zoom in to appli-
cations’ user interfaces by a triple tap. Application developers do not need
to change anything in their applications, to let magnification work correctly.
In addition to that, a global quick context menu for accessibility settings is
available via a gesture. No matter which application is currently shown on
the device, the user can access important accessibility features like repeat last
utterance or pause feedback with a single tap.

7.2. Graphical User Interface

When Artur Klos[16] and Patrick Winter[7] defined the user interface for Mo-
CaInfo in 2011, the current version of Android was 2.3 (Gingerbread). As
mentioned in the previous section, Android’s accessibility features were quite
undeveloped at that time. Therefore, a barrier-free application had to imple-
ment accessibility itself. Under these conditions, it is reasonable why Klos and

38

7.2.1.1 Dashboard

Winter designed two different user interfaces instead of choosing a universal
design. This section describes the graphical user interface for sighted people
and its design patterns.

7.2.1. Design Patterns

Even for user interfaces, which do not take care of accessibility, it is highly
recommended to use user interface design patterns. Design patterns became
common practice since Gamma et al. released the book Design Patterns: El-
ements of Reusable Object-oriented Software[17] in 1995. The design patterns
described in it are targeting the software design at source code level, but the
principle of patterns has been adapted for user interface design as well. A de-
sign pattern describes a reusable solution for a defined problem class within a
given context. User interface design patterns do the same for user interfaces.
Users, as well as developers, benefit from them. From a user’s perspective, ap-
plications which use well-known UI design patterns, are easier to use because
the user probably already has used a similar user interface before. From a
developer’s perspective UI design patterns are important for various reasons.
One reason is that UI design patterns are usually highly accepted by users
if used in the right context. This leads to a better user satisfaction. Further-
more, a developer does not need to reinvent the wheel. In most cases, there
are libraries which enable developers to implement UI design patterns with a
minimal amount of effort

UI design patterns for Android are described by Google itself[18] as well as by
various authors who have a focus on mobile user experience and mobile user
interfaces, e.g. Lehtimaki. The following descriptions are based on one of his
books[19].

7.2.1.1. Dashboard

The Dashboard is one of the oldest Android UI design patterns. It is usually
used for an app’s landing page. The screen is designed simple, showing not
more than six large icons. Some additional information like recently updated
items can be shown optionally.

39

7. User Interface

The design pattern is recommended for applications with more than one logical
part. Any dashboard icon provides a direct link to the appropriate part of the
application. In case of MoCaInfo candidates for dashboard icons are news,
nearest POIs, bookmarks, navigation, search and QR code scanner.

(a) MoCaInfo (b) Evernote

Figure 7.2.: Examples of the Dashboard UI Design Pattern

7.2.1.2. Action Bar

The Action Bar is a styled top bar that consists of the app icon and con-
textual action buttons. Besides the action buttons which are directly shown,
there can be additional actions within an overflow menu. An implementation
of this pattern was introduced in Android 3.0. Applications targeting older
Android versions needed to use a third party library. Recently, Google made
the ActionBar classes available in their Android support library. Today, the
Action Bar is one of the most prominent recall values of Android user interfaces
as it is used by nearly any application.

Besides the better look, compared to the old window title bar, the Action Bar
gives the user a better sense of the app’s structure. The contextual action
buttons can be used to execute actions, but also to indicate the state of an

40

7.2.1.3 Quick Actions

application, e.g. if it is currently loading data or not. Furthermore, Action
Bars can be supplemented with a search capability. Both, loading indication
and searching of is used in MoCaInfo.

(a) MoCaInfo (b) Google Play Store

(c) MoCaInfo (Search) (d) Google Play Store (Search)

Figure 7.3.: Examples of the Action Bar UI Design Pattern

7.2.1.3. Quick Actions

The Quick Actions design pattern is used to show additional actions for one
or a few items on the screen. It is often used together with a list of elements,
whereas Quick Actions are used to provide contextual actions for each list item.
Most likely, actions such as delete, edit or move are provided. In MoCaInfo,
users can bookmark a POI or navigate to it.

Usually the Quick Actions list is an overlay, often with the shape of a balloon.
It is displayed whenever the appropriate icon of the list element is touched.

41

7. User Interface

(a) MoCaInfo (b) Dropbox

Figure 7.4.: Examples of the Quick Actions UI Design Pattern

7.2.1.4. Pull-to-Refresh

Pull-to-Refresh is a slightly controversial design pattern, more prominent in
iOS than in Android. The Pull-to-Refresh pattern allows users to refresh a list,
by pulling it down when it is already scrolled all the way to the top. Pull-to-
Refresh is also often used the other way round, refreshing the list when pulling
up the scrolled to bottom list. This depends on the order of the data within
the list.

MoCaInfo’s usage of this pattern is a little bit different. Instead of Pull-to-
Refresh it could be called Pull-to-Load-More. When the user is viewing a list
of the nearest POIs, the list is limited to a certain amount of entries. If the user
reaches the bottom of the list, he will be able to load more POIs by pulling
the list up.

7.2.1.5. Navigation Drawer

The navigation drawer is a panel that transitions in from the left edge of the
screen. It usually displays navigation options. An advantage of the navigation
drawer compared to other navigation patterns is that it does not occupy any
size of the screen if it is not needed. This invisibility is also its main disad-
vantage. As a result, users might miss the navigation drawer, thus some of the
app’s features. Therefore, it is recommended to show the navigation drawer at
first start so that the user notices that there is one.[20]

42

7.3 User Interface Structure

In MoCaInfo, the navigation drawer is used to select a building and one of its
levels to show it at the map.

(a) MoCaInfo (b) Google Play Music

Figure 7.5.: Examples of the Navigation Drawer UI Design Pattern

7.3. User Interface Structure

Figure 7.6 shows the structure of the graphical user interface. Any box rep-
resents an Android Activity, except for POI/content list which has a more
abstract meaning. It just visualizes that the connected boxes like news, sur-
rounding, etc. list POI and content elements.

As described in section 7.2.1.1, the dashboard pattern suits perfectly for an
application with 2 to 6 parts. Therefore, the home screen has icons which lead
to six other screens. If the user decides to open the map screen, he will see
his current position, at an indoor or outdoor map. This depends on whether
the user is inside a building or not. News, surrounding, bookmarks and search
are pretty similar. All screens show a list of POIs and content elements. Only
the selection of elements differs between the screens. From those list views, the
user is able to show a more detailed view of a chosen POI or content element.
As QR codes are directly linked to a POI or content element, the QR Scanner
opens the appropriate view when a code has been recognized successfully.

43

7. User Interface

Home
Dash Board

POI Content

POI/Content
List

News Surrounding Bookmarks Search QR ScannerMap

POI without content

Figure 7.6.: Wireframe of Graphical User Interface

7.4. Textual User Interface

The textual user interface follows the principles described in section 7.1.1. The
structure of activities does not differ from the structure for the graphical user
interface. There is no need to simplify the hierarchy because the existing one
is already pretty flat. This keeps the additional programming effort relatively
low.

The structure of the single activities and views is completely linear. This has a
bunch of advantages. First of all, it is easier to control because users only need
to navigate vertically instead of navigating in multiple directions. Furthermore,
a seamless scaling in size is way easier to implement because no rearranging of
UI elements is needed.

As the individual visual impairments differ a lot, the user can customize the
textual user interface for his needs. Text sizes, colors and the navigation type
can be changed.

44

7.4.1.1 Virtual Directional Pad

7.4.1. Navigation

Beside the better readability for users with remaining eyesight, the textual
interface needs to be easily navigable, even by blind users. Depending on the
user’s preferences and device, there are different possibilities to achieve this.

7.4.1.1. Virtual Directional Pad

A common approach, even to control usual graphical user interfaces, is a vir-
tual directional pad. The virtual D-pad allows a user to change the currently
selected UI element. In combination with Talk Back, which presents the cur-
rent element acoustically, even blind users are able to use the application. This
assumes that a visual impaired user is able to use the virtual D-pad.

7.4.1.2. Gesture

An alternative to a virtual D-pad is gesture-driven navigation. By swiping up
or down, the user changes the currently selected UI element. Due to the linear
hierarchy, the user is able to picture the logical structure to himself easily.
It should be noted that gestures need to have a simple, linear shape. More
complex shapes, which includes circles, are hard to reproduce by many visual
impaired users [13, p.73f].

7.4.1.3. Hardware Buttons

A problem with touchscreens for visually impaired users is the lack of haptic
feedback. Therefore, users either need to discover the screen with the help of a
screen reader systems or they need to fix some tactile object upon the screen
at an appropriate position. Many visually impaired smart phone users glue
sellotape at the position of the virtual D-pad in order to be able to hit the
touchscreen buttons reliably.

As an alternative, some devices offer hardware D-pads or even hardware qwerty
keyboards which are superior to touchscreen-only devices for visually impaired
users. There are no official numbers about the amount of available devices, but

45

7. User Interface

looking at current Android devices by major manufacturers, devices with hard-
ware D-pads or even keyboards are rare. According to the German comparison
shopping site gh.de only 18 out of 712 listed Android devices offer a hardware
keyboard, whereas only one device comes with Android 4.0, a version which
has been released in October 2011. All other devices are shipped with even
older versions of Android5. It should be noted that this does not necessarily
represent the whole Android device market, but it shows that this kind of
devices are rare and getting even less popular over the last years.

normal button press: navigation

previous

next

volume up

volume down

long button press: volume control

Figure 7.7.: Navigation with Volume Control Buttons

One workaround for a better usability for devices without dedicated hardware
buttons is the usage of the volume control buttons. Those buttons exist at
nearly any Android smart phone to date. They are usually realized as hard-
ware buttons with haptic feedback. Instead of changing the volume, the cur-
rently selected UI element is changed. Admittedly, this workaround leads to
a problem because the user is not able to change the audio output’s volume
anymore, which is particularly important for users who rely on text-to-speech
for navigation. Therefore, a second workaround has been developed. Users are
able to change the volume by long-pressing the appropriate volume button.

5Effective August 13, 2013

46

7.5 Interim Conclusion

7.5. Interim Conclusion

Having two separate user interfaces, one for blind and visually impaired users
and one for sighted users results in an additional development effort and com-
plicates the maintainability. As Android’s accessibility features are getting bet-
ter and probably will further improve in the future, the additional expenditure
seems to be unjustifiably high. Considering that only users with a remain-
ing eyesight benefit from a dedicated low-vision user interface compared to a
universal design, the low-vision UI is getting even more unattractive.

On the other hand, the numbers of the German Federal Office of Statistics
clarify that the group of users with a remaining eyesight is bigger than one
might expect at first glance. According to their report[21] 102,789 visually im-
paired people, aged 18 to 65, were living in Germany at 2011, 31th December.
Only 22,973 of them were classified as blind. The remaining 79,816 people
either have a high grade visually impairment or other visually impairments.
This means, about 77% of the second largest target group potentially benefit
from a dedicated low-vision user interface.

Because 77% of a target group cannot be ignored, MoCaInfo will stick to the
approach of two different user interfaces, one for sighted and one for visually
impaired users.

47

Part III.

Navigation

49

8. Introduction to the Navigation System

8. Introduction to the Navigation System

Besides a location-based information system, MoCaInfo provides a point-to-
point indoor and outdoor navigation system for pedestrians. This part of the
thesis analyzes existing mobile navigation systems for the usage in an indoor
and outdoor environment. Chapter 10 describes the implementation, which is
based on two well-known map and navigation systems. The following chapters
describe navigation instructions and the user interface, taking the special needs
of visually impaired users into account. The part ends with a description of
the software architecture.

The user experience of an indoor and outdoor navigation system should be
comparable to today’s car navigation systems. This includes a map which
shows the current position, as well as spoken and visual navigation instructions.
Figure 8.1 shows the main components, involved in a navigation system to
provide these features. The realization of these components is described in
this part, except positioning. A detailed description about indoor and outdoor
positioning can be found in part IV.

Map
Visualization

Positioning

PathfindingMap Database

Map Editor

FrontendBackend

Figure 8.1.: Overview of a Navigation System’s Components

50

9. Existing Mobile Navigation Systems

The development of a navigation system, including pathfinding, map rendering
and map editing from scratch is a lot of effort. Considering that point-to-point
navigation is just a single part of the overall project, solutions based on exist-
ing tools have to be considered to reduce the development effort. Therefore,
existing navigation tools are evaluated for extensibility to support indoor and
outdoor navigation.

9.1. Google Maps

As MoCaInfo targets Google’s Android platform, the first navigation system
which comes into someone’s mind is Google Maps. Since 2012, Google Maps
also provides indoor map rendering. For a few buildings, even indoor navigation
exist[22].

A floor plan is uploaded as a picture, to enable Google to create a Google
Maps indoor floor plan. Those floor plans are publicly available. Furthermore,
there is no possibility to change existing floor plans or accelerate the release
of floor plans by building owners. As the floor plans of the university must
not be publicly available and editing has to be possible at any time, Google’s
Indoor Maps are not usable for MoCaInfo. An additional exclusion criterion is
the miss of navigation instructions for blind and visually impaired users.

9.2. OpenStreetMap

OpenStreetMap (OSM) is a project, founded in 2004, with the goal to create
a free and open geo database, which covers the whole world. To achieve this
goal, OpenStreetMap motivates users to contribute geo and map data to the

51

9. Existing Mobile Navigation Systems

project. With more than 1.4 million users who contributed data, this project
is one of a kind[23].

Currently, indoor maps are not included in the OpenStreetMap standard, but
the community elaborated an indoor proposal which will probably become
part of a future OpenStreetMap version[24]. Nevertheless, existing tools allow
to create indoor maps, based on this draft standard, today. Even though, none
of the common open source map rendering tools support indoor maps yet.

9.2.1. Data Structure

The data structure of OpenStreetMap consists of three elements only: nodes,
ways and relations[25].

Node is the basic element of any object at a map. It has a global geo coordinate
and an id for referencing. Besides that, arbitrary key-value-properties can
be assigned to a node. Those attributes declare how to interpret the node.
Examples for standalone nodes are park benches or autotellers.

Way is a connection of nodes. As the name implies, they represent streets,
sidewalks and other drivable or walkable paths. In addition, ways are
also used to illustrate landmarks like seas or forests, as well as the shapes
of buildings. In those cases, the way is usually closed which means that
the last node of the way, points to its first node. As for nodes the actual
interpretation of a way is given by the assigned key-value-properties.

Relation acts as an organizing element which may holds nodes, ways and other
relations. In usual maps they are, among others, used to assign different
ways to a highway with a certain identifier. Relations are also pretty
important for indoor mapping, which is explained in section 9.2.2.

This quite simple data structure is stored in XML files, whereas node, way and
relation are represented by XML tags. Their key-value properties are repre-
sented by child tags named tag, having an attribute k whose value stands for
the attribute name and an attribute v which represents the value.

52

9.2.2.1 Building

9.2.2. Indoor Proposal

The indoor proposal, also called IndoorOSM[24], is a possible scheme for map-
ping indoor facilities in OpenStreetMap. It is currently in draft status, which
means that it is not included in the OpenStreetMap standard yet.

In the following, the main parts of the tagging scheme are explained. It should
be noted that several tags, which are not needed for the indoor maps in Mo-
CaInfo, are left out for reasons of clarity and comprehensibility. Those left out
tags serve mainly to describe the exterior view of buildings.

9.2.2.1. Building

A building is represented by a relation whereby the tag type of the relation is set
to building. The shape of the building is, as usual in OSM maps, a closed way.
In IndoorOSM, this is also a member of the building relation. Furthermore,
any level of the building is a member of the building relation. In addition to
those relations, other describing tags are relevant:

key description example

building is the relation a building? building=yes
building:levels number of levels building:levels=4
building:min_level minimum level building:min_level=-1
building:max_level maximum level building:max_level=4
name name of the building name=Main Building
type type of the relation type=building

9.2.2.2. Levels/Floors

Each level of a building is mapped as an OSM relation, which is a member of
the building relation. Basically, the level relations refer to OSM ways which
represent parts of the level such as rooms, stairways, corridors in addition to
navigation information like footpaths.

53

9. Existing Mobile Navigation Systems

key description example

level number of the level. 0 is the ground
level

level=1

level:usage usage of the levels level:usage=academic

name name of the level name=First Floor

type type of the relation type=level

9.2.2.3. Parts of Buildings

Rooms, corridors, lecture halls, etc. are so-called building parts in IndoorOSM.
A building part is basically a way, which describes the shape of the object.
The according tag declares whether the object is a room, hall, corridor or
vertical passage. Rooms usually include at least one node with a door-tag
which represents the entry point to the room. Those door nodes have to be
connected to the way network to be able to navigate to the rooms.

key description example

buildingpart type of part of the building buildingpart=room

name name of the building part name=Audimax

ref the reference number of the build-
ing part, usually a room number

ref=A20.1.36

9.2.2.4. Example

The following example represents a building with three floors. For reasons of
clarity, only one floor and a few parts of the building are described in detail.

1 <osm version=’0.6’ generator=’JOSM’>
2 <!-- building -->
3 <relation id=’1370729’ ...>
4 <member type=’relation’ ref=’1370727’ role=’level_-1’ />
5 <member type=’relation’ ref=’1370728’ role=’level_0’ />
6 ...
7 <tag k=’building’ v=’yes’ />
8 <tag k=’building:levels’ v=’3’ />

54

9.2.2.5 Extension for Visually Impaired Users

9 <tag k=’building:max_level’ v=’1’ />
10 <tag k=’building:min_level’ v=’-1’ />
11 <tag k=’name’ v=’A20’ />
12 <tag k=’type’ v=’building’ />
13 </relation>
14 <!-- floor 1 -->
15 <relation id=’1370725’ ...>
16 <member type=’way’ ref=’94551494’ role=’buildingpart’ />
17 ...
18 <tag k=’level’ v=’1’ />
19 <tag k=’level:usage’ v=’academic’ />
20 <tag k=’name’ v=’First Floor’ />
21 <tag k=’type’ v=’level’ />
22 </relation>
23 <!-- room -->
24 <way id=’94551494’ ...>
25 <nd ref=’1098227358’ />
26 <nd ref=’1098226969’ />
27 <nd ref=’1098227303’ />
28 <nd ref=’1098226902’ />
29 <nd ref=’1098227358’ />
30 <tag k=’buildingpart’ v=’room’ />
31 <tag k=’name’ v=’1.07’ />
32 </way>
33 <!-- door of room -->
34 <node id=’1098226902’lat=’50.587165546307155’ lon=’8.682308673862533’ ...>
35 <tag k=’door’ v=’manual’ />
36 </node>
37 </osm>

Listing 9.1: Example of a Building in OpenStreetMap’s XML notation

9.2.2.5. Extension for Visually Impaired Users

As section 11.1 explains, navigation especially for visually impaired and blind
users requires some additional information for a good level of assistance. There-
fore, additional describing attributes for ways are needed.

