Lösungen der Übungsaufgaben aus Kapitel 10.6 (Skript S. 114f)

 Stichworte: spezielle Bahnen anstelle von beliebigen Bahnen ⇒ diskrete Energiezustände, strahlungslose Kreisbewegung der Elektronen um den Kern, Lichtemission oder -absorption bei Elektronensprüngen; Modell erklärt Linienspektren (Skript S. 12 – 17, Kap. 2.3)

2.

O ²⁻ , F ⁻ , Na ⁺ :	AI:		C:	
	3p ← — — 3s ↔			
2p ↑↓ ↑↓ ↑↓ 2s ↑↓	2p ↑↓ ↑↓ ↑↓ 2s ↑↓		2p ← ← — 2s ↔	
1s ↑↓	1s ↑↓		1s ↑↓	
1s ² 2s ² 2p ⁶	1s ² 2s ² 2p ⁶ 3s	s ² 3p ¹	1s ² 2s ² 2p ²	
Si:	S ²⁻ :		Mn ²⁺ :	
3p ↑ ↑ — 3s ↑↓	3p ↑↓ ↑↓ ↑↓ 3s ↑↓		3d ↑ ↑ ↑ 4s − 3p ↑ ↑ ↑ 3s ↑	^ ^
2p ↑↓ ↑↓ ↑↓	2p ↑↓ ↑↓ ↑↓		2p ↑↓ ↑↓ ↑↓	Hinweis:
2s ↑↓	2s ↑↓			leere, halb- oder vollbesetzte
1s ↑↓	1s ↑↓		1s ↑↓	d-Orbitale sind besonders stabil.
1s ² 2s ² 2p ⁶ 3s ² 3p ²	1s ² 2s ² 2p ⁶ 3s	s ² 3p ⁶	1s ² 2s ² 2p ⁶ 3	3s ² 3p ⁶ 4s ⁰ 3d ⁵
Zn:		Ni:		
3d ↑↓ ↑↓ ↑↓ ↑↓ 4s ↑↓ 3p ↑↓ ↑↓ ↑↓ 3s ↑↓	3d			
2p ↑↓ ↑↓ ↑↓ 2s ↑↓	2p ↑↓ ↑↓ ↑↓ 2s ↑↓			
1s ↑↓	1s ↑↓			
1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3	3d ¹⁰	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁸		

3.

Elementsymbol	Z	Α	Protonen	Neutronen	Elektronen
Ca	20	40	20	20	20
Cs	55	133	55	78	55
Fe ³⁺	26	56	26	30	23
Ag ⁺	47	114	47	67	46
TI	81	169	81	88	81
Ar	18	40	18	22	18
S ²⁻	16	34	16	18	18

- 4. $M = 69 u \cdot 0,601 + 71 u \cdot 0,399 = 69,8 u \Rightarrow Gallium (Ga)$
- 5. α -Strahlung: Heliumkerne (${}_{2}^{4}$ He ${}^{2+}$)

 β^- -Strahlung: Elektronen ($^{\circ}_{-1}$ e)

 β^+ -Strahlung: Positronen ($^0_{+1}$ e)

γ-Strahlung: elektromagnetische "Wellenpakete", Photonen, γ-Quanten

Strahlung radioaktiver Stoffe entsteht im Atomkern.

6. <u>Isotope</u>: Atome mit gleicher Ordnungszahl (d. h. von derselben Elementsorte) aber unterschiedlichen Neutronen- oder Massenzahlen

Oxidation: Elektronenabgabe

Elektronegativität: Ein Maß für das Bestreben der Atome Elektronen an sich zu binden

Base: Wasserstoffionenemfänger (Protonenakzeptor)

<u>Disproportionierung</u>: Aufspalten einer mittleren Oxidationszahl des Eduktes in eine niedrigere <u>und</u> eine höhere Oxidationszahl auf der Produktseite

amphoter: Der Stoff kann sowohl als Säure als auch als Base reagieren.

- 7. *Stichworte*: Bohr'sches Atommodell; Aufnahme von elektrischer Energie, Abgabe der Energie durch Lichtemission, Linienspektrum, Ergebnis: rötliches Licht (*Skript S. 12 17, Kap. 2.3*)
- 8. Stichworte: (Skript S. 36 51, Kap. 4)

Atombindung:

Ionenbindung: Kationen (+) und Anionen (-) im Kristallgitter,

ungerichtete Bindung, hart und spröde, Schmelze

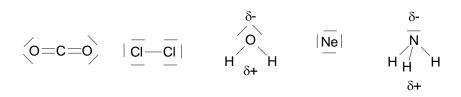
elektrisch leitfähig, meist hohe Schmelz- und Siedepunkte

Elektronenpaarbindung (gerichtet), geringe Bindungskräfte zwischen den Molekülen ⇒ niedrige Schmelz- und

