KLAUSUR

 $\begin{array}{c} {\rm Mathematik~I} \\ {\rm WS~1996/1997} \\ {\rm Studium~Informatik} \end{array}$

Name: Vorname: Matrikel: Semester:

1. Beweisen Sie für alle natürlichen Zahlen n die Gültigkeit der Formel

$$3\sum_{k=1}^{n} (2k-1)^2 = n(4n^2 - 1).$$

- **2.** Gegeben sind die Gerade $g: \overline{x} = (1,2,3) + \lambda(2,0,-1)$ und die Punkte P = (-1,4,0) und Q = (0,1,5). Berechnen oder bestimmen Sie
 - (a) den Abstand von P zur Geraden g.
 - (b) die Ebene E, die g und P enthält (Koordinatenform).
 - (c) den Abstand von Q zur Ebene E.
 - (d) den Fußpunkt des Lotes von Q auf E.
- 3. G sei die Menge der Elemente des Rings \mathbb{Z}_{10} , die ein multiplikatives Inverses besitzen. Bestimmen Sie G und zeigen Sie, dass (G, \times) eine Gruppe ist. (\times ist die Modulo-Multiplikation in \mathbb{Z}_{10})
- 4. Die Matrix A sei ein Nullteiler im Ring der Matrizen vom Typ $n \times n$. Zeigen Sie, dass dann der Rang von A nicht maximal sein kann.

Hinweise:

- für jede Aufgabe ein neues Blatt beginnen
- alle Antworten und Lösungen ausführlich begründen
- Lösungen mit allen Zwischenschritten angeben

Aufgabe	1	2	3	4	5	Σ
Punkte	4	8	4	3	-	-
erreicht						