Because many of these information are directly used to create navigation in-
structions, they need to be gathered in multiple languages. Therefore, these
attributes end with a two-lettered ISO country code. The currently used at-
tributes for navigation look as follows:

55

9. Existing Mobile Navigation Systems

key description example

nav:floormaterial
:[en|de]

describes the material
of the floor

nav:floormaterial
:en=tile

nav:barrier:[en|de] describes a barrier nav:barrier:en=
flowerpot

door:openingdirection describes a door’s open-
ing direction as az-
imuth

door:opening
direction=180

9.2.3. Map Editor: JOSM

JOSM is the most often used OpenStreetMap editor for outdoor maps. It is
also capable of indoor map creation. A lot of community contributed plugins
further simplify the map creation[26].

The general proceeding of creating an indoor map is to download an existing
OSM outdoor map of the targeted area. In many cases, outlines of buildings
still exist. By means of an overlaid satellite picture, it can be checked whether
the buildings outline is accurate.

Secondly, an existing image of the floor plan is added as a picture layer in
JSOM. This image can be traced manually to add walls, doors, stairways and
any other needed floor plan information.

JOSM also includes a filtering capability. Those filters enable the user to ex-
plicitly show or hide nodes, relations and ways depending on their attributes.
In this way, the user is able to show a certain level without getting disturbed
by other over- or underlying levels. The screenshot in figure 9.1 shows an image
layer and the traced result including walkable ways. The lower right shows the
filter panel, which has been set to hide the building’s level 0 and 2.

To enable a point-to-point or rather POI-to-POI navigation, any point of inter-
est has to be connected to a way, usually of the type highway=footway. Those
ways are represented by the green lines in the screenshot.

56

9.2.4.1 Mapsforge

Figure 9.1.: Screenshot of JOSM

9.2.4. Existing Renderer

Even though no OpenStreetMap rendering engine with indoor support exists,
there are a lot of open source rendering engines for outdoor maps. In this sec-
tion, two projects targeting the Android platform are introduced and evaluated
regarding extensibility for indoor usage.

9.2.4.1. Mapsforge

Mapsforge is an open source project, providing ad-hoc map rendering. The
API is similar to the Google Maps API. Even so, there is a rewrite in process
which will probably lead to some major API changes. The map format is binary
and created via a converter tool called osmosis in combination with a plugin
provided by Mapsforge’s developers.

One of the advantages of Mapsforge compared to many other projects is the on
device rendering. Many other OpenStreetMap viewers depend on pre-rendered
tiles, which pretty inflexible and leads to huge application file sizes.

The major problem of Mapsforge and finally the reason why it could not be
used for MoCaInfo is the map file format. On the one hand, the binary format

57

9. Existing Mobile Navigation Systems

is quite nice because a 2MB OpenStreetMap XML file becomes a 200kb binary
file, but on the other hand, this leads to a loss of information and accuracy
which is unacceptable for indoor purposes. Because of the loss of accuracy,
rectangular rooms become crooked, or a corridors become slightly longer than
the building’s shape.

9.2.4.2. OsmAnd

OsmAnd is an Android application for point-to-point navigation. It is open
source, which enables other developers to use the rendering engine. Similar to
Mapsforge, OsmAnd uses a native map format called .obf. Those files contain
the drawing information in an own vector graphics format. The rendering result
itself looks really professional, and the API is easy to use.

To enhance the performance, OsmAnd caches rendered parts of the map in
image files. This principally useful feature does not support multi-layered maps
and therefore, no floors. For that reason, the cache would have to be disabled,
accepting a bad performance. As an alternative, OsmAnd could be patched to
support multi-layered rendering. As the rendering and caching components are
strongly coupled, this would affect a lot of sourcecode. But even then, whole
tiles of the screen would have to be reloaded when the drawn floor changes,
which is not a good user experience.

Finally, the necessary changes of OsmAnd would be much of an effort with a
moderate result.

58

10. OpenStreetMap meets Google Maps

The evaluated OpenStreetMap rendering engines are not flexible enough to
extend them with indoor rendering features, with a reasonable effort. The
differences between a usual single layered street map and a multilevel building
map demand strong changes of the renderer’s architecture and map formats.

Anyways, OpenStreetMap is worth using because of the existing toolchain,
like JSOM for editing the map and libraries for pathfinding. However, the
development of an OpenStreetMap outdoor and indoor renderer from scratch
would be overkill.

An alternative to this approach is using an existing outdoor map solution
and draw all necessary indoor information like floor plans on top of it. Because
Google Maps offers a good map rendering performance on Android devices, and
an API for drawing custom overlays, it is a perfect fit for such an approach.

10.1. Map File

The map file follows the IndoorOSM approach described in section 9.2.2 with
one additional layer. This layer is a background layer which is drawn between
the GoogleMaps map and the building overlay. It makes sure that the existing
GoogleMaps building shape is overlaid, as it is usually not as accurate as the
building shape provided in the OpenStreetMap file. The background layer is
stored as a closed way in the OpenStreetMap file.

59

10. OpenStreetMap meets Google Maps

Google Maps

Background Layer

Building

Figure 10.1.: Background Layer between Google Maps and Building Overlay

10.2. Reading Data: SpatiaLite

As OpenStreetMap’s map format is based on XML, it would be possible to
parse the file to extract the needed information. But there are more sophis-
ticated open source approaches available whereas on of them is used for Mo-
CaInfo’s indoor navigation system: SpatiaLite.

SpatiaLite is a spatial DBMS, implemented as an extension for SQLite. Thus,
the map data is accessed via SQL queries. Any relation between nodes, ways
and relations are mapped. Furthermore, it is possible to create virtual tables
to access elements of a certain OSM type easily. In case of MoCaInfo there are
virtual tables for buildings, building parts, levels and the background overlays.
Beside usual SQL-queries, SpatiaLite offers SQL functions to compare geomet-
rical objects. Due to different comparative operators, it is possible to check if
geometrical objects are overlapping, intersecting or touching. Such geometri-
cal objects are points, represented by OSM nodes, polylines, represented by
unclosed OSM ways and polygons represented by OSM closed ways.

To create the SQLite tables from an OSMXML file, a utility called osm_convert
is available. It has been slightly patched to produce the virtual tables for indoor
usage and skip those, usually needed for car navigation.

60

10.3 Pathfinding: SpatiaLite

10.3. Pathfinding: SpatiaLite

Besides, accessing the static OSM data and filtering by geometric constraints,
SpatiaLite offers pathfinding, as well.

For the best possible performance, the walkable ways are converted into a
static network which represents the graph between the nodes. The generation
is done by the tool spatialite_osm_net. This tool can be configured to weight
different kinds of ways differently. For example, a network for hampered or
wheelchair users, could totally ignore stairways in order to be sure that only
suitable ways are considered for pathfinding.

At network generation time, it can be chosen whether SpatiaLite finds the
shortest path using the well known Dijkstra or A* algorithm. To find the
shortest path between two nodes, just a simple SQL query is needed.

1 SELECT * FROM footway_net WHERE node_from = ? AND node_to = ?

Listing 10.1: Example of an SQL Query to Select the Shortest Path Between
Two Nodes

Compared to other solutions, which need to generate the network at runtime
from the database’s information, the precomputed binary network has massive
performance advantages.

10.4. Data Mapping: MoCaInfo and SpatiaLite

Points of interest, buildings and other data gathered in an OpenStreetMap
XML file and converted to a SpatiaLite database need to be accessed by other
MoCaInfo components, as well. Therefore, this information needs to be stored
in the global MoCaInfo database, following MoCaInfo’s data model, explained
in section 3.3. To achieve this, a tiny data mapping tool was implemented which
copies buildings, levels and POIs from the SpatiaLite database to MoCaInfo’s
MySQL database. To identify this information for later updates, the MoCaInfo
data model has been extended to store the OpenStreetMap id of any element,
in addition to the id used internally.

61

10. OpenStreetMap meets Google Maps

MoCaInfoSpatiaLite

Data Mapping
Building Building

Level Level

Room

Door

POI

Node

Figure 10.2.: Data Mapping Concept

Buildings and levels can easily be mapped to the according database tables in
MoCaInfo. Rooms are mapped to point of interests in MoCaInfo, whereas the
door’s geo coordinate is used for the POI’s node.

Due to this data mapping, there is no direct dependency between the naviga-
tion component, and other components of MoCaInfo. As a result, it is possible
to use the navigation component in other projects not related to MoCaInfo.

62

11. Navigation Instructions

Point-to-point navigation systems use navigation instructions, which are rep-
resented by symbols and an audiovisual explanation, to guide the user to the
target destination. Pedestrian navigation systems slightly differ from car nav-
igation systems. In contrast to car navigation systems, pedestrian navigation
systems do not need to take care of roundabouts or multi-lane roads. On the
other hand, additional instructions dealing with stairways and building en-
trances have to be considered.

The following enumeration lists navigation instructions needed for a reasonable
indoor and outdoor pedestrian navigation system.

turn directions are the most common navigation instructions in point-to-
point navigation systems. In detail, there are instructions for slightly,
normal and sharp turns to the left or right direction.

stairways are navigation instructions which are dedicated for indoor pedes-
trian navigation. The navigation system also show the user whether the
stairway goes up or down.

elevators are another form of vertical passages which have to be described if
they are on the user’s way.

entrances indicate to the user that he enters a new building.

11.1. Additional Instructions for Visually Impaired
Users

As already stated in section 2 and section 7.1, visually impaired and blind
people need to have some additional information in order to be able to bene-

63

11. Navigation Instructions

fit from a navigation system. Niehaus describes several additional supporting
navigation instructions for blind and visually impaired users[13].

doors are important for blind users especially if they are located within the
route. For an optimal assistance, the kind of door is needed also. Cur-
rently differentiated door types are room doors, manual fire doors, auto-
matic doors and revolving doors. Furthermore, the opening direction acts
as a reference point for users with low vision. With the help of this refer-
ence point, the user can check whether the current situation is consistent
with the navigation system’s instructions.

Another example where the information about doors comes in handy is
when the targeted door is at a corridor. In this case, the system is able to
tell the blind user that the targeted room is, for example, the fifth door on
the right hand side. The visually impaired user can count the doors with
his blindman’s stick. Figure 11.1 illustrates the two different navigation
instructions, depending on whether corridor and door information are
taken into account or not.

“Target is the 4th door on
your right hand side.”

“You'll reach your target in 20 meters.
It's on your right hand side.”

with door and corridor information without door and corridor information

Figure 11.1.: Navigation Instruction with and without Door and Corridor In-
formation

floor and wall conditions are further information which may help the user to
make sure that he follows the navigation instructions correctly.

corridors help blind users to orientate because they can follow the wall. This
is much easier than orienting at halls without a wall as a reference.

objects like desks, chairs, flowerpots, etc. are likewise barriers and reference
points and should therefore be considered.

64

12. Navigation System’s User Interface

The user interface follows the user interface known from Google Maps. There-
fore, users who used Google Maps before, feel familiar when using MoCaInfo’s
navigation system for the first time.

At the top of the screen, there is a large actionbar, about twice the size of a
usual actionbar. It shows the current position in a textual representation, e.g.
“Room 1.07, Building A20”. If the user starts a point-to-point navigation, the
left corner holds a visual representation of the next navigation instruction and
the distance till the navigation instruction should be followed. Beneath that,
there is a tiny symbol indicating the upcoming navigation instruction. Below
the actionbar, there is the actual map view.

As visually impaired users cannot benefit from the detailed map view and
tiny navigation instructions, there is a dedicated low-vision navigation user
interface. This low-vision user interface only shows two upcoming navigation
instructions and the current position as a text. Both can be seen in figure
12.1.

If the user just wants to explore the map, he can select buildings by touching
them. This opens a list of the building’s levels. From this list, the user can
choose one level for showing. The list is implemented, using the navigation
drawer pattern explained in section 7.2.1.5. This has the advantage that the
user is able to open the list to select a building or level, even if the campus’
buildings are currently out of sight. As another positive side-effect, the list
is independent from the actual map view, which makes it reusable for the
low-vision user interface.

65

12. Navigation System’s User Interface

Figure 12.1.: Screenshot of MoCaInfo’s Navigation Component

66

13. Navigation System’s Software
Architecture

The following section gives an overview about the navigation component’s
architecture. It should be noted that the architecture presented here is not
exhaustive because a detailed explanation would be too lengthy without added
value.

Figure 13.1 shows the main classes of the component. For reasons of clarity, a
simplified UML notation is used which does not include packages, attributes,
methods and class types.

SpatialiteItem

Door Room Level Building BackgroundWayPoint

Way

Model

Navigator

NavigationInstruction

SpatialiteController OverlayManager

WayOverlay

Overlay

RoomOverlay BuildingOverlay Background
Overlay

OsmGmap
FragmentNavigationBar

Controller

View

Figure 13.1.: Navigation Component’s Architecture

67

13. Navigation System’s Software Architecture

The architecture follows the well known Model-View-Controller (MVC) pat-
tern. MVC intends that classes either have a model, a view or a controller char-
acter. View classes usually provide the visual representation of model classes.
These model classes only hold the data. Controller classes mediate between
view and model and handle user interactions.

In case of this architecture, mostly any model is derived from the abstract
class SpatialiteItem. SpatialiteItem holds basic values of a SpatiaLite dataset,
such as an id and arbitrary key value properties. Any element, needed for
indoor and outdoor navigation, which is stored in the SpatiaLite database, is
implemented as a child of SpataliteItem. To these belong the classes Building,
Level, Room, Door and WayPoint.

The loading of the data is realized by SpatialiteController. It creates the Spa-
tialiteItems based on the database’s data by using the SpatiaLite library, which
is not shown in the figure.

To draw the different parts of the building, appropriate Overlays need to be
created. The efficient creation is managed by the OverlayManager. Further-
more, the OverlayManager links between an Overlay and its model class.

TheNavigator manages navigation related features. It takes care of the pathfind-
ing when requested, and creates the needed NavigationInstructions. The Nav-
igationBar is responsible for visualizing the computed Way and the Naviga-
tionInstructions.

The class OsmGmapFragment is the main entry point for the user. Besides
the NavigationBar and Overlays, it holds the Google Maps view and other
view elements. The actual user interaction can be implemented by using lis-
teners, e.g. a RoomClickedListener. Among others, they are not shown in the
figure to keep clarity. This listener concept enables other developers to use the
navigation component in their applications, with customized user interactions.
Furthermore, it should be noted that the navigation component itself, has no
dependencies on other MoCaInfo components, which facilitates the usage of it
in other projects.

68

Part IV.

Indoor and Outdoor Positioning

69

14. Introduction to Indoor and Outdoor Positioning

14. Introduction to Indoor and Outdoor
Positioning

Positioning is an essential feature of a point-to-point navigation system. The
best-known positioning system today is the Global Positioning System (GPS)
which is described in section 15.1. As GPS is based on a line of sight to satel-
lites, it is not available in buildings. Therefore, alternative positioning ap-
proaches are evaluated and developed in this part of the thesis, to achieve
accurate indoor and outdoor positioning.

In so doing, it is differentiated between absolute and relative positioning. Ab-
solute positioning estimates an absolute position at earth or within a building.
Relative positioning approaches are only able to estimate changes in posi-
tion.

The following section describes well-known and often used absolute position-
ing approaches. Followed by a section which deals with the topic of relative
positioning. Right after this general description, approaches which are used
for MoCaInfo’s positioning system are explained and evaluated in detail. The
part ends with an explanation of MoCaInfo’s dead reckoning system, which
combines absolute and relative positioning to improve the accuracy.

70

15. Absolute Positioning

Absolute Positioning techniques try to estimate a user’s absolute position at
earth. Some of the approaches deliver a three-dimensional position, e.g. for
GPS this is longitude, latitude and altitude. Others do not take care of the
height above sea level. Therefore, the estimated position is just two dimen-
sional. This chapter introduces various absolute positioning methods, which
are applicable for modern smart phones.

15.1. Global Positioning System

The Global Positioning System (GPS) is the most popular global navigation
satellite system (GNSS) worldwide. It was developed by the U.S. military, to
provide precise estimates of positions. Today, it is also available for free, civil
usage.

GPS is based on a simple and ancient idea: an object’s position can be deter-
mined by having distances to other objects whose positions are known. In case
of GPS, satellites broadcast their position, so these are the objects at known
locations. The distance between a GPS receiver and a GPS satellite is mea-
sured by using the transit time of the signal from the satellite to the receiver.
The transit time can be calculated easily by having synchronized clocks at the
satellites and the receivers[27].

The accuracy of GPS increases with the number of satellites which can be
seen by the receiver, whereas four is the minimum amount to determine a
three-dimensional position. According to the Federal Aviation Administration’s
(FAA) report from August 2013, the median position dilution of precision
(PDOP) was 2.8 meters, having six satellites in sight in 99.99% of the test

71

15. Absolute Positioning

Figure 15.1.: Principle of Satellite Positioning. Illustrated in [27].

cases[28]. The worst position had an error of 7.4 meters. The test system uses
the 24 satellites, available for civil usage.