Siedepunkte, weich, meist nicht leitend, eher niedrige

Dichten

(wichtigste Ausnahme: Kohlenstoff in seinen


Modifikationen Diamant und Graphit)

Metallbindung:

Kationen (+) auf festen Kristallgitterplätzen, frei bewegliche Elektronen ("Elektronengas"), ungerichtete Bindung, oft hart aber verformbar, gute elektrische und Wärmeleitfähigkeit, meist hohe Schmelz- und Siedepunkte, eher hohe Dichten

Komplexbindung: Anlagerungsverbindung aus einem zentralen Kation und einer (oft unerwartet großen) Zahl von Liganden mit neg. Ladung oder freien Elektronenpaaren. Das charakteristische Verhalten der Kationen wird durch die Komplexierung gravierend verändert.

9.

10.

◡.									
	KBr	Al ₂ O ₃	Cl ₂	P ₄	Fe	SO ₂	Kr	K ₃ [Fe(CN) ₆]	C8H18
	ionisch	ionisch	kovalent	kovalent	metallisch	kovalent	keine	komplex	kovalent

11.

K <u>Mn</u> O4	<u>P</u> 4O ₁₀	<u>Cl</u> ₂	<u>Cr</u> O₃	H2 <u>O</u> 2	Na2 <u>S</u> O3	Zn(<u>N</u> O ₃) ₂
+7	+5	0	+6	-1	+4	+5

12. $3 \text{ Fe}_2\text{O}_3 + \text{CO} \rightarrow 2 \text{ Fe}_3\text{O}_4 + \text{CO}_2$ $Fe_3O_4 + CO \rightarrow 3 FeO + CO_2$ FeO + CO \rightarrow Fe + CO₂

13. Trennung mittels konz. Natronlauge

 $AI(OH)_3 + NaOH \rightarrow Na[AI(OH)_4]$ $Fe_2O_3 + NaOH \rightarrow ./.$

löslicher Komplex entsteht bleibt schwerlöslich ⇒ abfiltrieren

14. H⁺/H₃O⁺, HSO₄⁻ und SO₄²⁻

15.

Base:	HSO₄⁻	H ₂ O	NO ₃ ⁻	NНз	S ²⁻
Name:	Hydrogen- sulfat	Wasser	Nitrat	Ammoniak	Sulfid
korresp. Säure:	H ₂ SO ₄	H ₃ O ⁺	HNO ₃	NH ₄ ⁺	HS⁻
Name:	Schwefelsäure	Hydronium	Salpetersäure	Ammonium	Hydrogensulfid

16.

Säure:	HCI	HSO₄⁻	H ₂ S	NH ₄ ⁺	H ₂ O
Name:	Salzsäure	Hydrogen- sulfat	Schwefel- wasserstoff	Ammonium	Wasser
korresp. Base:	CI⁻	SO ₄ ²⁻	HS⁻	NНз	OH⁻
Name:	Chlorid	Sulfat	Hydrogensulfid	Ammoniak	Hydroxid

17. $HCI + NH_3 \rightarrow NH_4CI$ $S_1 \quad B_2 \quad S_2 \quad B_1$

18. (Skript S. 86, Kap. 7.6)

NH ₄ CI	Na ₂ CO ₃	Na ₂ S	NaCl
sauer	basisch	basisch	neutral

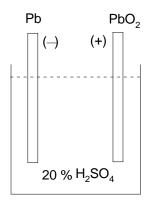
19. Die Entscheidung, ob es sich um eine starke oder schwache Säure oder Base handelt, wird mittels Tabelle 7-1, Skript S. 85 getroffen. Dort finden Sie auch die ggf. benötigten pK₀- und pK₀-Werte. Näheres zur pH-Wert-Berechnung auf S. 82 − 85, Kap. 7.1 − 7.3

0,001 m Phosphorsäure: H_3PO_4 , schwache Säure, pK_a = 1,96 pH = $\frac{1}{2}(1,96 - Ig0,001) = 2,48$

Praktischer Hinweis: Da die zweite und dritte Dissoziationsstufe (H₂PO₄⁻ und HPO₄²⁻) sehr schwach sind, bleiben sie aus Gründen der Vereinfachung unberücksichtigt. Die daraus resultierende Ungenauigkeit ist vertretbar.

0,1 m Ameisensäure: pK₃ = 3,7 ⇒ schwache Säure

$$pH = \frac{1}{2}(3.7 - \lg 0.1) = 2.35$$


0,5 m Kalilauge: KOH, starke Base (OH-)

$$pOH = -lg0,5 = 0,30$$

 $pH = 14 - 0,30 = 13,70$

1 m Ammoniakwasser: NH_3 , schwache Base (!), $pK_b = 4,75$

pOH =
$$\frac{1}{2}$$
(4,75 - lg1) = 2,375
pH = 14 - 2,375 = 11,63

20.