Besides GPS, there are other global navigation satellite systems such as the
Russian GLONASS and Europe’s Galileo, which is still in development. Be-
cause GPS receivers need to have a line of sight to at least four satellites,
positions cannot be determined inside of buildings. In order to enable GPS
positioning in buildings, GPS repeaters can be installed. Those devices have
to be installed at positions with satellites in sight and repeat the signal via an
antenna inside the building. It should be noted that GPS receivers inside the
building will only receive the repeater’s position, not the actual position of the
receiver itself.

15.2. GSM

Another widely-used positioning approach, especially for cell phones, is to use
the GSM network itself. GSM, short form of Global System for Mobile Com-
munications, is a standard set which describes protocols for digital cellular
networks, also known as 2G or second generation protocols. Most cell phone

72

15.2 GSM

carriers worldwide implement this standard. To mention some numbers, in
2011 there were 656 million active GSM SIM cards in the European Economic
Area, which means that any European owned approximately 1.3 SIM cards at
an average[29].

15.2.1. Cell Identification

The simplest approach to estimate the position of a GSM device is to assume
the device’s position as the position of the cell tower to which it is associated.
Therefore, accuracy depends on the dimension of the area covered by the cell
tower. In rural environments, these areas have a radius up to 35 km, and even
in urban territory usual cell towers cover an area with a radius of 500 meters to
5 kilometers. The accuracy can slightly be improved if more than one cell tower
is in sight of the device. The position can then be estimated to be inside the
intersection of the cell tower’s areas. According to a research of the University
of Zagreb, the positioning accuracy can considerably be improved up to 50
meters in urban environments. For indoor environments, the accuracy can be
improved by placing femtocells, which usually have a range of 10 to 50 meters.
[30]

15.2.2. Angle of Arrival

A more sophisticated way of estimating a GSM device’s position is called Angle
of Arrival (AoA). AoA requires at least two cells in sight and a complex antenna
array at each of them. The antennas work together to estimate the angle of the
signal which then can be used to triangulate the handset’s position. AoA does
not work well in urban environments because the radio signals are reflected by
buildings or other obstacles which leads to wrong estimations of the angle.[30]

73

15. Absolute Positioning

c

(x|y)

α

β

γ

Figure 15.2.: Illustration of a AoA Triangulation. α and β are Known Because
of the Antenna Arrays

15.2.3. Time of Arrival

The Time of Arrival (ToA) approach uses the signal’s transit time from the
mobile device to a number of base stations to determine the position. In order
to measure the signal transit time, mobile devices and base stations need to
be synchronized in time, and the signal itself needs to be tagged with the
submission time. In accurate synchronized networks, an average error between
125 and 200 meter is achievable. The accuracy deteriorates drastically if base
stations and mobile devices are non-line-of-sight. The reasons are reflections or
attenuation due to objects, passed by the signal, which influence the signal’s
transit time.[30]

15.2.4. RSSI-based positioning

In contrast to ToA and AoA, RSSI-based positioning takes place at the mobile
device itself. RSSI, short form of received signal strength indication, describes
the signal quality to a base station. As the signal strength depends on lots
of factors like buildings or other obstacles laying between the handset and
the base stations, it is not possible to estimate the position directly from the
RSSI.

74

15.3 Wi-Fi

To determine a position from RSSI values, fingerprints have to be created.
A fingerprint associates a position to RSSIs measured at this position. Those
fingerprints are usually stored in a database. Later, these fingerprints are com-
pared to the RSSIs measured by the handset, in order to estimate its position.
Because the creation of fingerprints for large areas is a time consuming task,
some projects like CellSense[31] compute fingerprints, based on a histogram of
signal strengths for the base stations. In case of CellSense, they were able to
achieve an accuracy of 30.05 meters in an urban environment.

15.3. Wi-Fi

Another radio-based approach is to use wireless local area networks for posi-
tioning. In this work, the term Wi-Fi is used for products based on the IEEE
802.11 standards, similar to the definition of the Wi-Fi Alliance[32].

15.3.1. Market Overview

Wi-Fi-assisted positioning systems are used the most in indoor positioning
systems. However, there is nothing like a standard, and most solutions are only
developed for scientific research and less for daily usage. Nevertheless, more
and more well-known companies are releasing products. Many of these products
are only considered for usage in experimental environments. For example, the
Mozilla Foundation started their free serviceMozilla Location Service[33] in the
end of October 2013. The Wi-Fi cell information is provided by users, whereas
any application developer can to use a REST API to get location information
later on. The Google Location Service is a similar project by Google, which
also provides a free to use interface for application developers, but there is no
possibility to add own Wi-Fi information.

In addition to those companies, other device manufacturers such as Apple[34]
and Cisco[35] have their own Wi-Fi-based positioning systems, as well. How-
ever, none of those companies make precise statements about the functional
principle and accuracies.

75

15. Absolute Positioning

15.3.2. Angle of Arrival

In general, position determination approaches for Wi-Fi-based systems are
similar to the ones for GSM. One method, also applicable for Wi-Fi is the
Angle of Arrival approach, explained in section 15.2.2. Like for GSM, special
wireless access points with antenna arrays are needed to determine the position
at the access point and send it back to the client.

Based on the AoA concept, Kawauchi et al.[36] developed a system which adds
directional information to the beacon. The beacon is a tiny data package of
the IEEE 802.11 standard, which is send in intervals and used to determine
nearby access points and their signal strength. Therefore, they mounted a
motorized, rotatable directional antenna to a wireless access point and modified
the firmware, to add the current rotation of the antenna to the send out beacon.
The location can now be estimated based on this angle and the known position
of the wireless access point by using triangulation.

15.3.3. Time Of Arrival

Time of Arrival (ToA) is a trilateration-based positioning system, whereas
the distance to at least three access points is determined based on the signal
runtime. The distance can be seen like a circle around the access points, whose
position is known. The mobile device’s location is the intersection point of these
circles. As the currently used IEEE 802.11a,b,g,n standard does not include
signal runtimes, needed for ToA, modified hardware and drivers are needed to
implement an accurate positioning system.

However, Ciurana et al.[37] developed a software-based solution, working with-
out the need of specialized hardware. The Wi-Fi clients sends a data frame to
the access point and waits for the acknowledgement. The time between send-
ing and receiving the acknowledgement is assumed to be the round-trip time
(RTT). As those RTT might be influenced by various external factors, such as
walls or other radio frequency devices, 1000 RTTs are measured and filtered
based on statistical information before the position is estimated. They tested
the distance determination indoor and outdoor and got an average absolute
error of 1.7 meters indoor, respectively 1.84 meters outdoor.

76

15.3 Wi-Fi

distance, computed by
signal runtime

Figure 15.3.: Illustration of Time of Arrival (TOA)

15.3.4. RSSI-based Fingerprints

ToA- and AoA-based systems are pretty rare as they require specialized hard-
ware or modified drivers to achieve a reasonable accuracy. Because of that,
most research systems rely on signal strength fingerprints[38],[39],[40] which
do not need modified hard- or software.

The idea behind that approach is quite simple. The mobile device receives
beacons from nearby access points and their RSSI. All received access points
and their RSSI values, can be seen as a fingerprint for the device’s current
location. In order to determine the mobile device’s position, a database is
needed which links fingerprints to positions.

Therefore, an offline learning phase is used to measure fingerprints which are
linked to positions manually. To determine the mobile device’s position later
on, the currently measured fingerprint is compared to the fingerprints in the
database. Different approaches for comparing fingerprints and determine loca-
tions are described in section 17.5.

77

15. Absolute Positioning

The common accuracy of existing research systems under good conditions is
about 2 to 7 meters in average[38],[41],[42].

15.4. Optical

Today’s smart phones and tablets usually have a camera, which is capable
of taking high definition photos and videos at their back. Many devices even
have a second front-facing camera. Therefore, optical indoor positioning is
an option worth considering. The following description is mostly based on a
work done by Mautz and Tilch[43]. They surveyed several different optical
positioning systems, whereas most of them are using one of the three following
approaches.

15.4.1. Floor Plan Method

The most sophisticated optical indoor positioning approach is called the floor
plan method. The picture, taken by the camera is interpreted to extract proper-
ties of a room, such as walls, doors but also desks, chairs, bookshelves and other
furniture. This abstracted image information is compared with data from a
database to determine the position. In order to have such a reference database,
the rooms are described with a CAD-like software, as for instance CityGML.

To extract properties of a room or floor, different approaches are used. A pro-
gram called Kohoutek uses a special 3D camera to create a 3D model of the
area. A simpler approach, using a casual camera, has been developed by Hile
and Borriello[44]. Their software detects edges in images and compares them
with the edges of simple 2D floor plans. Under ideal circumstances, the error
was between 0 and 15 cm in more than 70% of the test cases and never more
than 60cm. The problem of this approach is that it gets confused easily. For
example, people walking at the floor or non-recorded objects, like baskets influ-
ence the edge detection. In those test cases, a location could not be determined
in more than 30% of the time.

78

15.4 Optical

Figure 15.4.: Model of a Room in CityGML[43]

15.4.2. Template Matching

A second method to determine a user’s position with a camera is template
matching. In an initial phase, images are taken and linked with a position.
To estimate a position, the user’s camera takes a photo which is compared to
the existing images by calculating a correlation coefficient. The position of the
image which fits best is used as the determined position. Like the Floor Plan
method, results depend highly on a non-changing area. A simple change, like
a new picture at the wall, might bring this method to fail.

15.4.3. Deployed or Projected Targets

In order to increase robustness and improve accuracy of optical positioning,
dedicated targets or markers are used. Common types of targets include QR
codes, barcodes or patterns like colored dots. They are placed at positions
which are accessible easily by the phone’s camera, e.g. at the floor. Depending
on the approach, the pattern contains the positioning information directly, or
it just represents a reference which is looked up in a position database.

Besides printed markers, there are scientific projects which use projected laser
markers instead. In opposite to printed markers, which usually stand for one

79

15. Absolute Positioning

Figure 15.5.: Projected Markers used by CLIPS[45]

position, the projected laser spots are interpreted to determine a more ac-
curate position. The position determination is comparable with astronomic
navigation, used by former seamen. Those systems are usually used in robotics
environments, where it is no problem to have a camera pointing to the ceiling.
The accuracy of this approach is quite impressive as it is reported to be better
than 1 cm[43],[45]. It should be noted that those results depend on calibrated
cameras, mounted to robotic vehicles. This results in more reliable image data
compared to a pedestrian who uses a smart phone camera to capture the pro-
jected targets.

15.5. Near Field Communication

Near Field Communication (NFC) is a commonly used technology to provide
location-based information. NFC itself is a set of standards to establish wire-
less communication between two devices which are in close proximity or even
touching each other. The standard includes protocols and data exchange for-
mats which are based on RFID.

One major advantage over other wireless technologies like Wi-Fi and Bluetooth
is that one of the communication partners can be an unpowered NFC chip,
often called tag. Those tags are pretty cheap and easy to install because they
do not need any power supply or network connection.

80

15.5 Near Field Communication

The used data format for data exchange is the NFC Data Exchange Format
(NDEF). The message structure is specified by the NFC Forum™
citeNDEFSpecification. The maximum payload size of an NDEF message is
232 − 1 bytes.

This specified maximum is not even nearly reached by commonly used NFC
tags. Typically they are designed to hold less than 1 kilo byte of data. For this
reason, the payload often only has an identifying or referencing role.

As the NFC reading device, e.g. an NFC capable smart phone, needs to touch
an NFC tag in order to read it, NFC cannot be used for continuous position
determination.

81

15. Absolute Positioning

15.6. Roundup

Various different technologies and approaches for positioning, with a focus on
indoor positioning, are introduced on the last pages. This section summarizes
the results as a table.

Approach/Name Advantages Disadvantages Reported Ac-
curacy

Satellite

GPS widespread and approved only outdoors 2.8 meters[28]

GSM

Cell Identification any phone has GSM accuracy 50 meters in
urban environ-
ments, worse in
rural areas[30]

Angle of Arrival any phone has GSM modified GSM cell
needed, location deter-
mination at the GSM
cell not at the phone

150 meters[46]

Time of Arrival any phone has GSM time synchronization
needed

125 to 200 me-
ters[30]

RSSI any phone has GSM offline learning phase 30.05 meters in
urban environ-
ments[30]

Wi-Fi

Angle of Arrival any smart phone sup-
ports Wi-Fi

modified access points
needed

7.5 meters[36]

Time of Arrival any smart phone sup-
ports Wi-Fi, depending
on the approach no hard-
ware or driver modifica-
tion needed

accurate systems depend
on modified hardware

1.7 meters[37]

Fingerprints any smart phone sup-
ports Wi-Fi, easy to im-
plement

offline learning phase 2.5 to 7 me-
ters[41]

Optical

Floor Plan any smart phone has a
camera, accuracy

computation time, easy
to confuse

30 cm

Deployed or Pro-
jected Targets

any smart phone has a
camera, high accuracy

visual intrusion into a
room’s look, non natural
position of the phone

below 1 cm

Table 15.1.: Summary of Absolute Positioning Approaches

82

16. Relative Positioning

In opposite to absolute positioning, relative positioning is just able to deter-
mine position changes. On the assumption that an absolute position is known,
new positions can be reckoned from this reference position and estimated po-
sition changes. This process, of calculation the current position by using a
previously determined position and advancing that position upon sensor data
such as speed and direction, is called dead reckoning.

Most smart phones offer a lot of sensors, such as accelerometers, magnetome-
ters and gyroscopes, which can be used to determine position changes. Methods
to detect steps and determine the user’s heading based on those sensors are
described in section 18.

The sensors used in relative positioning approaches differ a lot, depending
on the sensor availability. Probably the most intelligible approach is to have
the direction, provided by a compass and the traveling speed, provided by a
speedometer. The traveled distance can easily be calculated as speed ∗ time
and because the direction is known, the new position can be reckoned. This
approach is widely used in marine and air navigation[47]. However, it becomes
irrelevant due to the availability of satellite-based position such as GPS.

This chapter describes existing relative positioning approaches for robots and
pedestrians.

16.1. Robot’s Positioning

Besides air and marine navigation, dead reckoning is more interesting for indoor
robot positioning today. Instead of a compass or a speedometer, dead reckoning
in mobile robotics often makes use of engine data because many wheeled mobile
robots are using a skid steering. Skid-steered vehicles do not have a moving

83

16. Relative Positioning

steering axle like cars. Instead, they have four or even more wheels at static
axles, which can be moved independently from each other. Assuming that
the rotation of the wheels is known, orientation and traveled distance can
be calculated and used to determine a new position. An advantage of this
approach is that no additional sensors are required, as all needed data can
be tapped from the unit which controls the engines. A problem with such a
kinematic approach is that calculations assume that a wheel never slips or
crawls. Any slippage leads to inaccurate rotation and distance data[48].

In order to provide accurate dead reckoning, it is necessary to have kinematic
independent sensors which are used to estimate the position. A project devel-
oped by Bonarini et al. is following a pretty interesting low cost approach, by
using optical computer mice to measure movements of a vehicle. There is one
mouse at the left and one mouse at the right side of the vehicle. Because the
distance between the two mice is static, angles can be calculated from the mea-
sured traveled distance. With an average deviation of 114mm in UMBMark, it
is about as accurate as other robots which are using complicated mechanical
encoders for dead reckoning[49].

16.2. Pedestrian Positioning

As described in the sections above, dead reckoning depends on a direction and
an estimation how far an object has been moved into that direction. Today’s
smart phones offer compass sensors, which can be used to estimate the moving
direction, but there is no such sensor like a speedometer in a car. Therefore,
the traveling speed has to be estimated by using the existing accelerometer.

An accelerometer measures the acceleration force on all three physical axes,
including the force of gravity. A common approach is to analyze those data
to make assumptions whether the user made a step respectively is walk-
ing[50],[51]. A detailed description about step detection and compass issues
within buildings can be found in section 18.

84

17. Absolute Positioning in MoCaInfo

Chapter 15 describes various absolute positioning methods which are appli-
cable for smart phones. This chapter starts with a short explanation, why
certain absolute positioning approaches are not used for MoCaInfo’s position-
ing system. After that, the usage of NFC for positioning is described briefly.
The chapter ends with an introduction and evaluation of the Wi-Fi positioning
system, which is used for continuous indoor positioning.

17.1. GSM

Based on the results of various researches[30],[31],[52], GSM seems to be a
good approach to determine a position in buildings. Even though, it is not
accurate enough for indoor navigation, it could be used to enhance the posi-
tioning results of other approaches like Wi-Fi-based positioning. GSM signals
are available in most areas of buildings, and as smart phones are the targeted
devices, a GSM module and SIM card can be presupposed.

In earlier tests with various Android devices, it has been noticed that many
devices just deliver the currently associated GSM cell via the Android API[53,
p. 13]. As explained in section 15.2.1, neighbor cells are needed for a reasonable
location accuracy.

Using the angle between the mobile device and a GSM base station requires
access to the base station. In case of indoor positioning, this means an own
infrastructure of GSM femtocells is required. This approach became imprac-
ticable with a court decision in July 2013[54], interdicting the operation of
private GSM cells in Germany. Because Time of Arrival also needs access to
the whole GSM infrastructure, it cannot be used for the same reason.

85

17. Absolute Positioning in MoCaInfo

17.2. Optical

The approaches described in section 15.4 are not used for positioning in Mo-
CaInfo for various reasons. For a start, all optical approaches force the user
to hold the smart phone or tablet in an unnatural way. This is a problem,
especially for visually impaired users because they cannot know how to hold
the device to capture a photo which is usable for positioning. In addition, the
floor plan and the template matching method rely on a non-changing environ-
ment. This is not applicable for a university, where black boards and posters
changing all the time and students are walking through the floor. Furthermore,
an intrusion into the appearance of a building is not wanted. Therefore, the
most promising approach of artificial landmarks cannot be adopted.

17.3. Global Positioning System

GPS receivers are integrated in most modern smart phones, and Android’s lo-
cation API supports their usage. Therefore, GPS is used for positioning when-
ever it is more accurate than other positioning approaches. This usually hap-
pens outside, where the Wi-Fi positioning system, described in section 17.5,
is not available. A detailed explanation about the usage of multiple absolute
location sources can be found in section 19.3.

17.4. Near Field Communication

With Android API level 9, better known as Android 2.3, Google introduced
support for the NFC technology. This enables Android devices with an appro-
priate built-in NFC receiver to read and write NFC tags.

In API level 14, also known as Android 4.0, the Android Beam feature has been
introduced, providing message exchange between two Android devices. Com-
mon use cases are exchanging contact information or sending short multimedia
files like pictures or audio clips.

86

17.4 Near Field Communication

nfc
You're
here

Figure 17.1.: Device Scanning a Passive NFC Tag

From a developer’s point of view, the Android operating system handles the
reading of NFC tags. The Tag Dispatch System is constantly looking for NFC
tags when the device’s screen is unlocked [55]. If the device discovers an NFC
tag, the Tag Dispatch System searches the most appropriate activity to handle
the intent created from the NFC tag’s data. If there is more than one activity
to handle the intent, the activity chooser appears. The desired behavior is to
have only one activity for one kind of NFC tag, to prevent the activity chooser
from appearing.

In MoCaInfo, NFC tags are one possibility of determining a user’s position.
For this purpose, points of interest, especially rooms are equipped with an
NFC tag. If the user scans a tag, Android’s tag dispatching system starts the
MoCaInfo application, showing detailed information about the POI. The major
advantage against any other localization approach is the accuracy. If the user’s
device discovers an NFC tag, the application can be sure that the user is at
the POI’s position.

87

17. Absolute Positioning in MoCaInfo

17.5. Wi-Fi

Wi-Fi is a perfect indoor positioning technology for a university campus be-
cause wireless access points are widely distributed in any building, especially
those with lecture halls.

Nevertheless, it should be noted that not any existing Wi-Fi infrastructure can
be used for positioning. In case of Technische Hochschule Mittelhessen, access
points are reconfiguring itself, depending on the number of connected clients,
network usage and other device’s on the same Wi-Fi channel. This means the
sending signal strength and Wi-Fi channel change over time. This is a no-go for
the used fingerprinting approach which relies on a non-changing configuration
and environment.

For this reason, eight Wi-Fi access points for positioning have been installed
at the first floor of building A20. The access points have been configured to
send with the highest power and on a static channel. They are not used to
transmit any data except the Wi-Fi beacons.

This section describes the developed Wi-Fi positioning system, including fil-
ters, fingerprint comparison methods and different ways to estimate the posi-
tion. The section ends with an evaluation.

17.5.1. Filters

In order to achieve more accurate results, Wi-Fi measurements are filtered for
certain properties. For example, a student’s discoverable ad-hoc Wi-Fi network
should not have an influence on fingerprint comparison because this would
distort the results.

In MoCaInfo, there are two types of filters, Measurement Filters, which are
applied to the current Wi-Fi measurement, and Selection Filters, which are
applied to the fingerprints in the database.

88

17.5.1.1 Measurement Filters

Wi-Fi
Measurement Filter Search matching

Fingerprints Filter Determine
Location

Figure 17.2.: Flow from Wi-Fi Measurement to Location Determination

17.5.1.1. Measurement Filters

A Wi-Fi measurement usually consists of a list of access points or rather their
BSSID and SSID plus the respective RSSIs. Measurement filters are used to
keep only measurements which are relevant for positioning. They are applied to
the current measurement and to the fingerprint’s measurements, loaded from
the database.

Currently only three filters are in use, but more filters are imaginable to im-
prove the accuracy or reduce computation time further.

SSID Filter: SSID is the short form of service set identifier. It can be seen as a
human readable name of an access point, whereas multiple access points
can have the same SSID. The SSID filter has a list of valid SSIDs, which
are considered for position estimation. Access points with non-matching
SSIDs are dismissed.

BSSID Filter: The BSSID, short form of basic service set identification, is a
unique identifier of a mobile access points. It is equivalent to the MAC
address of the Wi-Fi interface. The filter does pretty much the same as
the SSID Filter, but for the BSSID.

MinRSSI Filter: As stated in [53] bad signal levels disturb the location deter-
mination. Therefore, the MinRSSI filter rejects all measurements below
a certain signal level.

17.5.1.2. Selection Filters

Selection filters are used to reduce the amount of fingerprints which have to
be compared by making a pre-assumption based on the current measurement.
The implementation of those filters is simply a condition for the SQL where
clause.

89

17. Absolute Positioning in MoCaInfo

BSSID Filter: The BSSID filter takes care that only potentially fitting finger-
prints are selected from the database. Fingerprints which do not have at
least one BSSID in common with the current measurement are dismissed.
Without this filter, computation time would increase proportionally with
the amount of stored fingerprints.

Compass Filter: One of the approaches to improve positioning accuracy is to
store measurements of multiple orientations of a location. This considers
the fact that the human body reduces the signal strength if it is between
the measuring device and the access point. Furthermore, other influenc-
ing factors like reflections or obstacles in line of sight might depend on
the user’s orientation.

Different researches show that regardless of the comparison and esti-
mation algorithms, accuracy enhances when multiple orientations are
considered[39],[41],[56].

Figure 17.3 illustrates the compass filter’s principle. Every grey dot rep-
resents a fingerprint location, whereas the grey arrows stand for the dif-
ferent orientations of measurements. The black dot represents the user
and his orientation. The compass filter is looking for a orientation range,
in case of the illustration the range’s width is about 90◦. The black arrows
represent the fingerprints, finally used for position estimation.

Figure 17.3.: Compass Filter’s Functional Principle

90

17.5.2.1 Deterministic Comparison: RSSI Distance

17.5.2. Fingerprint Comparison

In order to determine a location, based on the currently measured signal
strengths, the current measurement has to be compared to the previously
recorded fingerprints.

In current research, two different approaches have been emerged.

17.5.2.1. Deterministic Comparison: RSSI Distance

The first approach is usually called the deterministic approach or distance
approach. To compare the fingerprints, a distance between the RSSIs is cal-
culated. A low distance indicates that the current location is similar to the
location of the compared fingerprint.

Different formulas to compute the distance are described in literature[41],[57].
Their main difference is whether and how they amplify big differences or lower
small differences. As scientific comparisons of the different distance methods
are rare, the following equations are implemented and tested in MoCaInfo. The
evaluation can be found in section 17.5.4.1.

DEuclid(x, y) =

√√√√ N∑
i=1

(xi − yi)2 (17.1)

DManhattan(x, y) =
N∑
i=1
|xi − yi| (17.2)

DBrayCurtis(x, y) =
N∑
i=1

|xi − yi|
xi + yi

(17.3)

DCanbarra(x, y) =
N∑
i=1

(xi − yi)2

xi + yi
(17.4)

The equations 17.1 to 17.4 can be read as follows. The distance D between
two fingerprints x and y is computed. A fingerprint is a vector which holds the
signal strength of a measurement, whereas xi and yi are the signal strengths
for the same access point. N is the number of signal strengths, which has to
be equal for x and y. If fingerprint x includes the signal strength of an access

91

17. Absolute Positioning in MoCaInfo

point which is not included in y, a placeholder value is inserted in y and vice
versa. This placeholder value represents a pretty bad signal strength.

17.5.2.2. Probabilistic Approach: Naïve Bayes Classifier

Besides the deterministic distance calculation, probabilistic approaches are
used in many research projects with promising results[41],[56],[58],[59].

The probabilistic approach, tested within MoCaInfo is called naïve Bayes clas-
sifier and is based on the Bayes theorem, which defines the probability P of
the class C under the assumption that x is given as follows:

P (C|x) = P (C)P (x|C)
P (x) (17.5)

The different elements of the formula are denoted as follows:

posterior = prior ∗ likelihood
evidence (17.6)

In case of fingerprinting, P (C|x) describes the probability that fingerprint x
belongs to the class C which represents a position. x is a vector of RSSI
values.

The uniqueness of the naïve classifier, compared to other classifiers, is the
assumption that all values of the input vector x are independent of each other.
For this reason, it is easy to calculate the conditional probability P (x|C), which
is the product of the probability of each element in x given class C.

P (x|C) =
∏
i

P (xi|C) (17.7)

92

17.5.2.2 Probabilistic Approach: Naïve Bayes Classifier

The likelihood P (x|C) depends on the training data, whereas there are several
possibilities to compute it. A common approach[41],[60, p. 36] which is used
in MoCaInfo is the following:

P (xi|C) = 1
n

n∑
j=1

KGauss(xi, yj) (17.8)

KGauss = 1√
2πσ

exp

(
−(x− y)2

2σ2

)
(17.9)

K denotes the kernel function. x is the observed fingerprint and y are all
fingerprints, recorded for location C. n is the number of recorded fingerprints
for location C.

As it is assumed that all fingerprints have the same probability, P (x) is as-
sumed to be 1. Therefore, it can be omitted in the equation:

P (C|x) = P (x|C)P (C) (17.10)

The computation of P (C) has again, multiple possible implementations. In case
of this thesis, two cases are implemented and tested. The first implementation
assumes that all locations are equally probable at any time, which results
in P (C) = 1. Another approach considers the distance between C and the
last estimated location L as an indicator for the probability of C. A short
distance between C and L results in a high probability, and a long distance
corresponds to a low probability. All locations within a three meter radius of
the last estimated location are considered to be equally probable. Fingerprints
further away than three meters, are considered to be less probable. Figure 17.4
illustrates this approach.

P (C) = 3
max(3,

√
(Cx − Lx)2 + (Cy − Ly)2)

(17.11)

17.5.3. Position Determination

The results of fingerprint comparison are used to determine the actual position.
In this work, two widely-used approaches are described and compared.

93

17. Absolute Positioning in MoCaInfo

0.42 0.670.53 0.75 0.67 0.53 0.340.42 0.28 0.23

0.47 1.00.67 1.0 1.0 0.67 0.360.47 0.29 0.24

0.5 1.00.75 1.0 1.0 0.75 0.370.5 0.3 0.25

0.47 1.00.67 1.0 1.0 0.67 0.360.47 0.29 0.24

0.20

0.21

0.21

0.21

Figure 17.4.: Distribution of P (C) with a Fingerprint Distance of Two Meters

17.5.3.1. Best Fit

The easiest approach to determine the user’s position is to assume that he
currently is at the best fitting fingerprint’s position. In case of the distance
approach described in section 17.5.2.1, this is the fingerprint with the lowest
distance, formalized with equation 17.12. For probability-based approaches
like the naïve Bayes classifier, the best fitting fingerprint is the one with the
highest probability, see equation 17.13.

choose yi if D(x, yi) = min
k
D(x, yk) (17.12)

choose Ci if P (Ci|x) = max
k

P (Ck|x) (17.13)

17.5.3.2. Weighted Nearest Neighbor

A more sophisticated approach is the nearest neighbor method, often called
K-nearest neighbor or just KNN. Instead of using the best fitting fingerprint,
the K best fingerprints are used to interpolate a position.

In order to consider the different fittings, a weighted nearest neighbor is im-
plemented for MoCaInfo’s positioning. The algorithm makes sure that a fin-
gerprint with a lower RSSI distance, respectively a higher probability, has a
stronger impact on the resulting position than a fingerprint with a higher dis-
tance, respectively lower probability. To avoid overweighting of a position, only
the best fingerprint for one position is taken into account. Otherwise, positions

94

17.5.3.2 Weighted Nearest Neighbor

with a larger amount of measured fingerprints might impact the interpolated
position stronger than positions with fewer fingerprints.

Equation 17.14 shows the implementation of the weighted nearest neighbor
algorithm, used together with the naïve Bayes approach. C is a vector of lo-
cations, sorted by the probability P (C|x) of each location C, beginning with
the highest probability.

CKNN =

k∏
i=1

Ci ∗ P (Ci|x)
k∑
i=1

P (Ci|x)
(17.14)

17.5.4. Evaluation

The following section compares the different approaches and filters to estimate
the best combination for accurate Wi-Fi indoor positioning. For that purpose,
a test environment at the first floor of building A20 has been created. Wi-
Fi fingerprints at 67 different locations have been recorded. The fingerprint
locations are distributed as equally as possible with a distance of two meters. In
this way, an area of about 280 m2 is covered. For any location, four orientations
have been measured. Three fingerprints for each orientation, resulting in an
overall amount of 804 fingerprints.

2 Access Points
3 Access Points
4 Access Points>

Reference Points

Start

Figure 17.5.: Wi-Fi Positioning Test Area with Fingerprints

95

17. Absolute Positioning in MoCaInfo

Eight wireless access points, with a non-changing configuration, are available
for positioning. Even though about one quarter of all fingerprints only contain
the data of two access points, whereas it is known that the accuracy increases
with the number of access points.

For the evaluation, a track of 70 meters has been walked in various speeds, with
different devices and in different directions. At the track, 14 reference positions
have been marked. Those known reference positions are compared with the
estimated positions, to determine the accuracy of the different approaches. In
order to get representive test results, the test track has been walked with three
different smart phones: a Nexus 4, a Nexus 7 and a Samsung Galaxy S3. Figure
17.5 shows the test environment, including the test track which is illustrated
by a grey line.

17.5.4.1. Comparison of Distance Methods

At first, the four distance methods are compared. Thus, the positions of all
runs are estimated, using best fit and nearest neighbor with three neighbors,
for each distance method.

Euclid Manhattan BrayCurtis Canbarra
0

5

10

15

Er
ro
r
(m

et
er
)

Figure 17.6.: Comparison of Various Distance Methods as a Box Plot

The box plot in figure 17.6 visualizes the result. The bottom and top lines rep-
resent the minimum, respectively the maximum error. The box in the middle
represents 50% of the results. The line in the middle of the box illustrates the
median error and the diamond shows the average value. No significant differ-
ence in accuracy could be determined. The mean error is between 3.97 and 4.42
meters, depending on the distance method. The most interesting finding is that

96

17.5.4.2 Naïve Bayes: Distribution of P(C)

the widely-used Euclidean distance performs the worst. Furthermore, the Can-
barra distance performs best, which is surprising because no other publication
has been found which uses the Canbarra distance for RSSI comparison.

17.5.4.2. Naïve Bayes: Distribution of P(C)

After evaluating the distance methods, the same evaluation is done for the
naïve Bayes method. As explained in section 17.5.2.2 the probability that a
location is estimated by the naïve Bayes algorithm P (C) can either be assumed
to be equal for all locations, or depend on the distance to the last estimated
location.

In order to get an idea, whether the impact of P (C) differs between best fit
and nearest neighbor, both approaches are compared in the box plot of figure
17.7.

BestFit BestFit P (C) = 1 NN NN P (C) = 1
0

5

10

Er
ro
r
(m

et
er
)

Figure 17.7.: Impact of a Last Location Depended P (C) on the Accuracy as a
Box Plot

The results are quite interesting. First of all, the naïve Bayes approach performs
better than the distance approach. An average error of 2.98 to 3.23 meters
compared to 3.97 meters with the Canberra distance is significant. As one
could expect, considering the last estimated location with P (C) has a positive
effect together with the best fit approach. Surprisingly it has a slightly negative
effect combined with the nearest neighbor interpolation. This is mainly because
larger errors, for example, at locations with few access points, have a negative
influence on the accuracy of future positions.

97

17. Absolute Positioning in MoCaInfo

Another negative effect of P (C), considering the last estimated location, is an
increased computation time. Therefore, it is highly recommended to assume
an equally distributed P (C) together with nearest neighbor interpolation.

17.5.4.3. Weighted Nearest Neighbor: Number of Neighbors

The number of neighbors used for the position interpolation is variable. The
following evaluation shows the impact of this number on the positioning accu-
racy. The tests are made in combination with the naïve Bayes approach.

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

Amount of Neighbors

Er
ro
r
(m

et
er
)

Figure 17.8.: Impact of the Number of Neighbors in Weighted Nearest Neigh-
bor Algorithm on Accuracy

Figure 17.8 again shows the superiority of the nearest neighbor method against
best fit, which is equivalent to nearest neighbor with just one neighbor. It is
hard to point out the perfect amount of neighbors because nearly any amount
of neighbors has its own advantages. Anyways, an amount of three neighbors
leads to the second best average error, combined with a good lower and upper
quartile. Furthermore, a lower amount of neighbors reduces the computation
time. Therefore, three neighbors are used for all following KNN computations,
unless otherwise stated.

The often mentioned problem of overfitting[61],[62], which basically means that
the interpolation gets significantly worse from a certain amount of neighbors,
cannot be discovered in this tests. The reason for this can be seen in the strict
weighting. For this reason, locations with lower probabilities only affect the
resulting location marginally.

98

17.5.4.4 Distance vs. Naïve Bayes

17.5.4.4. Distance vs. Naïve Bayes

The last subsections evaluated that the Canberra distance is the best distance
approach. Furthermore, the naïve Bayes classifier works best assuming that all
locations are equally probable. The KNN method turned out to be the more
accurate than the best fit approach, whereas the interpolation works best with
an amount of three neighbors.

Naïve Bayes Canbarra Distance
0

5

10

15

Er
ro
r
(m

et
er
)

Figure 17.9.: Estimated Positions with Naïve Bayes Classifier and Canberra
Distance

The box chart in figure 17.9 compares the accuracy of the distance and the
naïve Bayes approach. Both are using a KNN with three neighbors. The average
accuracy of 2.94 meters, achieved by the naïve Bayes classifier is about 28%
better than the average error occurred using the Canberra distance. Even more
impressive is the difference of the maximum error, which is about 6.59 meters
better when using the naïve Bayes classifier.

Due to this unambiguous result, the naïve Bayes classifier in combination with
the nearest neighbor interpolation is chosen for MoCaInfo’s Wi-Fi positioning
component. Figure 17.10 shows the estimated track of both approaches.

99

17. Absolute Positioning in MoCaInfo

Start

Naïve Bayes Classifier

Canberra Distance

Figure 17.10.: Map Showing Two Tracks, Estimated with Canberra Distance
Approach and Naïve Bayes classifier.