Kathode (Reduktion):

$$4 \text{ H}_3\text{O}^+ + \text{SO}_4^{2-} + \text{PbO}_2 + 2 \text{ e}^- \rightarrow \text{PbSO}_4 + 6 \text{ H}_2\text{O}$$

Anode (Oxidation):

$$Pb + SO_4^{2-} \rightarrow PbSO_4 + 2 e^{-}$$

Gemäß der Reaktionsgleichungen wird beim Entladevorgang Schwefelsäure verbraucht, die Konzentration und die **Dichte** der Elektrolytflüssigkeit sinken.

21. I = 1 A, t = 1 h = 3600 s
$$\Rightarrow$$
 Q = I · t = 1 A · 3600 s = 3600 C Faraday-Konstante F = 96500 C/mol (1-wertig)
$$n = \frac{Q}{F} = \frac{3600 \text{ C}}{96500 \text{ C/mol}} = 0,0373 \text{ mol (1-wertig)}$$

Kupfersulfat (CuSO₄)
$$\Rightarrow$$
 Cu²⁺ \Rightarrow 2-wertig \Rightarrow n(Cu) = $\frac{0.0373}{2}$ = 0.01865 mol

$$M(Cu) = 63.5 \text{ g/mol}$$

$$m(Cu) = n \cdot M = 0.01865 \text{ mol} \cdot 63.5 \text{ g/mol} = 1.18 \text{ g}$$

22. Spannungsreihe: Ordnung der Metalle nach ihrem Reduktionsvermögen; Metalle, die aus Säuren Wasserstoff freisetzen, sind "unedel" (z. B. Magnesium, Zink), sind sie dagegen in Säuren beständig, heißen sie "edel" (z. B. Kupfer, Gold).

Normalpotential: Spannung einer galvanischen Halbzelle gegenüber der Wasserstoffelektrode unter Normalbedingungen (p = 10^5 Pa, T = 298 K, c = 1 mol/l) gemessen

23. Sn + Cu²⁺
$$\rightarrow$$
 Sn²⁺ + Cu
Pt + Cu²⁺ \rightarrow ./.

24. Beschleunigt oder ermöglicht eine Reaktion durch Absenken der Aktivierungsenergie, beeinflusst nicht das chemische Gleichgewicht (Ausbeute) (Skript S. 73f, Kap. 6.4)

$$\begin{aligned} & N_2 + 3H_2 \xrightarrow{Fe} 2NH_3 \\ & 4NH_3 + 5O_2 \xrightarrow{Pt/Rh} 4NO + 6H_2O \\ & 2SO_2 + O_2 \xrightarrow{V_2O_5} 2SO_3 \end{aligned}$$

- 25. a) $H_2SO_4 + 2 NH_3 \rightarrow (NH_4)_2SO_4$
 - b) CuSO₄ + 2 NH₃ + 2 H₂O \rightarrow Cu(OH)₂ \downarrow + (NH₄)₂SO₄ (mit <u>wenig</u> Ammoniakwasser steht die <u>basische</u> Wirkung im Vordergrund: NH₃ + H₂O \rightarrow NH₄⁺ + **OH** $^-$)
 - c) $CuSO_4 + 4 NH_3 \rightarrow [Cu(NH_3)_4]SO_4$ (in Gegenwart von <u>viel</u> Ammoniakwasser steht die komplexierende Wirkung im Vordergrund)
 - d) 4 Al + 3 O₂ \rightarrow 2 Al₂O₃
 - e) FeCl₃ + 3 NaOH \rightarrow Fe(OH)₃ \downarrow + 3 NaCl
 - f) $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$
 - g) $3 \text{ NO}_2 + \text{H}_2\text{O} \rightarrow 2 \text{ HNO}_3 + \text{NO}_3$
 - h) AlCl₃ + 4 NaOH \rightarrow Na[Al(OH)₄] + 3 NaCl
 - i) $Fe_2O_3 + 2 AI \rightarrow AI_2O_3 + 2 Fe$
 - i) Cu + 4 HNO₃ \rightarrow Cu(NO₃)₂ + 2 NO₂ \uparrow + 2 H₂O

k) Mg + 2 HCl
$$\rightarrow$$
 MgCl₂ + H₂ \uparrow

I)
$$Cl_2 + 3 H_2O \rightarrow Cl^- + ClO^- + 2 H_3O^+$$

vereinfacht: $Cl_2 + H_2O \rightarrow HCl + HClO$

m) KOH + HNO₃
$$\rightarrow$$
 KNO₃ + H₂O

n) MgO + 2 HCl
$$\rightarrow$$
 MgCl₂ + H₂O

o)
$$SO_2 + H_2O \rightarrow H_2SO_3$$

p) CaO +
$$H_2O \rightarrow Ca(OH)_2$$

Hinweis: Zu den hier angegebenen Reaktionsgleichungen gibt es manchmal auch alternative Lösungen, vor allem durch Anwendung der Ionenschreibweise.