100

18. Relative Positioning in MoCaInfo

The following sections describe the relative positioning system developed for
MoCaInfo. In order to achieve a pedestrian relative positioning system, steps
have to be detected, which is explained in the section 18.1. The subsequent
section describes different approaches to implement a compass, using a smart
phone’s sensors. This is needed in order to determine the walking direction.

18.1. Step Detection

In order to achieve an accurate dead reckoning system, the location software
has to notice, whether a user is moving or not. For pedestrians this means,
it has to be recognized whether the pedestrian is walking or not. Commonly
used accelerometer-based approaches to detect steps use sensors, placed at the
pedestrian’s foot[63], [64]. With those foot-mounted sensors, it is even possible
to detect the roll of the foot while walking. Kim et al.[63] developed a precise
system, based on this data with a 100% accuracy in step detection and an
error of less than 5% in step stride determination.

The approach of roll-over detection cannot be used in MoCaInfo’s positioning
system because it has to be independent of any external sensors except the
built-in smart phone sensors. Ying et al. had a similar requirement since they
used accelerometers of medical implants to detect steps. They implemented
and compared three different algorithms for step detection. The first one is
the Pan-Tompkins method, a real-time algorithm usually used for peak detec-
tion in ECG signals. Secondly, they tried to recognize steps, with a template
matching approach, assuming that the signal of a step can be determined by
comparing it with sample signals of steps. The last algorithm is a simple peak
detection algorithm. They recommend peak detection because it is as accu-
rate as the Pan-Tompkins method but has less computational cost. Template

101

18. Relative Positioning in MoCaInfo

matching was not as accurate as the other methods[65]. This concurs with the
approach of the FootPath project[50], which uses an Android device with a
peak detection algorithm to detect steps.

In the context of this thesis, the FootPath algorithm has been integrated into
a test application, to approve the promising results stated by Link et al.[50].
Unfortunately, the results at the Android test device were less accurate than
expected, having an error rate above 20%. It should be noted that Link et al.
do not mention any error rate for the step detection itself, but their overall
positioning accuracy of 1.6 meters is impressive. The step detection errors in
their project are partially compensated by a path matching algorithm which
knows the path the user walks in advance. As the MoCaInfo positioning system
cannot draw on navigational paths, this approach cannot be adopted.

A novel step detection algorithm is implemented, combining ideas of the Pan-
Tompkins-method and the FootPath peak detection algorithm because of those
disappointing test results.

18.1.1. Signal Preparation

The signal is prepared for the peak detection based on methods used by Pan-
Tompkins. At first, the z-axis accelerometer data is smoothed by a low-pass
filter. For a more detailed explanation of this filter, see section 18.2.2.1.

Low Pass Differentiator Squaring Peak Search

Signal Preparation

Figure 18.1.: Steps of Signal Preparation

A derivative operator uses the low-pass filtered values to suppress low-frequency
components and enlarge the high frequency components from the high slopes.
Equation 18.1.1 is a slightly modified version of the equation explained in [65].
The modification was necessary since the measurement frequency in Ying’s

102

18.1 Step Detection

work was higher than suitable for Android devices. Furthermore, all nega-
tive y(n) are set to zero because negative values disturb the following peak
detection. x(n) represents the low-pass filtered acceleration at the z-axis of
measurement number n.

y(n) =

1
4[2x(n) + x(n− 1)− x(n− 3)− 2x(n− 4)] if y(n) > 0

0 else
(18.1)

The derivative operator’s output is squared in order to emphasize high values
additionally, whereas the following equation is used. It makes sure that values
below 1 are not further lowered.

y(n) = (1 + y(n))2 − 1 (18.2)

Figure 18.2 shows a sample signal of five steps, whereas the user was standing
for about one second before he began to walk. Every single step produces
an amplitude. The low-pass filter (b) smooths the signal which reduces the
disturbances between the steps. As a result of the derivative operator, realized
by implementing equation 18.1.1, disturbances are filtered out (c). The final
squaring just emphasizes this result (d).

103

18. Relative Positioning in MoCaInfo

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

8
10
12

m
/s

2

(a) raw acceleration at z-axis

8

10

m
/s

2

(b) low-pass filtered acceleration

0
0.5

1
1.5

m
/s

2

(c) output after derivative operation

0
2
4
6

m
/s

2

(d) squared derivative signal

Figure 18.2.: Acceleration Measurements after Various Enhancement Steps

18.1.2. Peak Detection

The actual peak detection is based on the algorithm of the FootPath project.
Just a few constant values, such as the threshold and the inspected time span,
have been adjusted after empirical analyzes.

The algorithm detects the peaks of the prepared signal. Therefore, it examines
the relations between the currently measured value (from now on current),
the value before current (from now on predecessor) and the first value of the
examined region (from now on oldest). This region is marked light blue in
figure 18.3 and the analyzed values are marked with red squares. A region which
covers a time span of about 200ms, or four measurements, has been determined
empirically, to deliver the most accurate results. First of all, the algorithm tests

104

18.1 Step Detection

whether current is less than predecessor. If so, predecessor is a potential peak.
To make sure that it is a peak, oldest has to be less than predecessor as well.
If this is also true, the difference between oldest and predecessor is computed
and checked against a threshold. If the difference is greater than the threshold,
predecessor is estimated to be a peak and therefore a step. A threshold of 1
leads to the best results in various test walks.

0
2
4
6

> threshold pause step detectionpause step detection

m
/s

2

(a) squared derivative signal

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

8
10
12

m
/s

2

(b) raw acceleration at z-axis with marked steps

Figure 18.3.: Step Detection Example. Red Squares in Figure (b) Represent
Detected Steps

If a step has been detected, the step detection pauses for 330ms to prevent
a double detection of one step. This timeframe is shown by a light red area
in figure 18.3 (a). The red squares in the image below illustrate the detected
steps.

The overall process of step detection is also illustrated by figure 18.4, which
might be easier to understand than the previous textual description.

105

18. Relative Positioning in MoCaInfo

predecessor is less
than current

predecessor is greater
than oldest value

(predecessor-oldest)
is greater than

threshold

yes
signal is descending

predecessor is a peak

is last detected step
older than 330ms

yes

yes

no

no

no

yes

no

Step Detected

Filtered
Measurement

Figure 18.4.: Procedure of Peak Detection

18.1.3. Evaluation

The main purpose of the evaluation is to find out, if the signal preparation
has a positive effect on the step detection’s accuracy or not. Furthermore, it
reveals whether the gathered accelerometer measurements differ significantly
depending on the user who walks.

Therefore, five test persons with different genders, ages and body heights have
walked the same test track. One of those testers has a low vision. He walked

106

18.1 Step Detection

two test tracks. The first one is the same which was walked by the other test
persons. It covers an area he knows quite well. The other test track is in an
area he only knows poorly. Ulterior motive for those two different areas was the
presumption that blind and visually impaired people walk more carefully and
uncertainly in unfamiliar areas, which might affect the step detection. Doors
and other barriers had to be handled by the testers themselves.

The test with a visually impaired user shall clarify, whether other algorithms
are needed for this user group or if their steps can be detected using the existing
approach.

The first test run of the visually impaired test person, was noticeable worse
than the tests with sighted people before. The reason for this, were movements
of his left hand which held the smart phone. It should be noted that the test
person usually does not use smart phones and was unfamiliar with its handling.
After a short introduction and an explanation why it is important to hold
the smart phone steady, the repeated test run and all following tests were
comparable to the test runs with sighted people. Due to these irregularities
in the first test run, it has not been taken into account for the evaluation.
Even the unfamiliar area had no impact on the step detection itself, whereas it
should be noted that the average step stride in this area was lower than in the
other test runs. As the step detection does not cover stride detection at the
current state of development, this observation is unimportant at the moment.
Altogether, the tests revealed that no adjusted step detection algorithm for
visually impaired people is needed.

Step Count Not Detected False Positive
0

50

100

A
cc
ur
ac
y/

Er
ro
r
(%

)

Low-Pass Filter
Signal Preperation

Figure 18.5.: Bar Chart Comparing the Step Detection Accuracy

107

18. Relative Positioning in MoCaInfo

The evaluation shows that the step detection in general is reasonably accurate
for relative positioning. The overall step count is 98.86% accurate with the pre-
pared signal and 95.45% accurate with a low-pass filtered signal. The low-pass
filtered approach is equivalent to the FootPath approach[50]. Certainly, the
overall step count is not a good indicator for the actual error, which is slightly
higher. For the prepared signal, 7.4% of the steps have not been recognized,
and 6.25% of the detected steps are false positive phantom steps. In case of
the low-pass filtered signal, 14.8% of the steps are not detected, and 10.2% are
false positive detections.

Both error classes compensate each other to some degree, especially if a false
positive detection occurs shortly after an undetected step or vice versa. How-
ever, this compensation does not work, if the users changes his direction in the
meantime.

3,000 3,200 3,400 3,600 3,800 4,000 4,200 4,400 4,600 4,800 5,0000
1
2
3

(a) prepared z-axis acceleration

3,000 3,200 3,400 3,600 3,800 4,000 4,200 4,400 4,600 4,800 5,000

8
10
12 step not detected

m
/s

2

(b) low-pass filtered acceleration

Figure 18.6.: Comparison of Prepared and Low-Pass Filtered Signal

Figure 18.6 shows acceleration measurements gathered in one of the test runs.
The red boxes represent a step detection, the green triangles represent the
approximate time when the foot hits the ground. The figure illustrates why
the signal preparation explained in section 18.1.1 leads to a superior step de-
tection. The signal in the figure has been captured while walking draggingly,
which means that the feet barely left the floor. The peak at the 4th second
is not distinct enough in the low-pass filtered signal, and therefore can not be

108

18.2 Compass

recognized as a step. The prepared signal shows a distinguished peak, which
has correctly been interpreted as a step.

In conclusion, it can be stated that steps of visually impaired people can be
detected as good as steps of sighted people. Furthermore, the number of unde-
tected steps can be halved with the signal preparation. In addition, the number
of phantom steps is reduced by a third. For this reason, the prepared signal is
used for MoCaInfo’s step detection component.

18.2. Compass

In addition to step detection, the user’s orientation is needed in order to esti-
mate relative position changes. The following section describes the calculation
of the azimuth, using the earth’s gravity and magnetic field. Since previous
project members[53, p. 34] and other researchers[66, p. 35] experienced prob-
lems caused by magnetic interference and sensor inaccuracy, filters and alterna-
tive approaches are introduced and evaluated, trying to minimize the influence
of those confounding factors.

18.2.1. Azimuth Calculation

The magnetic azimuth, which describes the bearing of a compass, can be cal-
culated by using the accelerometer and the magnetic field sensor. The first
sensor captures the gravity acceleration force (~g) in all three directions. The
second sensor measures the magnetic field (~m), also at all three axis.

The following describes the vector cross product method[67] to determine the
azimuth, based on these two vectors. In the first place, the vector product,
also known as cross product, of gravity and magnetic vector is calculated. The
resulting vector is the perpendicular of the plane, composed of gravity and
magnetic vector. This normal describes the east direction of the navigation
frame. The north direction is calculated through the cross product of the east
direction and ~g. Finally both vectors are getting normalized.

109

18. Relative Positioning in MoCaInfo

gravity

magnetic field
~g × ~m

~g × ~m× ~g

x

y

z

Figure 18.7.: Normalized Vectors, used for Azimuth Calculation. Example Vec-
tors result in an Azimuth of approximately 90◦

East Direction: ~E = ~g × ~m (18.3)
North Direction: ~N = ~g × ~m× ~g (18.4)

Normalize: ~E ′ =
~E

| ~E|
, ~N ′ =

~N

| ~N |
(18.5)

The azimuth (α)is the angle between the y values of the two normalized vectors,
whereas some case differentiation needs to be regarded, in order to return the
appropriate quadrant of the computed angle. This is the reason for the usage
of arctan2 instead of arctan.

α = arctan2(E ′y, N ′y) (18.6)

To enhance the accuracy of the compass, a reference gravity vector ~g0 and a
reference magnetic vector ~m0 are needed. Those reference vectors are known

110

18.2.2.1 Low-Pass Filter

to be correct, and not influenced by external forces, such as electromagnetic
fields.

Reference Direction: ~R = ~g0 × ~m0 × ~g0 (18.7)
α = arctan2(E ′y ∗Ry, N

′
y ∗Ry) (18.8)

Except the calibration, all explained calculations are implemented in Android’s
SensorManager to simplify the calculation of the compass bearing for devel-
opers.

18.2.2. Filter

The accuracy of a pedestrian dead reckoning system depends on the compass’
and step detection’s accuracy. The accuracy of the compass is an issue, partic-
ularly in indoor environments. The reasons of this inaccuracy in buildings are
electromagnetic fields, which distort the magnetic field vector, measured by the
phone’s sensor. Sources of those electromagnetic fields in buildings are power
supply lines and electrical devices. Furthermore, ferromagnetic objects, such
as heaters, pipes or steel beams distort the azimuth estimation. Those objects
are either magnetized by design or get magnetized by the earth’s magnetic
field or nearby electromagnetic fields.

Tests measurements, which simulated walks inside buildings, show that those
confounding factors often just appear over a short period of time, e.g. if one
is passing a heater. This suggests that filtering methods might improve the
breakdown susceptibility.

The following subsections describe different filters ending with a comparison
in section 18.2.4.

18.2.2.1. Low-Pass Filter

A low-pass filter passes low-frequency signals and reduces the amplitude of
signals with a frequency higher than the cutoff frequency. As a consequence,

111

18. Relative Positioning in MoCaInfo

disturbances caused by sensor inaccuracies or external confounding factors are
lowered.

xnew = xold ∗ α + xnew ∗ (1− α),∀α ∈ R|α ≥ 0 ∧ α ≤ 1 (18.9)

Equation 18.9 shows a low-pass implementation, whereas α is the smoothing
factor. Android’s API documentation recommends calculating α as described
in equation 18.10[68]. The formula considers the measurement delivery rate ∆t
and a time-constant t.

α = t

t+ ∆t (18.10)

500 1,000 1,500 2,000 2,500 3,000
9.1

9.2

9.3

9.4

9.5

9.6

9.7

time (ms)

m
/s

2

raw
t = 30(α ≈ 0.3)
t = 300(α ≈ 0.8)

Figure 18.8.: Low-Pass Filter Applied to Z-Axis of an Acceleration Vector over
Time

Figure 18.8 shows the decreasing amplitude when a low-pass filter is applied to
the raw measurements, whereas a lower value of α leads to a lower amplitude.
Furthermore, the chart shows a shift at the time-axis which increases with a
bigger value for α.

112

18.2.2.2 Exponential Moving Average

18.2.2.2. Exponential Moving Average

Exponential moving average (EMA) can be seen as an extension of the low-
pass filter. Instead of only having the last and the current sensor data, EMA
considers a stack of past values. In equation 18.11, this stack is represented
by the indexed variable x, whereas newer values have a lower index. n rep-
resents the number of values which are considered for the computation.[69,
chapter 6.4.2]

x0 = xnew +∑n
k=1((1− α)k ∗ xk)∑n
k=0(1− α)k (18.11)

Similar to the low-pass filter, α is a smoothing factor. The particular trait of
EMA, compared to other average calculations, is the exponential decrease of
weights. For that reason, the second value, which is newer, has a stronger im-
pact on the result, than the older third value. Figure 18.9 shows the decreasing
weights of an EMA.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00

0.05

0.10

index of value

W
ei
gh

t

Figure 18.9.: Decreasing Weights of an EMA with α = 0.125

Similar to figure 18.8, figure 18.10 illustrates the raw z-axis acceleration for
a time frame of three seconds. The EMA filtered values are a lot flatter than
the raw values. The amplitudes decrease slightly with the number of elements
n which are considered for the computation. Even though, it should be noted
that the difference between 5 and 50 values on the EMA stack is not significant
because the older values affect the result decreasingly.

113

18. Relative Positioning in MoCaInfo

500 1,000 1,500 2,000 2,500 3,000
9.1

9.2

9.3

9.4

9.5

9.6

9.7

time (ms)

m
/s

2

raw
n = 5, α = 0.3
n = 50, α = 0.3

Figure 18.10.: EMA Filter Applied to Z-Axis of an Acceleration Vector over
Time

18.2.3. Sensor Fusion with Gyroscope

Another approach to reduce the influence of magnetic interference is the usage
of a gyroscope[70][71, p. 54ff]. A gyroscope is another sensor which can be
found in many Android devices. It measures the angular speed at the x-,y-
and z-axis in radians per second.

Figure 18.11 illustrates the three independent sensors, used to calculate a fused
orientation vector. Accelerometer and magnetometer are used to calculate a
basic orientation as described in section 18.2.1. This orientation is called Ac-
cMag Orientation in the figure. In parallel a Gyro Orientation is calculated,
only based on the gyroscope measurements and the time between those mea-
surements. The low-passed filtered AccMag Orientation and the high-passed
filtered Gyro Orientation are combined to a Fused Orientation, which is less
susceptible to magnetic disturbances.

To compute a fused orientation, several steps are necessary. First of all, the
gyroscope matrix G is initialized as an identity matrix. Secondly, a rotation
matrix R is calculated, based on the orientation vector ~o which is determined,

114

18.2.2.2 Exponential Moving Average

Magnetic
Field Sensor

Accelerometer

AccMag
Orientation

Low Pass
Filter

Fused
Orientation

Gyroscope

Time Interval

Σ Gyro
Orientation

High Pass
Filter

+

*

Figure 18.11.: Structure of a Sensor Fusion Model, Using Accelerometer, Mag-
netometer and Gyroscope for Orientation Estimation

as described in section 18.2.1, by accelerometer forces and the magnetic field
vector.

G =

1 0 0
0 1 0
0 0 1

 (18.12)

R =

1 0 0
0 cos(oy) sin(oy)
0 −sin(oy) cos(oy)

 ∗

cos(oz) 0 sin(oz)

0 1 0
−sin(oz) 0 cos(oz)

 ∗

cos(ox) sin(ox) 0
−sin(ox) cos(ox) 0

0 0 1

 (18.13)

G =

atan2(R1,2, R2,2)
asin(−R3,2)

atan2(−R3,1, R3,3)

 ∗G (18.14)

After the initialization, the gyroscope sensor data ~g is used to compute a
rotation vector ~r. The rotation vector is transformed to a rotation matrix R,
which represents the measured gyroscope rotation in the elapsed time ∆t. The
gyroscope orientation matrix G is updated by multiplying it with the delta
rotation matrix.

The orientation ~p can finally be calculated, by the same trigonometric functions
as for the accelerometer-magnetometer-method.

115

18. Relative Positioning in MoCaInfo

~g′ = ~g

|~g|
(18.15)

~r =

sin(|~g| ∗∆t) ∗ g′x
sin(|~g| ∗∆t) ∗ g′y
sin(|~g| ∗∆t) ∗ g′z
cos(|~g| ∗∆t)

 (18.16)

R =

1− 2r2

2 − 2r3
2 2r2r3 − 2r3r4 2r1r3 + 2r2r4

2r1r2 + 2r3r4 1− 2r2
2 − 2r3

2 2r2r + 3− 2r1r4

2r1r3 − 2r2r4 2r2r3 + 2r1r4 1− 2r1
2 − 2 ∗ r2

2

 (18.17)

G = G ∗R (18.18)

~p =

atan2(G1,2, G2,2)
asin(−G3,2)

atan2(−G3,1, G3,3)

 (18.19)

The final step is to fuse the orientation determined by the gyroscope ~p with
the orientation computed by the accelerometer and magnetometer ~o. A factor
γ defines the weighting factor of the two different orientations. Since negative
orientations may occur, different cases have to be considered to translate the
negative bearings into positive ones.

fi =

γ ∗ (pi + 2π) + (1− γ) ∗ oi if pi < −π

2 ∧ oi > 0
γ ∗ pi + (1− γ) ∗ (oi + 2π) if oi < −π

2 ∧ pi > 0
γ ∗ pi + (1− γ) ∗ oi else

(18.20)

~f =

fx

fy

fz

 (18.21)

Figure 18.12 compares the raw azimuth, calculated by accelerometer and mag-
netometer, with an azimuth only based on the gyroscope and two fused ori-
entations with different weightings. The orientation, calculated just by using
the relative gyroscope orientation changes, tend to drift away from the real

116

18.2.2.2 Exponential Moving Average

orientation. In literature even a static gyroscope error rate is mentioned, often
called gyro drift[66], [72]. This static drift could not be observed at the Nexus
5 and Nexus 7 device, used for testing. This suggests that gyroscopes used
in today’s smart phones are more accurate than the gyroscopes used in those
works. The chart also shows that the fused signal is much smoother than the
raw orientation without gyroscope.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
·104

260

280

300

time (ms)

az
im

ut
h
(◦
)

Accelerometer + magnetometer
Gyroscope only γ = 1.0
Sensor fusion γ = 0.98
Sensor fusion γ = 0.7

Figure 18.12.: Azimuth Computed by Fusing Data from Gyroscope, Ac-
celerometer and Magnetometer

18.2.4. Evaluation

In order to find the best approach for orientation determination in indoor envi-
ronments, various test cases have been recorded with an Android application.
Three of them are presented below.

The first two test cases are artificial. They simulate a strong magnetic distur-
bance. In both cases, the recording Android device lays upon an empty desk,
to make sure that there are as less artificial magnetic fields as possible and
that there is no movement of the device. The artificial magnetic disturbance
has been achieved with a little magnet near to the device. In the first test,
illustrated by figure 18.13, the magnet was placed at the smart phone just
before the sensor recording started. It was removed 6 seconds later. Due to the
magnetic disturbance, the azimuth has been determined completely wrong as

117

18. Relative Positioning in MoCaInfo

long as the magnet was near the device. None of the filters or alternative ap-
proaches were able to reduce the disturbance. After removing the magnet, the
azimuth has been calculated correctly by most filters within a short period of
time. The orientation determination which only uses the gyroscope is not able
to get a correct azimuth in this test because the magnetic reference orientation
is wrong. Furthermore, sensor fusion with a strong weight on the gyroscope
needs about 20 seconds until it reaches the correct orientation. Another inter-
esting observation can be seen at the EMA filter. It tends to produces peaks
at strong sensor changes, which is exactly the opposite of what it is intended
to do.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
·104

0

100

200

300 magnetic disturbance

time (ms)

az
im

ut
h
(◦
)

Accelerometer + magnetometer
Low-Pass
EMA

Gyroscope only
Sensor fusion γ = 0.98
Sensor fusion γ = 0.7
Correct Azimuth

Figure 18.13.: Comparison of Compass Filters and Approaches. Determination
with a Magnetic Disturbance

The second test starts with an undisturbed magnetic field. After 20 seconds, a
magnet is placed near the device for about 4 seconds. As expected, the impact
of the magnetic disturbance is pretty strong for magnet-based approaches.
Low-pass and EMA filter are not able to reduce the magnetic disturbance
significantly. Gyroscope depended approaches benefit from the additional un-
influenced sensor, and are disturbed less. The gyroscope only method is by far
the best. The test also shows that a high weighting of the gyroscope (γ = 0.98)
has a lower maximum error, but it also takes about ten seconds after the dis-
turbance until the error is fully compensated.

118

18.2.2.2 Exponential Moving Average

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
·104

100

200

300 magnetic disturbance

time (ms)

az
im

ut
h
(◦
)

Accelerometer + magnetometer
Low-Pass
EMA

Gyroscope only
Sensor fusion γ = 0.98
Sensor fusion γ = 0.7

Figure 18.14.: Comparison of Compass Filters and Approaches. Magnetic Dis-
turbance Between Second 20 and 24

The last test is a real life test, which was performed at building A20’s first floor
on the campus of Technische Hochschule Mittelhessen. A corridor of about 30
meters has been passed, whereas the test person turned to the right after about
23 meters. Figure 18.15 shows a pretty imbalanced orientation caused, on the
one hand, by the accelerometer which is affected by device’s movement and,
on the other hand, by the changing magnetic disturbance within the building.
The strongest magnetic disturbance occurred while passing a fire door, which
caused an orientation error of about 40◦.

119

18. Relative Positioning in MoCaInfo

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
·104

200

220

240

260

280

300

320

fire door

time (ms)

az
im

ut
h
(◦
)

Accelerometer + magnetometer
Low-Pass
EMA

Gyroscope only
Sensor fusion γ = 0.98
Sensor fusion γ = 0.7
Estimated Azimuth

Figure 18.15.: Comparison of Compass Filters and Approaches. Walking Down
a Floor and Rotate Approx. 80◦ After 23 Seconds

18.2.4.1. Conclusion

All things considered, the most promising method for indoor orientation is sen-
sor fusion. Even if it takes a long period of time till huge magnetic disturbances
are be compensated, it performs best with medium magnetic disturbance as
one can expect it in indoor environments. Using the gyroscope without fusing
it with a magnetic orientation is no option because a good magnetic reference
orientation cannot be guaranteed. However, the weighting factor γ should not
be too small either. As seen in the comparisons, a γ of 0.7 has nearly no ad-
vantage against non-gyroscope filters. Sensor fusion with a γ of 0.98 seems to
be a good tradeoff to get a robust compass, which is also able to compensate
faulty magnetic references within a reasonable amount of time.

The numbers listed in table 18.1 confirm this conclusion. Admittedly, the non-
gyroscope-based approaches perform better in the first test scenario, but the
second test shows a far better maximum error of 104.23◦ compared to more
than 196◦ by the other methods. Though, it should be stated that both errors
are too large for an accurate dead reckoning system. The real life test, shows the
real strength of sensor fusion, especially with a strong impact of the gyroscope’s
measurements. The average error of sensor fusion was slightly better than the

120

18.2.4.1 Conclusion

error unfiltered low-pass EMA gyroscope fusion (0.98) fusion (0.7)
magnetic disturbance at start

average 24.3 24.3 26.9 191.7 37.4 24.9
avg. (during dist.) 191.8 191.9 194.0 191.6 192.8 193.4
avg. (after dist.) 0.5 0.6 3.6 191.7 15.7 1.3
maximum 195.4 195.4 228.8 191.7 194.1 195.3

magnetic disturbance in the middle
average 16.2 16.4 17.8 0.1 15.3 16.1
avg. (before dist.) 0.5 0.5 0.45 0.1 0.3 0.48
avg. (during dist.) 189.7 190.1 180.2 0.1 60.8 179.4
avg. (after dist.) 0.9 1.32 8.12 0.1 30.7 3.35
maximum 196.8 196.8 197.6 0.1 104.23 194.87

walk down a corridor
average 10.3 10.2 10.3 6.7 7.5 9.5
maximum 44.3 45.7 56.5 15.9 17.3 38.9

Table 18.1.: Average and Maximum Errors of all Three Test Scenarios and
Filters in Degrees

magnetic azimuth’s deviation - 7.5◦ compared to about 10◦. The significant
advantage of the sensor fusion approach can be seen in the maximum error
which is about 30◦ better compared to the magnetic approaches. This 30◦

make a big difference in a dead reckoning use case.

121

19. Dead Reckoning

19. Dead Reckoning

Everything needed for a pedestrian dead reckoning system is explained and
evaluated in the last sections. The heading can be estimated using a sensor
fusion compass. Movements can be detected using the step detection algorithm
explained in section 18.1, and absolute reference positions are provided by the
Wi-Fi positioning system described in section 17.5.

The idea of dead reckoning is fairly simple. The gaps between the absolute
Wi-Fi positions are filled with relative position information, gathered by the
step detection algorithm and the compass.[73],[47]

Start

Absolute Wi-Fi Position

Step with Heading

Figure 19.1.: Concept of Dead Reckoning

19.1. Weighting of Location Sources

Depending on the accuracy of the absolute location source, it might make
sense to reckon the relative position in, even if an absolute location has been

122

19.1 Weighting of Location Sources

determined. This is different to usual dead reckoning systems, where the ab-
solute position overwrites past determinations. The approach is evaluated for
MoCaInfo because Wi-Fi positionings’ maximum error of about 8 meters is
quite inaccurate.

The easiest form to achieve a hybrid location is by using a factor α which de-
fines the weighting of the estimated Wi-Fi position LWiFi for the new position
L.

L = LWiFi ∗ α + LLastRelativePosition ∗ (1− α) (19.1)

Figure 19.2 shows position determinations with different values for α, whereas
α = 1 is equivalent to a Wi-Fi-only positioning system, and α = 0 is like a
completely relative positioning system. This relative approach uses the first
determined Wi-Fi position as the reference position.

As the figure shows, the position determination can be significantly improved,
especially in larger rooms like the foyer at the left side of the floor plan. On
the other hand, relative positioning tends to drift sideways because of compass
inaccuracies. If the influence of this drift becomes to big, the estimated position
might show a nearby room instead of the correct one. This is a problem which
occurs rarely when using a Wi-Fi-only positioning system because the signal
attenuation caused by the walls leads to distinguishable fingerprints.

123

19. Dead Reckoning

(a) alpha = 1, equivalent to Wi-Fi-only

(b) alpha = 0.5, slightly improved accuracy

(c) alpha = 0.9, better accuracy but drifts into corridor’s wall

(d) alpha = 0, equivalent to relative only. Absolute reference position, determined
by Wi-Fi in the lower right corner

Figure 19.2.: Comparison of Different Weightings Between Location Sources

19.2. Adaptive Weighting

In order to reduce the problem of drifting while still benefiting from relative
positioning, an adaptive α has been implemented. Assuming that the absolute
Wi-Fi-based position is more accurate when many access points are available
for the estimation, α is calculated based on this estimated accuracy. It should
be noted that this accuracy-estimation approach is pretty basic and that more
sophisticated approaches exist[42]. However, for the given use case, this ap-
proach leads to reasonably good results.

124

19.2 Adaptive Weighting

Besides the number of access points, α is influenced by the time span between
two Wi-Fi measurements. In some cases, e.g. if the measuring device tries
to connect to a nearby Wi-Fi access point, the duration between to Wi-Fi
measurements increases up to 10 seconds or even more. As the position in such
long periods may have changed tremendously, the Wi-Fi position is weighted
stronger than usual.

Furthermore, α depends on the step detection. If no step has been detected
between two Wi-Fi measurements, the new estimated Wi-Fi position influences
the final position estimation minimally. As a result, the user’s position is pretty
fix if he is not moving. This is a valuable improvement, compared to Wi-Fi-
only positioning where the position of a not moving user tends to hop around
the actual position, with every Wi-Fi measurement.

Figure 19.3.: Dead Reckoning with an Adaptive α Between 0.5 and 0.95

Finally, the box chart in figure 19.4 shows the improved accuracy compared to
the Wi-Fi-only approach. At the test track, an average accuracy of 1.67 meter
has been achieved. Furthermore, 75% of the tested reference points have an
error of 2.29 meter or less which is even better than the average Wi-Fi deviation
of 2.94 meters.

Wi-Fi-only Dead Reckoning
0
2
4
6
8

Er
ro
r
(m

et
er
)

Figure 19.4.: Comparison of Wi-Fi-only Positioning and Dead Reckoning

125

19. Dead Reckoning

19.3. Multiple Absolute Location Sources

Another distinctive property of this dead reckoning approach is the ability to
support multiple absolute location sources. This is particularly needed, to be
able to determine locations inside and outside without a noticeable interrup-
tion.

As stated above, GPS is used for outdoor positioning and Wi-Fi within build-
ings, or rather whenever GPS positions with reasonable accuracy are unavail-
able. Furthermore, NFC tags with a linked geo location can be scanned. Their
highly accurate position replaces the previously estimated location.

Wi-Fi
Source

Dead Reckoning
Position

NFC
Location

Step
Detection

Stride
Detection

Last
Position

GPS
Location

Relative
Position

1 Adaptive
Weighting

Adaptive
Weighting

Compass

* * *

Figure 19.5.: Concept of Dead Reckoning with Multiple Absolute Location
Sources

Figure 19.5 illustrates the interaction of the different location sources. Essential
for a good positioning accuracy are the weighting methods, as they make sure
that an inaccurate GPS position does not overwrite a good Wi-Fi position or
vice versa.

As the different weightings and the usage of multiple absolute location sources
in are still in a quite experimental state, the following describes the weighting
in a pretty general manner, without mentioning precise equations or algo-
rithms.

126

19.3 Multiple Absolute Location Sources

NFC Weighting is the simplest form of the used weighting methods. As the
position of a scanned NFC tag is known, and the scanning device has
to be within a range of a few centimeters to the NFC tag, the position
is fully weighted. This means, the NFC tag’s position replaces the last
position completely. Therefore, the value of α is 1.

GPS Weighting is based on the GPS position’s accuracy. The better the ac-
curacy the higher it is weighted. If the GPS positions’ accuracy is better
than the last location’s accuracy, the GPS position overwrites prior es-
timations. If the accuracy is worse than the last position’s accuracy, it
is weighted depending on the difference between the GPS’ accuracy and
the last position’s accuracy.

Wi-Fi Weighting is currently based on the number of access points and the
time between the last Wi-Fi position estimation. The less Wi-Fi access
points are available for the position estimation, the less it will influence
the new position. Furthermore, a long time span between two Wi-Fi
scans, leads to a stronger impact of the Wi-Fi position because it has
to be assumed that the old position deviates strong from the current
position. A more detailed explanation can be found in section 19.2.

127

Part V.

Conclusions and Future Work

129

20. Conclusions

20. Conclusions

This thesis contains an introduction into location-based information systems,
focusing on the difficulties which appear when visually impaired users, as well
as sighted users, are targeted. It shows that even if more and more helping
utilities for visually impaired users exist, it still is a challenging task to provide
a good user experience with a mobile application for both, blind and sighted
users.

Furthermore, the thesis demonstrates that indoor and outdoor positioning with
smart phones is possible on condition that the infrastructure meets certain
requirements. In this context, existing approaches are evaluated and combined
with new ideas for further improvements.

The following sections, discuss the different topics more deeply.

20.1. Mobile Application

The mobile application’s distinctiveness is the user interface. The app offers a
usual graphical user interface, following well known UI design patterns and a
separate low-vision user interface. It is still hardly discussed, whether dedicated
low-vision user interfaces are worth the effort. According to Google, applica-
tions are accessible for everyone if certain things are considered by graphical
user interface. The various accessibility tools, provided by Android shall enable
visually impaired users to use those applications.[10]

According to researches, which are described more detailed in section 7.5, low-
vision user interfaces are still superior to graphical user interfaces which follow
universal design principles. Those finding is supported by Niehaus[13], a former
project member, who is visually impaired himself. For his final paper, he inter-
viewed several other visually impaired people and concludes that customizable

130

20.2 Navigation

low-vision user interfaces offer a better user experience than graphical user
interfaces[13, p. 69ff]. The author of this thesis therefore recommends sepa-
rate low-vision user interfaces for mobile applications, in particular if visually
impaired people belong to the target user group.

By a strict obedience to the MVC pattern, the additional code needed for a
low-vision user interface only affects the view component. Admittedly, changes
in the model or the controller often affect two view classes, which results in a
higher effort for maintenance.

20.2. Navigation

This thesis shows that the current indoor navigation situation is not entirely
satisfying. Google Indoor Maps just support public floor plans, which is not
wanted by many institutions. Furthermore, indoor navigation is only avail-
able to a few indoor maps. The OpenStreetMap community has proposed a
data structure for floor plans, but there are no libraries or applications which
actually support their usage.

A combination of OpenStreetMap, its toolchain and the great rendering perfor-
mance of Google Maps actually leads to a usable indoor and outdoor navigation
component, with a reasonable implementation effort.

The open data structure of OpenStreetMap allows to add arbitrary informa-
tion to maps. This is used to store information like the condition of the floor, in
order to assist visually impaired users during navigation additionally. In so do-
ing, MoCaInfo’s navigation system explores new avenues, as such information
is not considered by any other available indoor navigation system.

20.3. Indoor and Outdoor Positioning

The research in this thesis examines that indoor positioning with accuracies,
reasonable for the usage in a point-to-point navigation system, is possible if
the infrastructure meets certain requirements. This requirements are basically

131

20. Conclusions

an area-covering non-dynamically Wi-Fi infrastructure in buildings, and an
offline learning phase for generating equally distributed fingerprints.

The accuracy with an average error of 2.94 meters, achieved with Wi-Fi posi-
tioning, was similar to the results of other projects[41],[42]. It was interesting
to see that the quite simple probabilistic approach, naïve Bayes, performed
way better than the distance-based approaches. Admittedly, other researches
have come to similar conclusions[41], but the difference revealed in this thesis
was way more significant.

With an average error of 2.94 meters and 25% of position estimations having
a deviation between 3.54 and 7.99 meters, Wi-Fi positioning alone is barley
usable for indoor navigation. Especially navigation for visually impaired people
demands on a better and more reliable positioning accuracy.

To improve the positioning accuracy and fill the gaps between two Wi-Fi po-
sition estimations, relative positioning is used. It turned out to be more ac-
curate as expected. Even though the FootPath[50] project demonstrates the
possibility of accurate relative positioning, it only works in combination with
path matching. Path matching checks the currently estimated relative position,
against an assumed position. This assumption is based on the predetermined
navigation path. MoCaInfo’s positioning system is more flexible, as it deter-
mines positions independent from navigation paths. Therefore it can be used
for navigation and for location-based information too.

In conclusion, the additional usage of relative positioning improved the accu-
racy significantly, up to an average error of 1.67 meters. This corresponds an
improvement of more than 43%. The graphical comparison of the estimated
positions in figure 19.2 19.3 and 20.1 is even more impressive.

Due to the concept of the dead reckoning system, which reckons the absolute
position with the last estimated position and an adaptive factor, multiple lo-
cation sources were quite easy to add. As a result, the dead reckoning system
is able to use the best available location source. Currently, those absolute po-
sitions are provided by NFC, Wi-Fi or GPS. A detailed evaluation of the dead
reckoning system using multiple location sources remains to be done.

132

20.3 Indoor and Outdoor Positioning

Figure 20.1.: Position Estimation with Dead Reckoning (Red) and Wi-Fi-Only
(Blue). Green Line Shows the Actual Walked Track

20.3.1. Step Detection

The first examined step detection approach revealed an error of 25%. About
10% of those errors were caused by phantom steps. Phantom steps are false
positive step detections, which means that a step has been detected by the
algorithm but the user wasn’t walking at all. Furthermore, about 15% of the
steps have not been detected.

To reduce these errors, a signal preparation algorithm, which is executed be-
fore the actual step detection, has been implemented. This signal preparation
is adapted from the Pan-Tompkins[65] method. By means of this algorithm,
phantom steps could be reduced by one third. Furthermore, the amount of
undetected steps has been improved from 14.5% to 7.4%.

Nevertheless, it should be mentioned that the current step detection strongly
depends on the user, who has to hold the smart phone steadily. If the user
moves the hand that holds the smart phone, steps will be detected, even if the
user is not walking at all. This is a general problem when working with smart
phone’s acceleration measurements.

20.3.2. Compass

The thesis shows that a reliable compass, which does not get confused by
magnetic interference, is not easy to achieve. The first approach, to filter the
incoming magnetic and gravity data, did not yield good results. Magnetic
interference still had a strong impact on the calculated azimuth.

133

20. Conclusions

The approach to fuse the detected rotational movements, gathered by the
gyroscope, with the magnetic azimuth was way better. Magnetic interference
still impacts the azimuth estimation, but the maximum deviation between the
actual and the estimated azimuth is significantly lower. As a disadvantage the
magnetic interference influences the azimuth estimation for a longer period of
time.

134

21. Future Work

The following chapter describes ideas and possible approaches to further im-
prove the different components. It starts with some thoughts about improve-
ments of the mobile application. The following section deals with refinements
for the navigation component. The chapter ends with possibilities to enhance
indoor and outdoor positioning, followed by some final words.

21.1. Mobile Application

The current mobile application offers any necessary feature for a basic location-
based information system, but there are still some features which might im-
prove the user experience.

21.1.1. Global User Profiles

The first thing, which is actually less of a mobile application feature but a
feature which affects multiple components, are global user profiles. Currently,
the user can bookmark certain POIs or channels, but those settings are only
stored at the mobile device. If the user has multiple devices or buys a new one,
settings are not synchronized.

21.1.2. Notifications

Another currently missing feature is an active notification system. Such a sys-
tem notifies the user when certain information is changed or added, e.g. if
a lecture has been canceled. An implementation for this could be based on
Google’s Cloud Messaging for Android, also known as GCM[74]. GCM is a

135

21. Future Work

push message service, which enables developers to send tiny messages to an
Android application, whereas the message itself only contains a payload of
maximum 4kb. Therefore, those GCM messages could be used to trigger the
application to synchronize its data and notify the user if important events
occur.

21.1.3. Machine Manuals

Niehaus[13, p. 44] proposed an interesting feature to assist visually impaired
people in using the different types of automates disposed throughout the cam-
pus. This includes beverage vending machines, copying machines, automatic
teller machines, etc. Most of them are barely accessible for visually impaired
users. Therefore, a digital user manual for those machines would remarkably
increase the independence of visually impaired users.

21.2. Navigation

The current navigation component has two major parts which remain room
for further improvement. The first part is the visualization of floor plans. Cur-
rently, only shapes of the rooms are drawn. Doors are visualized as gaps in
the wall. A more detailed visualization would be desirable. For instance, doors
should be drawn including the opening direction and stairways should be rec-
ognizable as such. This changes are relatively easy to implement, as they can
be realized by using Google Maps’ polylines.

21.2.1. Navigation Instructions

The second part which could be improved are navigation instructions. The
current navigation instructions are really basic and only a few navigation in-
structions, which might ease the orientation for visually impaired people, are
implemented. The still missing instructions are those which are not directly
connected to the way the user currently walks. This includes obstacles which
are near the way but not directly at it, such as chairs, desks or plants. But

136

21.3 Indoor and Outdoor Positioning

also other guidance notes like curbsides or drains would help visually impaired
users to orientate.

Furthermore, the current navigation component lacks of an orientation assis-
tant. Such an assistant is especially needed to help a visually impaired user
finding the initial orientation, after requesting a navigation. Niehaus describes
different approaches addressing that problem[13, p. 61ff]. One of it which seems
to be reasonable is the clock model. Instead of having imprecise commands like
turn sharp left, the clock model would say turn to 7 o’clock. This technique is
widely known because it is part of blind people’s rehabilitation and education
program.

right

forward

left

turn around

sharp rightsharp left

slightly rightslightly left

Figure 21.1.: Clock Model for Orientation

21.3. Indoor and Outdoor Positioning

Although, the current indoor and outdoor positioning system works reasonably
well, there are still a lot of ideas and concepts, which might further improve
the reliability and accuracy.

21.3.1. Adaptive Location Source Weighting

Section 19.1 and 19.2 show the influence of different weighting of available
location sources. It can be noticed that a static weighting leads to less accurate
positions than an adaptive weighting.

137

21. Future Work

The currently used approach, for estimating the weighting, is pretty simple.
It just uses the amount of Wi-Fi access points, regarded for the estimated
Wi-Fi position, or the GPS accuracy. Especially for the adaptive weighting
of Wi-Fi positions, there are more sophisticated approaches worth consider-
ing for an adaptive weighting. A starting point for further improvement may
be the research by Lemelson et al. who developed different error estimation
algorithms, applicable for Wi-Fi fingerprinting[42]. Together with those more
sophisticated error estimation algorithms, it should be possible to choose a
better Wi-Fi weighting.

21.3.2. Location-Aware Positioning

Another possibility to further improve the positioning accuracy is to consider
the current location’s meta information for positioning. If a user is walking
down a corridor, and there is no door nearby, it is highly probable that his
next position is also at the corridor and not in a nearby room.

Following this pattern, it makes sense to consider a lot of additional predic-
tions. E.g. it is more likely that the upcoming position is in front of the last
position and not behind it because changes of direction during a walk should
be relatively rare. Furthermore, the user’s position should never jump through
walls, if there is no door nearby.

If the user is in navigation mode, those predictions can be really strict because
it can be assumed that the user follows the way computed and shown by the
navigation component.

21.3.3. Bluetooth Low Energy

For future indoor positioning, the usage of Bluetooth instead or in combination
with Wi-Fi, may come in handy. Bluetooth is a wireless technology, similar to
Wi-Fi, whereas it is designed to enable data exchanges over short distances
between two devices. Bluetooth Low Energy is a power saving specification,
which enables manufactures to build devices with a battery lifetime of several
years or even self-powered devices with solar panels. With the adaption of

138

21.3 Indoor and Outdoor Positioning

Bluetooth Low Energy into the Bluetooth 4.0 standard, more and more devices
support Bluetooth Low Energy[75]. Thanks to this development, RSSI-based
positioning with Bluetooth is a promising option for future indoor positioning
systems.

Figure 21.2.: Gimbal Proximity Beacon Series 10 (left) and Series 20 by Qual-
comm[76]

Apple Inc. even proposed an indoor positioning specification based on Blue-
tooth 4.0 recently. It is called iBeacon[34]. Besides Apple’s mobile operating
system iOS, Android is also supported by iBeacon. Products implementing
iBeacon are currently pretty rare, but many companies have announced prod-
ucts for the near future. Many of those companies are startups, who have been
founded to develop and sell iBeacon hardware, but also old-established firms
like Qualcomm announced products. Their Gimbal Proximity Beacon - Series
20 achieves a battery life of one to three years with four standard AA alkaline
batteries. Depending on the purchasing volume, series 20 beacons are available
for as little as $10 each[76],[77].

An advantage of many iBeacon devices against Wi-Fi access points is that they
are battery-powered. This facilitates the equal distribution of iBeacon senders
inside a building. Furthermore, the price of $10 is just a fraction of the cost of
a Wi-Fi access point. As a consequence, iBeacon devices can be placed closer
to each other which should result in a better positioning accuracy.

139

21. Future Work

21.3.4. Step Detection

The current step detection algorithm works pretty reliable if the user holds
the device steady. Movements of the smart phone which are not related to a
step, lead ineluctably to false positive step detections.

It might be possible to reduce those false positive detections if the algorithm
also observes the shape of the accelerometer signal, instead of just looking
for changes in the signal. Thus, at least smart phone movements which differ
significantly from a step movement could be detected and ignored for step
detection.

21.3.4.1. Stride Detection

Another topic, which is completely ignored in this thesis is stride detection.
The current implementation just uses a static stride of 70 cm, which has been
estimated empirically. This solution produces large errors, especially for people
significantly taller or smaller than the average.

Furthermore, test walks with a visually impaired person revealed that he makes
pretty tiny steps when he is expecting an obstacle or is unfamiliar with the
area. Even though a walk with one tester with low vision is not representative,
it can be assumed that this is a general behavior of most visually impaired
people.

Kim et al. are describing an accelerometer-based stride detection algorithm
with a pretty impressive accuracy of about 96%[63]. Unfortunately, this al-
gorithm cannot be adapted because Kim et al. are using a foot-mounted ac-
celerometer. This sensor enables them to measure the time when the foot
swings back and forth. But they also noticed a relation between the absolute
gravity force and the stride length. Maybe this is an approach which can be
followed for stride detection with an Android device.

Another possibility to improve stride detection could be a self-adjusting sys-
tem. The system could try to adjust the stride detection, by using the distance
between absolute locations and divide them by the steps walked in between.

140

21.3.4.1 Stride Detection

A similar approach has been followed by Ladetto who also considers the step
frequency for stride estimation[78].

21.3.5. Compass

The sensors in modern smart phones are accurate enough to achieve a good az-
imuth estimation, using the magnetometer and the accelerometer. Fused with
the gyroscope, the azimuth is less vulnerable against magnetic interference. To
further improve those results, the ratio between magnetic azimuth and the rel-
ative gyroscope rotation should be adaptive. Currently this is a fixed value. As
a result, magnetic interference still effects the azimuth estimation. An adaptive
approach would detect magnetic interference and ignore the magnetic azimuth
completely, as long as the interference occurs.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4
·104

50

100

150

magnetic disturbance

time (ms)

m
ag
ne
tic

fie
ld

(µ
T
)

Figure 21.3.: Magnetic Field with Artificial Magnetic Interference

An approach worth examining, is the monitoring of changes in the magnetic
field’s strength. If the magnetic field’s strength changes, it can be assumed
that there is some magnetic interference. As a result the magnetic azimuth
should be ignored for a certain period of time or till the field’s strength is in
an expected value range again. The difficulty in this case probably will be to
differ between usual and artificial changes of the magnetic field. Figure 21.3
shows the magnetic field, captured during the test described in section 18.2.4
where a magnet has been placed on the smart phone after about 20 seconds. As
the figure illustrates, the magnetic field changes pretty strongly. A detection
of such changes should be easy.

Looking at the magnetic field in figure 21.4, which has been captured during
a walk in building A20, the changes of the magnetic field are less significant.

141

21. Future Work

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
·104

30

40

50

abnormal azimuth estimation

time (ms)

m
ag
ne
tic

fie
ld

(µ
T
)

Figure 21.4.: Magnetic Field During a Walk in a Building

The according azimuth is shown in figure 18.15. The magnetic field is pretty
unstable during the whole measurement, whereas the only noticeable impact on
the resulting azimuth was during second 4 and 8. Therefore, it is a challenging
task to distinguish interfering magnetic fields from the usual variations which
may appear during a walk.

142

22. Final Words

This thesis, as well as other researches, shows that indoor and outdoor naviga-
tion and positioning is still a challenging topic. Even though, the capabilities
of smart phones have been improved dramatically over the past few years, the
approaches used for indoor positioning are still based on thoughts made 14
years ago[39], a time were smart phones did not even exist.

Also interesting is the fact that there seems to be little effort in developing a
reliable smart phone compass for indoor purposes. An approach, which weights
gyroscope and magnetic compass, based on assumed magnetic interference,
seems to be obvious. Nevertheless, no research paper or product has been
found which claims to use such a method.

In the near future, advancements in indoor positioning are expectable. Thanks
to Apple’s iBeacon specification, accurate indoor positioning will probably find
its way out of the university environment into real-world applications. On the
basis of cheap, standardized, battery-powered iBeacon senders, accurate indoor
positioning systems are possible for the masses. Sooner or later, iBeacon is
likely to be used in many public places such as shopping centers, train stations
or airports. The main usage will probably be location-aware advertising, but
this infrastructure also enables more useful usages, like indoor navigation.

With spread of an indoor positioning system like iBeacon, existing indoor maps
and navigation will likely be improved too. Nevertheless, the project described
in this thesis will still have eligibility as it examines a perspective which is
usually ignored: The perspective of visually impaired users.

143

A. Bibliography

[1] Dean Leffingwell. Agile Software Requirements: Lean Requirements Prac-
tices for Teams, Programs, and the Enterprise. Pearson Education, 2010.
isbn: 978-0321635846.

[2] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley, 2004. isbn: 0-321-12521-5.

[3] Martin Fowler. Patterns of Enterprise Application Architecture. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002. isbn:
0321127420.

[4] Frank Buschmann et al. Pattern-Oriented Software Architecture, Volume
1: A System of Patterns. Chichester, UK: Wiley, 1996. isbn: 978-0-471-
95869-7.

[5] Gartner, Inc. Market Share Analysis: Mobile Phones, Worldwide, 4Q13
and 2013 Summary. accessed: February, 23rd 2013. url: https://www.
gartner.com/newsroom/id/2665715.

[6] Wiebe Elsinga. Will HTML5 kill native apps? accessed: February, 23rd
2014. Oct. 2011. url: http://wiebe-elsinga.com/blog/will-html5-
kill-native-apps/.

[7] Patrick Winter. “Entwicklung eines Campusinformationssystems”. Bach-
elor Thesis. 35390 Gießen, Germany: Technische Hochschule Mittelhessen,
Aug. 2011.

[8] SQLite. SQLite Frequently Asked Questions. accessed: July, 25th 2013.
url: http://www.sqlite.org/faq.html.

[9] Yifeng Chen. “Programmable Verifiers in Imperative Programming”.
In: Unifying Theories of Programming: Third International Symposium.
2010.

i

https://www.gartner.com/newsroom/id/2665715
https://www.gartner.com/newsroom/id/2665715
http://wiebe-elsinga.com/blog/will-html5-kill-native-apps/
http://wiebe-elsinga.com/blog/will-html5-kill-native-apps/
http://www.sqlite.org/faq.html

A. Bibliography

[10] Google Inc. Accessibility. accessed: July, 26th 2013. url: http://developer.
android.com/design/patterns/accessibility.html.

[11] Molly Follette Story, James L. Mueller, and Ronald L. Mace. The Uni-
versal Design File - Designing for People of All Ages and Abilities. NC
State University, The Center for Universal Design, 1998.

[12] Javier Sánchez Sierra and Joaquín Selva Roca de Togores. “Designing
Mobile Apps for Visually Impaired and Blind Users”. In: ACHI 2012 :
The Fifth International Conference on Advances in Computer-Human
Interactions. 2012. isbn: 978-1-61208-177-9.

[13] Christoph Niehaus. “Konzeption eines für blinde und sehbehinderte Nutzer
geeigneten mobilen Informations- und Navigationssytems”. Diploma The-
sis. 35390 Gießen, Germany: Technische Hochschule Mittelhessen, Feb.
2012.

[14] Google Inc. Making Applications Accessible. accessed: July, 29nd 2013.
url: http://developer.android.com/guide/topics/ui/accessibility/
apps.html.

[15] Sonia Sharma. Designing Accessible Android Applications. presented at
Droidcon, Berlin. 2013.

[16] Artur Klos. “Near Field Communication und dessen Einsatz im mobilen
Campusinformationssystem”. Bachelor Thesis. 35390 Gießen, Germany:
Technische Hochschule Mittelhessen, Aug. 2011.

[17] Erich Gamma et al.Design Patterns: Elements of Reusable Object-oriented
Software. Addison-Wesley Longman Publishing Co. Inc., 1995.

[18] Google Inc. Patterns. accessed: July, 29nd 2013. url: http://developer.
android.com/design/patterns/index.html.

[19] Juhani Lehtimaki. Smashing Android UI. Smashing Magazine Book Se-
ries. John Wiley & Sons, Inc., 2012. isbn: 9781118387337.

[20] Google Inc. Navigation Drawer. accessed: February, 2nd 2014. url: http:
//developer.android.com/guide/topics/connectivity/nfc/nfc.
html.

[21] Statistisches Bundesamt. Statistik der schwerbehinderten Menschen 2011.
Statistisches Bundesamt, Wiesbaden, 2013.

ii

http://developer.android.com/design/patterns/accessibility.html
http://developer.android.com/design/patterns/accessibility.html
http://developer.android.com/guide/topics/ui/accessibility/apps.html
http://developer.android.com/guide/topics/ui/accessibility/apps.html
http://developer.android.com/design/patterns/index.html
http://developer.android.com/design/patterns/index.html
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html

[22] Google Inc. What is indoor Google Maps? accessed: November, 26th
2013. 2013. url: https://maps.google.com/help/maps/indoormaps/.

[23] OpenStreetMap Foundation. OpenStreetMap stats report. accessed: Jan-
uary, 28th 2013. url: http://www.openstreetmap.org/stats/data_
stats.html.

[24] OpenStreetMap Foundation. IndoorOSM. accessed: January, 28th 2013.
url: http://wiki.openstreetmap.org/wiki/IndoorOSM.

[25] OpenStreetMap Foundation. Elements. accessed: January, 28th 2013.
url: http://wiki.openstreetmap.org/wiki/Elements.

[26] OpenStreetMap Foundation. JOSM. accessed: January, 28th 2013. url:
http://josm.openstreetmap.de/.

[27] Per Enge and Pratap Misra. “Special Issue on Global Positioning Sys-
tem”. In: Proceedings of the IEEE, Vol. 87. 1999.

[28] Federal Aviation Administration. Civil Report Card On GPS Perfor-
mance August 2013. Aug. 2013.

[29] GSM Association and A.T. Kearney. European Mobile Industry Obser-
vatory 2011. Nov. 2011.

[30] Tomislav Kos, Mislav Grgic, and Gordan Sisul. “Mobile User Positioning
in GSM/UMTS Cellular Networks”. In: 48th International Symposium
ELMAR-2006, Zadar, Croatia. June 2006.

[31] Mohamed Ibrahim and Moustafa Youssef. “CellSense: A Probabilistic
RSSI-based GSM Positioning System”. In: Proceedings of the Global
Communications Conference. 2010.

[32] Wi-Fi Alliance. The Wi-Fi Brand. accessed: December, 23rd 2013. url:
http://www.wi-fi.org/about/wi-fi-brand.

[33] Mozilla Foundation. Mozilla Location Service - Overview. accessed: De-
cember, 23rd 2013. url: https://location.services.mozilla.com/.

[34] Apple Inc. iOS 7: Understanding Location Services. accessed: December,
23rd 2013. 2013. url: http://support.apple.com/kb/HT5594.

[35] Cisco Systems, Inc. Wi-Fi Location-Based Services 4.1 Design Guide.
May 2008.

iii

https://maps.google.com/help/maps/indoormaps/
http://www.openstreetmap.org/stats/data_stats.html
http://www.openstreetmap.org/stats/data_stats.html
http://wiki.openstreetmap.org/wiki/IndoorOSM
http://wiki.openstreetmap.org/wiki/Elements
http://josm.openstreetmap.de/
http://www.wi-fi.org/about/wi-fi-brand
https://location.services.mozilla.com/
http://support.apple.com/kb/HT5594

A. Bibliography

[36] Kensaku Kawauchi, Takashi Miyaki, and Jun Rekimoto. “Directional
Beaconing: A Robust WiFi Positioning Method Using Angle-of-Emission
Information”. In: Location and Context Awareness, 4th International
Symposium, LoCA 2009. 2009.

[37] Marc Ciurana, David López, and Francisco Barceló-Arroyo. “SofTOA:
Software Ranging for TOA-Based Positioning of WLAN Terminals”. In:
Location and Context Awareness, 4th International Symposium, LoCA
2009. 2009.

[38] Moustafa Youssef and Ashok Agrawala. “The Horus WLAN Location
Determination System”. In: Proceedings of the 3rd International Confer-
ence on Mobile Systems, Applications, and Services. MobiSys ’05. 2005,
pp. 205–218.

[39] Paramvir Bahl and Venkata N. Padmanabhan. RADAR: An In-Building
RF-based User Location and Tracking System. Tech. rep. Microsoft Re-
search, 2000.

[40] Yongguang Chen and Hisashi Kobayashi. Signal Strength Based Indoor
Geolocation. Tech. rep. Princeton University, 2002.

[41] Ville Honkavirta, Tommi Peraläand Robert Ali-Löytty, and Robert Piché.
“A Comparative Survey of WLAN Location Fingerprinting Methods”.
In: Processdings of the 6th Workgroup on Positioning, Navigation and
Communication 2009. 2009.

[42] Hendrik Lemelson et al. “Error Estimation for Indoor 802.11 Location
Fingerprinting”. In: Location and Context Awareness. 2009.

[43] Rainer Mautz and Sebastian Tilch. “Survey of Optical Indoor Positioning
Systems”. MA thesis. ETH Zürich, 2011.

[44] Harlan Hile and Gaetano Borriello. “Positioning and Orientation in In-
door Environments Using Camera Phones”. In: 28.4 (Aug. 2008), pp. 32–
39.

[45] Sebastian Tilch. “CLIPS - Development of a Novel Camera and Laser-
Based Indoor Positioning System”. PhD thesis. ETH Zürich, 2012.

[46] Peter Brída. “Location Technologies For GSM”. In: TRANSCOM. 2003,
pp. 119–122.

iv

[47] Winfried Böhm. Handbuch der Navigation. Begriffe, Formeln, Verfahren,
Schemata. Busse-Seewald Verlag, 1978, p. 246.

[48] Anthony Mandow et al. “Experimental kinematics for wheeled skid-steer
mobile robots”. In: Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems San Diego, CA, USA, Oct
29 - Nov 2, 2007. 2007.

[49] Andrea Bonarini, Matteo Matteucci, and Marcello Restelli. “A Kinematic-
independent Dead-reckoning Sensor for Indoor Mobile Robotics”. In:
Proceedings of 2004 IEEElRSJ International Conference on Intelligent
Robots and Systems. Politecnico di Milano. 2004.

[50] Jó Ágila Bitsch Link et al. “FootPath: Accurate map-based indoor navi-
gation using smartphones”. In: Indoor Positioning and Indoor Navigation
(IPIN), 2011 International Conference on. 2011.

[51] Stéphane Beauregard and Harald Haas. “Pedestrian Dead Reckoning: A
Basis for Personal Positioning”. In: Proceedings of the 3rd Workshop on
Positioning, Navigation and Communication (WPNC’06). 2006.

[52] Christopher Drane, Malcolm Macnaughtan, and Craig Scott. “Position-
ing GSM Telephones”. In: IEEE Communications Magazine. Apr. 1998.

[53] Maximilian von Piechowski. “Evaluation von Technologien und Verfahren
zur hybriden Indoor-Lokalisierung für Android basierte mobile Geräte”.
Bachelor Thesis. 35390 Gießen, Germany: Technische Hochschule Mit-
telhessen, Mar. 2012.

[54] Verwaltungsgericht Köln. Urteil vom 17. Juli 2013 - Az. 21 K 2589/12.
July 2013.

[55] Google Inc. NFC Basics. accessed: July, 22nd 2013. url: http : / /
developer.android.com/guide/topics/connectivity/nfc/nfc.
html.

[56] Thomas King et al. “COMPASS: A Probabilistic Indoor Positioning Sys-
tem Based on 802.11 and Digital Compasses”. In: Proc. of the First
ACM International Workshop on Wireless Network Testbeds, Experimen-
tal Evaluation and Characterization (WiNTECH). 2006.

v

http://developer.android.com/guide/topics/connectivity/nfc/nfc.html
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html

A. Bibliography

[57] Antonio del Corte-Valiente, Jose Manuel Gómez-Pulido, and Oscar Gutiérrez-
Blanco. “Efficient Techniques and Algorithms for Improving Indoor Lo-
calization Precision on WLAN Networks Applications”. In: Int. J. Com-
munications, Network and System Sciences. 2009.

[58] Julia Letchner, Dieter Fox, and Anthony LaMarca. “Large-Scale Local-
ization from Wireless Signal Strength”. In: American Association for
Artificial Intelligence. 2005.

[59] Anja Bekkelien. “Bluetooth Indoor Positioning”. MA thesis. University
of Geneva, 2012.

[60] Moustafa Amin Abdel Azim Yousief Abdel Rehim. “HORUS: A WLAN-
BASED INDOOR LOCATION DETERMINATION SYSTEM”. PhD
thesis. University of Maryland, 2004.

[61] Douglas M. Hawkins. “The Problem of Overfitting”. In: J. Chem. Inf.
Comput. Sci. 44 (2004), pp. 1–12.

[62] Daniel T. Larose. Discovering Knowledge in Data: An Introduction to
Data Mining. John Wiley & Sons, 2005, pp. 96–106.

[63] Jeong Won Kim et al. “A Step, Stride and Heading Determination for
the Pedestrian Navigation System”. In: Journal of Global Positioning
Systems 3 (2004), pp. 273–279.

[64] Oliver J. Woodman. “Pedestrian localisation for indoor environments”.
PhD thesis. University of Cambridge, 2010.

[65] H. Ying et al. “Automatic Step Detection in the Accelerometer Signal”.
In: 4th International Workshop on Wearable and Implantable Body Sen-
sor Networks (BSN 2007). 2007.

[66] Ubejd Shala and Angel Rodriguez. Indoor Positioning using Sensor-
fusion in Android Devices. Sept. 2011.

[67] Y Sun, M P Wu, and X P Hu. “A NewSolution Algorithm of Magnetic
Azimuth”. In: Journal of Physics: Conference Series 48 (2006), pp. 111–
116.

[68] Google Inc. SensorEvent. accessed: July, 29nd 2013. url: https : / /
developer.android.com/reference/android/hardware/SensorEvent.
html.

vi

https://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/SensorEvent.html

[69] Mary Natrella. NIST/SEMATECH e-Handbook of Statistical Methods.
Ed. by Charline Cleraux et al. NIST/SEMATECH, Oct. 2013. url:
http://www.itl.nist.gov/div898/handbook/index.htm.

[70] Shahid Ayub, Alireza Bahraminisaab, and Bahram Honary. “A Sensor
Fusion Method for Smart phone Orientation Estimation”. In: 13th An-
nual Post Graduate Symposium on the Convergence of Telecommunica-
tions, Networking and Broadcasting. 2012.

[71] Paul Lawitzki. “Application of Dynamic Binaural Signals in Acoustic
Games”. MA thesis. Stuttgart Media University, Mar. 2012.

[72] Jeffrey R. Blum, Daniel G. Greencorn, and Jeremy R. Cooperstock.
“Smartphone sensor reliability for augmented reality applications”. MA
thesis. McGill University, Montréal, Québec, Canada, 2011.

[73] Yasutaka Fuke and Eric Krotkov. “Dead Reckoning for a Lunar Rover on
Uneven Terrain”. In: Proceedings of the 1996 IEEE International Con-
ference on Robotics and Automation Minneapolis, Minnesota. Apr. 1996,
pp. 411–413.

[74] Google Inc. Google Cloud Messaging for Android. accessed: January, 29th
2013. url: https://developer.android.com/google/gcm/index.
html.

[75] Bluetooth SIG, Inc. Bluetooth Smart Technology: Powering the Inter-
net of Things. accessed: January, 31st 2014. 2013. url: http://www.
bluetooth.com/Pages/Bluetooth-Smart.aspx.

[76] Qualcomm Inc. Gimbal: Context Awareness and Proximity for Highly
Relevant Consumer Engagements. accessed: January, 31st 2014. 2013.
url: http://www.qualcomm.com/solutions/gimbal.

[77] Qualcomm Inc. Qualcomm Announces Availability of its Gimbal Proxim-
ity Beacons to Enable Customer Engagement Based on Micro Location.
accessed: January, 31st 2014. Dec. 2013. url: http://www.qualcomm.
com/solutions/gimbal.

[78] Quentin Ladetto. “On foot navigation: continuous step calibration using
both complementary recursive prediction and adaptive Kalman filter-
ing”. In: Proceedings of the 13th International Technical Meeting of the

vii

http://www.itl.nist.gov/div898/handbook/index.htm
https://developer.android.com/google/gcm/index.html
https://developer.android.com/google/gcm/index.html
http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx
http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx
http://www.qualcomm.com/solutions/gimbal
http://www.qualcomm.com/solutions/gimbal
http://www.qualcomm.com/solutions/gimbal

A. Bibliography

Satellite Division of The Institute of Navigation. ION GPS 2000. 2000,
pp. 1735–1740.

viii

B. Glossary

Activity (Android Term) is a single, focused thing that the user in an Android
application can do. Usually Activity classes take care of creating a win-
dow which holds the user interface. Therefore, the term Activity is often
used equivalent to graphical user interface .

Activity Chooser Android Term enables the user to choose an Activity which
process a given Intent. Will be launched if the description of an Intent
fits to multiple Activities .

Android is an operating system based on Linux, targeting mobile, touchscreen
devices like smart phones or tablet computers. Initially developed by the
Android, Inc. and bought by Google Inc. in 2005 .

Android Support Library is a set of code libraries that provide features from
newer Android API Levels to older API Levels. Due to the library, devel-
opers are able to use features like ActionBar which have been introduced
in Android 3.0 on devices running Android 2.1 .

API level Android Term describes the version of Android’s official application
programming interface. Current API level of Android is 19, as of March
11th, 2014. API Level 19 is provided by Android 4.4

Beacon is a management frame in the IEEE 802.11 Wi-Fi specification. It
is sent periodically to announce the presence of a Wi-Fi access point.
It contains information about the SSID, BSSID and other connectivity
information. It is also used to determine the received signal strength
indication (RSSI). .

BSSID short form of basic service set identification. It is a unique identifier
of a wireless access point, equivalent to its MAC address.

ix

Glossary

dp Android Term density-based pixel. A unit to describe UI elements in An-
droid. It is density-based which means that it scales with the density of
the screen. .

hybrid application a web-based mobile application which has been packaged
to a native application by using the native plattform’s SDK. The actual
application is written with web technologies, usually HTML5, JavaScript
and CSS. Third party frameworks like PhoneGap allow a hybrid appli-
cation to access native SDK features via JavaScript.

Intent Android Term an abstract description of an operation to be performed
in Android. Often used to start an Activity or communicate between
different components of an Android application or even between different
Android applications .

MySQL is a widely used open-source relational database management system.
Today it is owned by Oracle Corporation .

Push Message describes messages which are pushed to a device. This means
that the publisher of the message initiates the communication to the
client. It is the opposite to pull messages, where the request for trans-
mission of information is initiated by the receiver. .

REST API REST is the short form for representational state transfer. It was
initially described in the context of HTTP. The main principle of REST
are stateless messages between client and server. Therefore, any message
has to send a representation of the current state to enable the receiver to
process the message correctly. Today’s REST APIs are usually adressable
via HTTP and use JSON or XML for data exchange.

RFID short form of radio-frequency identification. Describes the wireless non-
contact use of radio-frequency electromagnetic fields to transfer data.
The data usually is used to automatically identify or track objects which
have been marked with an RFID tag .

x

Glossary

self-voicing applications provide an aural interface without the need of a
screen reader application. .

SQLite is a relational database management system. In contrast to other
database management systems, it does not run in a separate process.
Therefore, it is used embedded in applications. .

SSID shortform of service set identifier. It is a 1 to 32 byte string to describe
a wireless access point in a human-readable form.. .

UMBmark is the short form for University of Michigan Benchmark. It is a
method to measure and compare robot positioning approaches.

xi

	Project Overview
	Introduction
	Aim of the Thesis
	Structure of the Thesis

	Requirements
	Stakeholders
	Functional Requirements
	Non-Functional Requirements

	Architecture
	Component Overview
	Logical Architecture
	Data Model

	Content Model and Managment
	Content Parts
	Content Management System

	Mobile Application
	Introduction to the Mobile Application
	Incremental Data Synchronization
	Database Dump
	Incremental Synchronization

	User Interface
	User Interfaces for Visually Impaired People
	Graphical User Interface
	User Interface Structure
	Textual User Interface
	Interim Conclusion

	Navigation
	Introduction to the Navigation System
	Existing Mobile Navigation Systems
	Google Maps
	OpenStreetMap

	OpenStreetMap meets Google Maps
	Map File
	Reading Data: SpatiaLite
	Pathfinding: SpatiaLite
	Data Mapping: MoCaInfo and SpatiaLite

	Navigation Instructions
	Additional Instructions for Visually Impaired Users

	Navigation System's User Interface
	Navigation System's Software Architecture

	Indoor and Outdoor Positioning
	Introduction to Indoor and Outdoor Positioning
	Absolute Positioning
	Global Positioning System
	GSM
	Wi-Fi
	Optical
	Near Field Communication
	Roundup

	Relative Positioning
	Robot's Positioning
	Pedestrian Positioning

	Absolute Positioning in MoCaInfo
	GSM
	Optical
	Global Positioning System
	Near Field Communication
	Wi-Fi

	Relative Positioning in MoCaInfo
	Step Detection
	Compass

	Dead Reckoning
	Weighting of Location Sources
	Adaptive Weighting
	Multiple Absolute Location Sources

	Conclusions and Future Work
	Conclusions
	Mobile Application
	Navigation
	Indoor and Outdoor Positioning

	Future Work
	Mobile Application
	Navigation
	Indoor and Outdoor Positioning

	Final Words
	Bibliography
	Glossary

